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We show in this article how in certain cases Misha Marinov’s ideas and advices

produced strong influence, which lasts even after his passing away. In particular,

his deep understanding of classical and quantum description of particles and fields

enabled us to find simple approximate solutions to a few interesting problems, e.g.

the Cerenkov effect in a gravitational field and a new approach to the periodic

motion including the effects of spin in General Relativity.
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1 Introduction

1.1 Encounters with Misha Marinov

Although I had known some of Misha Marinov’s work since long ago, especially
his celebrated paper with Felix Berezin1 and his original explanation of path
integral methods in Quantum Theory,2 I met him personally for the first time
only in March 1993. It happened during the workshop “Mathematical Physics
towards the 21-st Century” organized by R. Sen at the Ben Gurion University
of Beersheva.

Before the end of the eighties it was quite difficult to travel to Russia
privately, and international meetings held there were much scarcer than nowa-
days. And when came to visit Moscow in 1990 (and it was for me the first time
since 1958) on the occasion of the 18-th International Colloquium on Group
Theoretical Methods in Physics, Misha was already in Israel, where he could
finally go with his family after eight years of enduring hardships imposed on
them by Soviet system just because they expressed their will to leave for the
only country in the world they could consider as their homeland.

Sharing Russian as mother tongue, we very quickly started to spend most
of the time discussing and making comments on everything, physics first, of
course, but also politics, history, Russian and Jewish literature and history. We
listened to the radio news together, which I tried to understand with my quite
rudimental knowledge of Hebrew, while Misha translated more difficult parts.
I have identified the most frequently used words, “piguah” and “bitakhon”,
and in his usual ironical style Misha told me that these two words are fairly
enough to understand the essence of the present situation.

Misha was only four years elder than myself, but his seniority was more
than what these few years would suggest. He had the privilege to learn physics
directly from Lev Landau and Evgeniy Lifshits, and to start his career under
the guidance of Isaac Pomeranchuk. I was full of admiration for his deep and
complete knowledge of theoretical physics; but what impressed me even more
were his exceptional personal qualities, his integrity and firmness in opinions
which he was ready to defend and stand up for, combined with a rare tolerance
and openness towards the opinions of other people. He was always ready to
listen and to discuss, no matter how far the opinions of his opponent could be
from his own ones.

Very soon have met again at one of the Group Theoretical Conferences
organized by H.D. Doebner in Goslar; then we have met in Poland, again in
Germany, later on in Israel (where I visited him twice at the Technion, in
1996 and in 1999). He also visited me in Paris, as invited Professor to our
Relativity and Cosmology Group (which I directed at that time) in February
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1998. At that time we have become friends, also with his charming wife Lilia
and his daughters Masha and Dina. Many memorable days and evenings were
spent together, often with other friends invited to Marinov’s home in Haifa, in
particular Louis Michel and his wife Thérèse, and Julius Wess.

We have discussed a lot, and I have learned a lot, but we had no time to
develop close collaboration e.g. writing papers together. We just discussed his
last papers with his Ph.D. student E. Strahov, or my future projects, which
ended up as articles published with other collaborators. Misha was one of the
last students of Lev Landau, and my encounters with him did give me a better
insight in the methods of thinking of Landau’s school, above all the quest for
simplicity and elegance. Several papers written since then are an attempt to
achieve these standards.

1.2 Simplicity as Art

Very often the most powerful and long lasting ideas in physics are also the
simplest ones. being aware that in the majority of cases we have to content
ourselves with approximate solutions, the approximation methods become a
crucial issue in physical problems we are dealing with.

When I visited Misha in Israel last time (early 1999), he showed me a
book by the Academician V. Ginzburg with a beautiful personal dedication
(the Academician Ginzburg has visited Misha in Haifa a few months before my
short stay in the Technion). I have borrowed it and read almost all the articles
it contained. In particular, I have discovered how beautiful was Ginzburg’s
explanation of the Cerenkov effect; then it gave me a few ideas, and with
collaborators (one Russian, Sasha Balakin from Kazan, another Portuguese,
Jose Lemos from Lisbon) we wrote a paper on the possibility of a Cerenkov-
type effect from the electromagnetic waves interacting (very weakly, of course)
via non-minimal terms of the type Rijkl F

ijF kl with gravitation.13 This paper
has been published in “Classical and Quantum Gravity” in 2000. Another
discussion with Misha helped me to better understand the solitons (see e.g.
the paper7 written with D.V. Gal’tsov in 2000).

Finally, Ginzburg’s technique of developing everything in a Fourier series
inspired our latest papers16,14 on a new approach to the two-body problem in
General Relativity – treating it as an infinite series of approximations (geodesic
deviations from a circular orbit) – again, these results, in collaboration with
Jan-Willem van Holten from Amsterdam, Sasha Balakin and my Ph.D. student
Roberto Colistete appeared in “Classical and Quantum Gravity.”

Another important influence can be traced back to Misha’s visit to Paris as
an Invited Professor in early 1998, and it also concerns an approximation tech-
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nique. At that time Misha worked with his Ph.D. student Eugene Strahov on
the adiabatic approximation for the description of spin in a variable magnetic
field. The behavior of proton spin in varying magnetic field is an important
problem which occurs in the analysis of nuclear magnetic resonance data. Its
direct treatment turns out to be very difficult, but when the variations of the
external field are not too rapid, the so-called adiabatic approximation can be
successfully used. The results of this investigations have been published in
Ref. 3.

The idea of separating slow and fast phenomena, or strong and weak ones,
is inherent in the Fourier expansion and in some sense was always present in
the description of motions of planets in our Solar system. Indeed, the Ptole-
maic system was already based on such a separation – the first approximation
given by the “secular” circular movement, then smaller perturbations, called
“epicycles”, being added to it. Such separation often becomes the only reliable
tool when one is dealing with non-linear equations.

Curiously enough, this approximation technique has not been much used
in the two-body problem in General Relativity. The most common approach
was to start with the approximation given by the Newtonian theory, and then
to add up progressive corrections which take into account various relativistic
effects. A lot of important results have been obtained in, e.g., Refs. 22 and 23.

But if we start from the geodesic equation in General Relativity, describing
the motion of a test particle with negligible mass, we can find an exact solu-
tion in the case of special symmetry. Circular orbits with constant four-velocity
represent such exact solutions in the case of spherically symmetric gravitaional
fields, especially in Schwarzschild and Reissner-Nordstrom metrics. Small per-
turbations around this solution satisfy the well known Jacobi equation, or the
geodesic deviation equation. Higher-order generalizations of this equations are
quite straightforward, and have been known since a long time.

When applied to the particular case of circular orbits in spherically sym-
metric gravitational field, these equations give rise to a series of linear systems
whose solutions are nothing else but harmonic oscillators with frequencies given
by the characteristic eigenvalues of the system. Next approximations give fur-
ther corrections in the form of “epicycles”, which are the consecutive terms in
a Fourier series expansion of this quasi-periodic motion.

These results have been obtained quite recently in collaboration with
A.Balakin, J.-W. van Holten and R. Colistete Jr.16,14 Here I shall expose the
main lines of this work, stressing the similarity with quasi-classical treatment
of spin in the external field. This is my tribute to the direct and indirect in-
fluence Misha Marinov’s deep understanding of Physics had on me during the
last years of his life.
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2 Cherenkov radiation in gravitational background

The radiation emission stimulated by a particle moving with a supraluminal
speed in a dielectric medium, first observed by Cherenkov and Vavilov, and
theoretically explained by Tamm and Frank, is one of the cornerstones of
classical electrodynamics (see, e.g., Refs. 4 and 5). This phenomenon, called
the Cherenkov radiation, is currently used in measuring devices of elementary
particle physics, e.g. in high-energy collider detectors.

The Cherenkov radiation can be explained in simple terms in Minkowskian
spacetime. Although it can be explained also in purely classical terms, the
Quantum Oscillator approach introduced by V.L. Ginzburg is by far more
elegant. It uses the fact that the two interacting entities, the electromagnetic
field and the charged particle producing it, can be decomposed into an infinite
sum of contributions having the form of quantum oscillators. The resonance
terms present on the right-hand side of Maxwell equations (representing the
source) give rise to spontaneous emission of quanta, which are interpreted as
Cherenkov’s waves.

Consider a charged particle moving uniformly with velocity V in a static
isotropic dielectric medium with the refraction index n. This particle induces
an electromagnetic field which can be represented as a Fourier integral as
follows,

A =
∑

l

(qlAl + q∗l A
∗
l ) with l = 1, 2, ....∞, and Al =

c

n
el e

(ikl·r) . (1)

Then, in Lorentz gauge ∂µA
µ = 0, and from

n2

c2
∂2A

∂t2
−4A =

1

c
j and

n2

c2
∂2 ϕ

∂t2
−4ϕ =

1

c
ρ , (2)

we get, in terms of Fourier components,

d2ql
dt2

+ ω2ql =
1

c

∫

j ·A∗
l dV . (3)

For a point particle with electric charge e moving with constant velocity V

j = eV δ (r−Vt) , (4)

and we get the equation of an oscillator solicited by an external force:

d2ql
dt2

+ ω2ql =
e

n
(el ·V) e−i (kl·V) t , (5)

in which each component l displays the frequency Ωl = kl ·V = kl V cos θ,
where θ is the angle between the direction of the wave three-vector kl and the
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three-velocity of the particle V. When Ωl = ω, a resonance occurs, making
oscillator’s amplitude grow linearly with t, which is interpreted as condition
for radiation. In order for this radiation to represent a real electromagnetic
wave, the relation between the frequency and the wave number should be
ω = kc/n. Since one must always have k>k cos θ, one finds that this condition
is equivalent to

V >
c

n
, (6)

i.e. the velocity of the particle should be greater than the velocity of light
in the medium c/n. It is also clear that the maximal angle of radiation, the
Cherenkov angle, is given by the condition

cos θ0 =
c

nV
. (7)

A possibility of the Cherenkov radiation emission by charged particles traveling
with a quasi-luminal speed in vacuum where the strong gravitational field is
present, is suggested by a sentence of the book “Classical Field Theory” of Lan-
dau and Lifshitz,6 in the problem of paragraph 90, where it is stated that the
gravitational field plays a role of a medium with electric and magnetic perme-
abilities equal to 1/

√
h, where h is the determinant of the three-dimensional

spatial induced metric. Then one may ask the following two questions: In
which types of gravitational fields can the Cherenkov radiation be emitted? Is
the Cherenkov effect possible in vacuum hosting a gravitational field?

This problem was taken up in Ref. 8, where the Cherenkov radiation in-
side a material medium was considered. One may also consider the Cherenkov
radiation in a gravitational wave background with vacuum interacting with
curvature. More specifically, it was possible to show that a covariant analysis
of this problem, based on exact solutions for the coupled system of a charged
particle and an electromagnetic wave in a nonlinear gravitational wave back-
ground, makes it possible to answer these two questions.12,13

One should distinguish between pure vacuum and vacuum interacting with
curvature.9 The latter behaves as a medium with electric and magnetic prop-
erties, and can, therefore, be called a quasi-medium. The results of our in-
vestigation show that quasi-media and true media can display the Cherenkov
effect, while the pure vacuum can not.

In order to adapt it to the curved space-time, the criterion for the
Cherenkov radiation emitted by a charged particle must be reformulated in
a covariant way. In a covariant formulation we cannot use the three-velocity
vector V, or the Cherenkov angle θ0, because they are not Lorentz invari-
ant quantities. There are two covariant vectors in this problem, the time-like
momentum four-vector of the charged particle P i, normalized according to
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PiP
i = m2c2 > 0, and the wave four-vector ki characterizing the electromag-

netic plane wave which can, in principle, propagate inside the medium in a
given space-time. We say therefore that the Cherenkov radiation can exist
when the following equality is satisfied :

kmP
m = 0 , (8)

where Latin indices are spacetime indices running from 0 to 3, and where we
use the metric with signature (+ − −−) .

One can easily recover the relations (6) and (7). In a standard three-
dimensional context in Minkowskian space-time the relationship (8) can be
rewritten in the usual form

kmP
m = k0P

0 − k ·P =
P 0

c
(ω − k ·V) =

P 0ω

c

(

1− 1

c
n ·V

)

= 0 . (9)

The classical definition of frequency is ω= ck0, the vector refraction index is
n=ck/ω, and its square is n2=n2. We can now reproduce the criterion to have
Cherenkov’s radiation in flat space-time, i.e. we can reproduce Eqs. (6) and (7).
For instance, using the definition of the angle θ, i.e. cos θ=k·V/kV =n·V/nV ,
as well as the condition | cos θ| ≤ 1, one can see from (9) that V ≥ c/n, i.e.
particle’s three-velocity should be bigger than speed of light in the medium,
recovering (6). Equation (7) also follows in a straightforward way. Let us
now proceed to find the necessary condition for the existence of Cherenkov’s
radiation. It can be given in three equivalent ways, the first involving the
square kik

i of the wave four-vector ki, the second one involving the square n2

of the scalar refraction index, and the third one involving the phase velocity of
light in the medium, vph. Note that this necessary condition does not depend
on particle’s momentum P i.

It is well known that the frequency ω (considered as a scalar quantity), and
the four-vector k∗i (the spatial part of the wave four-vector) may be defined by
the following relations (see, e.g., Ref. 10):

ω

c
≡ kiU

i and k∗i ≡ kl∆
l
i . (10)

Here U i is the four-velocity vector of the medium (or of the observer, if we
consider propagation in pure vacuum), and ∆l

i is the projector defined as

∆i
j ≡ δij − U iUj . (11)

Following the standard definition (see p. 290 in Ref. 4), we introduce now the
four-vector index of refraction ni

ni =
c

ω
k∗i . (12)
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The vector refraction index ni is in general a spacelike four-vector, orthogonal
to the four-velocity Ui, and only in an isotropic medium it reduces to a scalar.
Its absolute value is referred to as the scalar index of refraction, (or refraction
index). Its square is given by n2 ≡ − giknink .

We can now write the following useful identity satisfied by ki,

ki = Ui (klU
l) + k∗i . (13)

Now, in order to use the criterion (8) we note that P i and ki must be or-
thogonal. This happens only when ki is spacelike, since the P i four-vector is
timelike. From the equation (13) we obtain the square of Ki,

k2 ≡ − gimkikm = − kmkm = − (kmUm)2 − klks∆ls . (14)

This equation can be written explicitly in two ways,

k2=
(ω

c

)2

(n2 − 1) or k2= (k∗)
2− ω2

c2
, (15)

where
(k∗)

2 ≡ − klks∆ls . (16)

From the equation (16) we see that the sign of k2 coincides with that of (n2−1).
This means that ki is spacelike for n

2 > 1 . From the equation (15) we also see
that ki is spacelike when ω2/c2 < (k∗)2, i.e. when the phase velocity of light
vph ≡ ω/k∗ obeys vph < c .

Three equivalent invariant forms of the necessary condition for Cherenkov’s
radiation can be used, namely,

kmk
m < 0 , or n2 > 1 , or vph < c . (17)

All of them require the knowledge of the four-vector ki, which is obtained from
the corresponding solution of Maxwell equations.

In order to use the criterion (8) in a curved background we have to resort
now to a specific model. We have used as a background the pp-wave solution
of Einstein equations in vacuum. First, the four-momentum P i of a particle
moving in this background is determined, then a specific solution of Maxwell
equations is found, in the same gravitational background. After that, we can
examine the criteria of existence of the Cherenkov radiation, and establish its
spatial properties in this background. In a curved space-time different spatial
directions are generally non-equivalent, which implies that one should know
the evolution of particle’s four-momentum P i with arbitrary initial data in
order to be able to use explicitly the criterion (8).
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3 Radiating charges in the gravitational wave

3.1 The gravitational wave background

Let us consider the space-time described by the exact pp-wave solution of
Einstein’s equations in vacuum.11 The metric describing a gravitational wave
propagating in the x1 direction is supposed to take on the following form:

ds2 = 2 du dv − L2
[

e2β(dx2)
2
+ e−2β(dx3)

2
]

, (18)

where

u =
ct− x1

√
2

and v =
ct+ x1

√
2

(19)

are the retarded and the advanced times , respectively. The functions L and
β depend only on the variable u, i.e. L = L(u) and β = β(u).

The pp-wave metric (18) is invariant under the G5 symmetry group and
admits the following set of five Killing vector fields ξ(r) (where the index (r)
takes on the values (v), (2), (3), (4), (5) and characterizes each vector),

ξi(v) = δiv , ξi(2) = δi2 , ξi(3) = δi3 ,

ξi(4) = x2δiv − δi2
∫

g22(u) du , ξi(5) = x3δiv − δi3
∫

g33(u) du . (20)

Here gαβ(u) (α, β = 2, 3) are the contravariant components of the metric ten-
sor. The vector ξi(v) is isotropic, covariantly constant and orthogonal to the
other four ones,

∇k ξ
i
(v)= 0 , gik ξ

i
(v) ξ

k
(r)= 0 . (21)

The three vectors ξi(v) , ξ
i
(2) , and ξi(3) form the Abelian subgroup G3 . The two

functions L(u) and β(u) are coupled by the Einstein equation

L
′′

+ L (β
′

)2 = 0 , (22)

which is unique in this case. The function β(u) can be chosen at will, and once
given, one can solve the equation (22) for L(u). The curvature tensor has two
non-vanishing components

−R2
·u2u= R3

·u3u= L−2
[

L2 β′
]′
. (23)

Both the Ricci tensor Rik and the curvature scalar R are equal to zero.
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3.2 Particle dynamics in the GW background

The geodesic equation for a particle with mass m in the GW field (18) reads

DPi
Dτ

= 0 , with P i = mc
dxi

dτ
. (24)

Using the well-known property of the Killing vectors (20), we obtain the fol-
lowing expressions for the components of the momentum:

Pv≡ Piξ
i
(v)= const ≡ Cv , Pα ≡ Pi ξ

i
(α)= const ≡ Cα , (25)

Pu =
1

2Cv

[

m2c2 − gαβCαCβ
]

, (26)

where the last equation for the component Pu of the momentum followed from
the normalization condition.

Since Cv and Cα are constants, they also represent the initial values of the
corresponding momentum components at the initial surface defined by u = 0.
These data determine the character of particle’s motion. For example, when
Cα = 0 , i.e. when the particle moves initially along the longitudinal direction
(the direction of propagation of the GW x1), then it will always move along
that direction without acceleration. When Cα 6= 0 , the dynamical effects on
the particle induced by the GW appear in its longitudinal motion (see the
expression (26) for Pu) . Thus, in the field of GW, the criterion (8) yields the
following equation:

KmP
m = KuCv +Kv

1

2Cv

[

m2c2 − gαβ(u)CαCβ
]

+ gαβ(u)KαCβ = 0 . (27)

It remains to represent explicitly the components of the wave four-vector Ki

and we also have to check the condition (17), necessary for the emission of
the Cherenkov radiation. The full solution of the combined field and particle
motion equations has been found in Ref. 13 The main result is that although a
plane gravitational wave modifies the dielectric properties of pure vacuum, it
does not modify its scalar refraction index, and therefore there is no possibility
of emission of the Cherenkov radiation in this particular case.

On the other hand, vacuum interacting with curvature, considered as a
sort of quasi-medium, allows the possibility of the existence of the Cherenkov
radiation. Cherenkov’s radiation in vacuum interacting with curvature can
propagate along a non-circular cone, the spatial structure of this cone being
permanently modified with time. The Cherenkov radiation emission exists
alternatively for each polarization of the electromagnetic wave.
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Thus, we deal with a new phenomenon in Cherenkov’s radiation, namely,
polarized radiation with oscillating polarization direction. The Cherenkov an-
gle is predetermined by the value of the Riemann tensor.

We have performed an exact treatment in two particular cases, with two
privileged directions of particle motion, the longitudinal and the transversal
ones. However, for arbitrary direction of particle motion, the structure and
the inclination of the cone axis with respect to the GW front plane is given by
more complicated modified expressions.

The dispersion phenomena for the Cherenkov radiation can not be ruled
out, as the effective refraction index induced by the ambient curvature is also
a function of the wavelength emitted. However, these effect seem to be rather
of the academic interest, as their order of magnitude is apparently very small.

4 Epicycles in General Relativity

In General Relativity the problem of motion of planets, considered as test
particles moving along geodesic lines in the metric of Schwarzschild’s solution,
has been solved in an approximate way by Einstein,20 who found that the
perihelion advance during one revolution is given in the near-Keplerian limit
by the formula

∆φ =
6π GM

a(1− e2) , (28)

where G is Newton’s gravitational constant, M the mass of the central body,
a the greater half-axis of planet’s orbit and e its eccentricity.

This formula is deduced from the exact solution of the General Relativistic
problem of motion of a test particle in the field of Schwarzschild metric, which
leads to the expression of the angular variable ϕ as an elliptic integral, which
is then evaluated after expansion of the integrand in terms of powers of the
small quantity GM/r .

The formula has been successfully confronted with observation, and rep-
resents one of the best confirmations of Einstein’s theory of gravitation. In
the case of small eccentricities the formula (28) can be developed into a power
series:

∆φ =
6πGM

a
(1 + e2 + e4 + e6 + . . . ) . (29)

One can note at this point that even for the case of Mercury (e = 0.251), the
series truncated at the second term, i.e. taking into account only the factor
(1 + e2) will lead to the result that differs only by 0.18% from the result pre-
dicted by relation (28), which is below the actual error bar.
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This is why it is useful to present an alternative way of treating this prob-
lem, based on the use of geodesic deviation equations of first and higher orders.
Instead of developing the exact formulae of motion in terms of powers of the
parameter GM/r, we can start with an exact solution of a particularly simple
form (i.e. a circular orbit with uniform angular velocity), and then generate
approximate solutions as geodesics being close to this orbit.

One of the advantages of this method is the fact that it amounts to treat-
ing consecutively systems of linear equations with constant coefficients, all of
them being of harmonic oscillator type, eventually with an extra right-hand
side being a known periodic function of the proper time. The approximate so-
lution obtained in this manner has the form of a Fourier series and represents
the closed orbit as a superposition of epicycles with diminishing amplitude as
their circular frequencies grow as multiples of the basic one. This approach is
particularly well-suited for using numerical computations.

In this respect, it is similar to the treatment3 of the spin precession in
slowly varying magnetic field.

4.1 World-line deviation equations

According to the equivalence principle, structureless test bodies (sometimes
referred to as point masses) in a gravitational field move on geodesics of space-
time. Their world-line xµ(τ) is a solution of the geodesic equation

D2xµ

Dτ2
=

d2xµ

dτ2
+ Γ µ

λν

dxλ

dτ

dxν

dτ
= 0 , (30)

where the world-line parameter τ is the proper time. Introducing the four-
velocity as the time-like tangent unit vector to the world-line: u µ = dxµ/dτ ,
the equation can be written in geometrical language as

u · ∇u = 0 , u2= −1 . (31)

with ∇ the covariant derivative. It is easily observed from Eq. (30), that the
proper acceleration aµ = d2xµ/dτ2 is not a covariant object. In particular, its
vanishing or non-vanishing has no observer-independent meaning.

In contrast, the relative acceleration between world lines is a covariant
quantity, and its vanishing or non-vanishing does not depend on the frame of
reference.10 Consider a one-parameter congruence of geodesics x µ(τ ;λ), where
λ labels the geodesics and τ is the proper-time parameter along the geodesic.
We suppose the parametrization to be smooth, hence we can construct the
tangent vector fields u µ = ∂xµ/∂τ , and nµ = ∂xµ/∂λ. It is straightforwardly
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established that

(u · ∇n)µ =
∂2xµ

∂τ ∂λ
+ Γ µ

λν

∂xλ

∂τ

∂xν

∂λ
= (n · ∇u)µ. (32)

As a corollary, we obtain

u · ∇(u · ∇n) = n · ∇(u · ∇u) + uµnν [∇µ,∇ν ]u = uµnνRµν [u, · ] . (33)

In component notation this reads

D2nµ

Dτ2
= R µ

κλν uκuνnλ . (34)

If xµ0 (τ) = xµ(τ ;λ0) is a solution of the geodesic equation (30), then (to first
order) xµ1 = xµ0 + nµ∆λ is a solution as well:

xµ(τ ;λ1) = xµ(τ ;λ0) + ∆λ
∂xµ

∂λ
(τ, λ0) ≈ xµ(τ ; λ0 +∆λ) . (35)

It follows, that Eq. (34) describes the covariant relative acceleration between
these world lines. Of course, nµ is only a first approximation to the neighboring
geodesic at λ1 = λ0+∆λ . To increase the precision of the approximation,
one has to compute higher-order derivatives w.r.t. λ, by solving higher-order
versions of Eq. (34), involving not only the Riemann curvature tensor, but its
derivatives as well. A systematic procedure of this type can be found in Ref.
14 .

4.2 Application: the Coulomb-Reissner-Nordstrom field

World-line deviation equations can be used to compute the relative motion
between particles in given background fields, or to obtain an approximation
to solutions for orbits close to a known one. We illustrate the general results
with an application to the study of the motion of charged particles in a central
gravitational and electric Coulomb-Reissner-Nordstrom field.

The vector potential and electric field strength for the Coulomb part of this
solution of the Einstein-Maxwell equations are given by the one- and two-forms

A = − Q

4πr
dt , F = dA =

Q

4πr2
dr∧ dt , (36)

whilst the metric for the gravitational field can be taken as

−dτ2 = −B(r) dt2 +
1

B(r)
dr2 + r2

(

dθ2 + sin2 θ dϕ2
)

, (37)

where B(r) = 1 − (2M/r) + (Q2/r2) , Q and M are the charge and the mass
of the central body which is the source of the field.
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The orbits of particles with mass m and charge q in this background can
be computed in closed form in terms of elliptic integrals.16 More precisely, the
orbits are given by

r(ϕ) =
r0

1 + e cos y(ϕ)
, (38)

where y(ϕ) is the solution of the differential equation

dy

dϕ
=

√

A+B cos y + C cos2 y , (39)

with coefficients given by

A = 1 +
Q2

`2

(

1−
( q

4πm

)2
)

− 6M

r0
+
Q2

r20
(6 + e2) ,

B = − 2e

r0

(

M − 2Q2

r0

)

, C =
e2Q2

r20
.

(40)

Here ` is the constant angular momentum per unit of mass. As the periastra
of the orbit are at the points y(ϕ) = 2πn, one can now compute the angular
distance ∆ϕ between successive periastra. From ∆ϕ = 2π+ δϕ, it follows that
the periastron shift per orbit is

δ ϕ = 2π

(

3M

r0
− Q2

2Mr0

)

+ . . . , (41)

the dots denoting terms of higher order in e, M/r0 or Q/r0.
Eqs. (38) and (39) describe a general orbit in the exterior region of the

central body. However, they do not provide all information about the orbit. In
particular, as the time coordinate has been eliminated from these equations,
the solution does not tell us where in its orbit the test particle is at any
moment. Such information can be relevant for some important applications,
e.g. to compute estimates of the amount of electro-magnetic and gravitational
radiation emitted by the system. The method of world-line deviations is useful
to obtain parametrized expressions of orbits (r(t), ϕ(t)).

As the reference orbit, the zeroth order approximation to the real orbit,
we take a circular one with constant radial coordinate R. Constants of motion
on all orbits are the angular momentum per unit of mass, ` = ωR2, with the
angular velocity ω = ϕ̇, and the energy ε per unit of mass defined by

dt

dτ
=

ε− q Q/4πmR

1− 2M/R +Q2/R2
. (42)
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Then, on circular orbits the constants R, ` and ε are related by

(

ε− q Q

4πmR

)2

=

(

1− 2M

R
+
Q2

R2

)(

1 +
`2

R2

)

, (43)

and

[

`2

R
−M

(

1 +
3`2

R2

)

+
Q2

R

(

1 +
2`2

R2

)]2

(44)

=

(

q Q

4πm

)2(

1 +
`2

R2

)(

1− 2M

R
+
Q2

R2

)

.

As all orbits are planar, we can always choose the orientation of the coordinate
system such that θ = π/2 for the reference orbit. For orbits tilted w.r.t. this
one, we then find from Eq. (63) that

n̈θ + ω2nθ = 0 , (45)

from which it follows, as the physics dictates, that the distance perpendicular
to the plane of the reference orbit oscillates with the period of the circular
orbit T = 2π/ω = 2πR2/`.

Considering orbits in the plane of the reference orbit, the world-line devi-
ation equations (63) for the other components ni = (nt, nr, nϕ) become

n̈i + γij ṅ
j +mi

jn
j = 0 , (46)

where the coefficient matrices take the form

γ =





0 γtr 0

γrt 0 γrϕ
0 γϕr 0



 , m =





0 0 0

0 mr
r 0

0 0 0



 . (47)

This represents a system of coupled linear oscillators, which has solutions

nt(τ) = nt0 sinω1τ , nr(τ) = nr0 cosω1τ , nϕ(τ) = nϕ0 sinω1τ , (48)

where ω1 is the solution of the characteristic equation for (46). The detailed
form of this equation, using explicit expressions for the elements of the matrices
γ and m were given in Ref. 16. The resulting expression for the characteristic
frequency is

ω1 = ω
(

1− 3M

R
+

Q2

2MR
+ ...

)

, (49)

where the dots represent terms of higher order in M/R, Q/M or q/m. We also
observe, that the amplitudes ni0 are not all independent: as u2 = −1 both on
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the original orbit and on the displaced world-line, it follows that n is space-like
and u·n = 0 . In the present case this general result translates to the constraint

(

ε− q Q

4πmR

)

nt0 −
q Q

4πmω1R2
utnr0 − ` nϕ0 = 0 . (50)

Although the components nµ define the direction of the deviation, they do not
determine the actual distance between neighboring world lines; this is given by
equation (61) as ∆xµ = nµ∆λ. Therefore, for any particular orbit specified
by the circular reference orbit (zeroth order approximation) and a world-line
deviation vector n (first order approximation), we must determine in addition
the scale factor ∆λ to be applied. This can be done as follows. Comparing the
approximate solution (46) with the exact solution (38), we observe that

r(ϕ) = R+∆r ≈ R− eR cos y(ϕ) . (51)

Hence at the periastron, one has

∆r = −∆λnr0 = − eR . (52)

Thus the scale is set by the eccentricity of the orbit. Finally, we can determine
the shift in angular coordinate between successive periastra, i.e. the advance
of the periastron per orbital period. First observe, that the periastron occurs
at the minima of nr(τ), i.e. for τn = (2n+1)π/ω1. Thus the amount of proper
time elapsing between periastra is ∆τ = 2π/ω1; the corresponding period of
observer time is

T =

∫ 2π/ω1

0

dτ
dt

dτ
=

∫ 2π/ω1

0

dτ (ut + ṅt∆λ) =
2π

ω1
ut. (53)

Here ut is the rate of change of t per unit of proper time along the circular
reference orbit. Next we observe, that at the proper times τn the angular
coordinates at the reference orbit and the true orbit coincide: nϕ(τn) = 0 .
Hence the change in angular coordinate ϕ between successive periastra is the
same as the change of this coordinate along the circular reference orbit after
time T . This we can easily compute. Defining

δϕ = ϕ (t0 + T )− ϕ (t0)− 2π , (54)

and using the expression dϕ/dt = ϕ̇ dτ/dt = ω/ut for the angular velocity, we
find

δϕ =
ω T

ut
− 2π = 2π

(

ω

ω1
− 1

)

≈ 2π

(

3M

R
− Q2

2MR

)

. (55)

This is in perfect agreement with the expression (41) obtained from the ana-
lytical form of the orbit.
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It is of interest to consider the geometrical interpretation of the approxi-
mation scheme we have used in a little more detail. The zeroth order approxi-
mation to the orbit we have constructed is a fully relativistic circular solution
of the Einstein-Lorentz equation in a Coulomb-Reissner-Nordstrom field, with
period T0 = 2π/ω0. Included in this result is of course the simpler case of a cir-
cular geodesic in a Schwarzschild field. The first-order correction is a geodesic
deviation which oscillates in all its components in the same plane with period
T1 = 2π/ω1. Geometrically this represents another circular movement on the
background of the zeroth-order solution, i.e. an epicycle, with period slightly
different from the zeroth-order approximation. This has two immediate con-
sequences: the orbit becomes eccentric, and the period between extrema of
the orbit differs from the period of the average (zeroth order) circular motion.
This is in contrast with Newtonian gravity, where the periods are equal. Thus
the extrema of the orbit (periastron and apastron) are shifted compared to the
Newtonian approximation, by the amount predicted by the analytic description
of the orbit.

It can be easily shown,14 that higher-order world-line deviations all sat-
isfy linear harmonic-oscillator type equations. Thus, computing higher-order
corrections to our result amounts to the construction of higher-order epicycles.
For the case of orbits in a central field, the method of world-line deviations then
becomes a fully relativistic version of the Ptolemaean scheme,21 which differs
genuinely from the standard post-Newtonian approximation scheme because
it uses the eccentricity of the orbit and the quantities M/R, Q/M as expan-
sion parameters, rather than v/c. As such this scheme offers an alternative to
post-Newtonian calculations of binary systems in a different physical regime,
e.g. in the calculation of radiative effects.

5 Quasiclassical spinning bodies

The generalized geodesic deviation equations can be extended to the case of
the particles carrying an electric charge and/or quasi-classical spin. In these
cases particles do not move on geodesics, but on more general world lines.15 For
the case of charged particles in a combined electro-magnetic and gravitational
field, the resulting world line deviation equation was derived in Ref. 16.

To this end, it is useful to consider the Lagrangian formulation of the
geodesic deviation equations.We first observe, that this equation is linear and
homogeneous in nµ. It is therefore not very difficult to construct an action
from which it can be derived. The Lagrangian of interest reads

L (n) =
1

2
gµν

Dnµ

Dτ

Dnν

Dτ
+

1

2
Rµρνλ u

ρ uλ nµ nν . (56)
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In this Lagrangian the metric, connection and curvature are those on the
given reference geodesic xµ0 (τ), with u

µ(τ) = ẋµ0 representing the four-velocity.
These quantities will be treated as background variables. Only the nµ(τ)
should be considered as independent Lagrangian coordinates which are to be
varied in the action. The action (56) can be derived independently by starting
from the geodesic Lagrangian

L (x) =
1

2
gµν (x)

dxµ

dτ

dxν

dτ
, (57)

and expanding xµ(τ) near the given background geodesic solution in the form
xµ = xµ0 + nµ∆λ. The term independent of ∆λ does not contain nµ, and
contributes, after integration, only a constant term to the action. Next all
terms linear in ∆λ drop out of the result because x0 is a solution of the geodesic
equation. Finally, the terms quadratic in ∆λ reproduce the expression (56),
up to a total proper-time derivative and terms which vanish because of the
geodesic equation for x µ0 (τ). Thus the Lagrangian (56) represents the lowest-
order non-trivial term in a systematic expansion of our action integral:

S [x] = m

∫

dτL(x0) +m (∆λ)
2
∫

dτL(n) +O
[

(∆λ)
3
]

. (58)

The higher-order approximations can also be derived in this way.
This derivation of the deviation equations can be also applied to the case

of charged particles. One should start from the action

Sq[x] =

∫

dτ

[

m

2
gµν(x) ẋ

µẋν + q Aµ(x) ẋ
µ

]

, (59)

with the overdot being the usual short-hand for proper-time derivatives. The
world-lines generated by this action are solutions of the Einstein-Lorentz equa-
tion

D2xµ

Dτ2
=

q

m
Fµ

ν

dxν

dτ
. (60)

Now given a solution x µ0 (τ) of this equation, and expanding the path in Sq[x]
as

xµ(τ) = xµ0 (τ) + ∆λnµ(τ) , (61)

one can expand to second order in ∆λ:

Sq[x] = Sq[x0] +
(∆λ)

2

2

∫

dτ

[

m

(

gµν
Dnµ

Dτ

Dnν

Dτ
+Rµρνσu

ρuσnµnν
)

+ q

(

Fµν n
µ Dn

ν

Dτ
+∇µFνρ u

ρnµnν
)

]

+O
[

(∆λ)
3
]

. (62)
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To this order we then find that other (close to x µ0 (τ)) solutions of the world-
line equation (60) are given by (61), with n µ being the solution of the world
line deviation equation16,17

D2nµ

Dτ2
= R µ

ρνσ u
ρuσnν +

q

m
Fµ

ν

Dnν

Dτ
+

q

m
∇ρF

µ
ν u

νnρ . (63)

The alternative interpretation of nµ, as parametrizing the distance between
two particles on neighboring world lines, holds in this case as well, provided
the particles have the same charge-to-mass ratio q/m.

The same result can be obtained (63) from reduction of the geodesic equa-
tion and geodesic deviation equation in five-dimensional space-time, as parti-
cles with different q/m ratio in four dimensions correspond to particles with
different momenta in five-dimensional space-time.17

Similarly, pseudo-classical spinning particles can be described by the su-
persymmetric Lagrangian18,19

Lspin(x, ψ) =
1

2
gµν ẋ

µẋν +
i

2
ψa
Dψa

Dτ
, (64)

with ψa an anti-commuting tangent-space vector a such that the pseudo-
classical spin is described by Sab = −i ψaψb. The corresponding equations
of motion for spinning particles can be written as

D2xµ

Dτ2
=

1

2
SabRµ

νabu
ν ,

DSab

Dτ
= 0 . (65)

Starting from a one-parameter congruence of solutions (x µ(τ ;λ), ψa(τ ;λ)) we
define the deviation vectors

nµ =
∂xµ

∂λ
, ξa=

Dψa

Dλ
=
∂ψa

∂λ
− nµ ω a

µ b ψ
b , (66)

where ω a
µ b is the spin connection. Then, the covariant change in the spin-

tensor is

Jab =
DSab

Dλ
= −i[ψaξb + ξaψb] . (67)

a Note that the transition between base-space and tangent-space vectors is made, as usual,

by the vierbein e
a
µ

and its inverse.
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These vectors satisfy the world line deviation equations

D2nµ

Dτ2
= R µ

σνρ uσuρnν +
1

2
SabRµ

νab

Dnν

Dτ

+
1

2

[

Sab∇ρR
µ
νab u

νnρ + JabRµ
νab u

ν
]

, (68)

DJab

Dτ
= [S,Rµν ]

ab
uµnν .

They define the stationary points of the quadratic deviation action

Lspin(n, ξ) =
1

2
gµν

Dnµ

Dτ

Dnν

Dτ
+
i

2
ξa
Dξa

Dτ
+

1

2
Rµρνσ u

ρuσnµnν (69)

− i

4
ψaψb

[

Rµνab n
µDn

ν

Dτ
+∇µRνσab u

σnµnν
]

− i Rµνab n
µuνξaψb.

This set of coupled equations is of interest for the analysis of fine gyroscopic
effects, namely in the field of Kerr’s metric.
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