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When ten separated identical nuclei are all excited to the same first excited state

they decay independently with the natural line width and lifetime. But a standard

Wigner-Weisskopf treatment of the initial state as a pure quantum state says that it

decays exponentially to a state with nine excited nuclei with ten times the natural

width and ten times the exponent for a single decay. The resolution of this paradox

would have amused and interested Misha Marinov. We explore the possibility that

a synchrotron radiation beam may be sufficiently intense to excite more than a

single Mössbauer nuclear resonance in the same sample in the same pulse; i.e.

to excite a coherent state of several nuclear excitons. We describe multi-exciton

states using a quasispin description of the states of the nucleus. We then consider

the decay and production of a two-exciton state and find that the two-exciton

decay is twice as fast as a single exciton decay and therefore that the width for

exciting a second exciton when one exciton is already present is twice the width

for exciting a single exciton. The implications of this factor of two are examined

and the treatment is then generalized to the three-exciton and multi-exciton cases.

The conclusion that the width for the excitation of an additional nuclear exciton

is enhanced by a factor n + 1 when n excitons are already present is interesting

and deserves further investigation.
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130 H. J. Lipkin

1 Introduction. A paradox in the quantum mechanics of multiply-

excited systems

1.1 Simple coherence effects in excitation transition probabilities

The possibility that synchrotron radiation sources1 may be available with suf-
ficient intensity to allow the excitation of several nuclei in a sample2 by a single
pulse leads to investigation of multiple excitations in solids. New coherence
phenomena arise which first lead to an apparent paradox. The essentials can
be seen in the simple example of a system with two nuclei, denoted by A and B
which can be excited from the ground state by a synchrotron radiation pulse.
Let |0〉, |A〉, |B〉 and |AB〉 denote respectively the states where neither nucleus
is excited, nucleus A is excited, nucleus B is excited and where both nuclei are
excited. Let the transition operator denoted by T describing the excitation
of a nucleus by a synchrotron radiation pulse be equal for the two nuclei and
independent of whether the other nucleus is excited. Then the matrix elements
of the transition operator satisfy the relation

〈A|T |0〉 = 〈B|T |0〉 = 〈AB|T |A〉 = 〈AB|T |B〉 ≡ T . (1)

A state with a single excitation produced when a pulse of synchrotron
radiation strikes both nuclei equally is described as

|1〉 ≡ 1√
2
· {|A〉+ eiφ · |B〉}; | 〈AB|T |1〉 |2 = |T |2 · {1 + cosφ} , (2)

where φ denotes the relative phase of the two excitations which depends upon
the production mechanism.

The transition probability | 〈AB|T |1〉 |2 for producing a double excitation
from the singly excited state |1〉 depends upon the relative phase φ between
the excitations of nucleus A and nucleus B. For the case where φ = 0 we see
that the transition probability is 2|T |2 or double the transition probability for
a single excitation. This enhancement factor of two arises when the relative
phase φ has just the value to produce constructive interference between the
two single excitations.

We shall see in detail below that the condition for this constructive in-
terference is exactly produced in realistic systems with many nuclei and a
single excitation in the case where the first excitation is a nuclear exciton1,3-5

produced by the same synchrotron radiation pulse that produces the second
excitation. However, in all other cases the relative phase φ is random and the
there is no enhancement.

We now extend this to the case of three nuclei with the third nucleon
denoted by C. We define the coherent double excitation state where any pair



Coherent effects 131

of the three nuclei is excited, and the phase produces constructive interference
for the third excitation,

|2coh〉 ≡
1√
3
· {|AB〉+ |BC〉+ |CA〉}; | 〈ABC|T |2coh〉 |2 = 3 · |T |2 . (3)

Extending this treatment to the case of an initial state where (n-1) coherent
excitations are already present; e.g. a state containing (n-1) nuclear excitons,
leads to the result that the transition probability for producing a state with
n-excitations from this state is enhanced by a factor n. This suggests a picture
with a collective excitation which behaves like a boson, where the creation of
such a boson is enhanced by the same factor as the stimulated emission of any
boson when other bosons are already present.

In the remainder of this paper we consider the production and decay of nu-
clear excitations in detail. The result will show that this “boson-enhancement”
picture has a general validity for the case of multiple production of nuclear ex-
citons, and that it is possible to define operators which create and annihilate
nuclear excitons which obey boson commutation rules to a very good approx-
imation.

1.2 Simple coherence effects in decays of multiply excited states

The decays of the states |AB〉 and |ABC〉 with double and triple excitations
respectively are simply described by the Fermi Golden Rule of time-dependent
perturbation theory as proportional to the square of the transition matrix ele-
ment (1) of the operator T . This gives the well-known result that each excited
nucleus decays independently with the standard exponential time dependence
e−λt where λ is the decay constant proportional to |T |2 given by the Fermi
Golden rule for a single decay.

However, we can also describe the decay as a cascade of several decays
using a basis of the coherent states,

|ABC〉 → |2γcoh〉 → |1〉 → |0〉 , (4)

where the coherent doubly-excited state of three nuclei is now redefined to
explicitly include the photon emitted by the third nucleus,

|2γcoh〉 ≡
1√
3
· {|ABγC〉+ |BCγA〉+ |CAγB〉}; | 〈ABC|T |2γcoh〉 |2 = 3 · |T |2 ,

(5)
where γA, γB and γC denote that nuclei A, B and C respectively are now in
their ground states but a photon has been emitted in their transition from the
excited state.
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We immediately find that the first decay of the cascade, |ABC〉 → |2γcoh〉
is described by the squared transition matrix element (3), | 〈ABC|T |2γcoh〉 |2 =
3 · |T |2, and that the time dependence of this decay is e−3λt. If the photons
emitted in the three terms in the state |2γcoh〉 are identical, then these three
terms can contribute coherently to the subsequent decay as in the decay of a
nuclear exciton and its decay can be speeded up in the standard nuclear exciton
manner.5,6 This does not occur in a normal decay without exciton correlations
and the decays of the three terms are incoherent. We therefore assume here
that the subsequent decays are incoherent in order to examine the additional
speedup resulting from the simultaneous presence of several excitations. The
singly-excited state |1〉 in the cascade (5) is therefore a complicated state with
terms containing different photons. Each term decays individually with the
normal time dependence e−λt.

The second decay of the cascade is described by the incoherent decays of
each doubly-excited term into a coherent singly-excited state , with a squared
transition matrix element given by Eq. (2) with φ = 0. | 〈AB|T |1coh〉 |2 =
2 · |T |2. The time dependence of this decay is e−2λt.

At first this appears inconsistent with the well-known result that all de-
cays have the time dependence e−λt. However, we shall now see that the two
descriptions are completely equivalent.

1.3 The cascade decay of a multi-excited state

The time behavior of the radiation from the decay of a multi-excited state
where each transition has a different lifetime would be expected to be a lin-
ear combination of several exponentials, one corresponding to each lifetime.
However, for the case where the decay width of the n → n − 1 transition is
proportional to n the expression simplifies in a surprising manner and the ob-
served radiation is just a single exponential, exactly as if there were no cascade
and there were n independent nuclei decaying. We now examine in detail how
this surprising result arises.

Consider the cascade decay (4) of a state |ABC〉 containing three nuclear
excitations. Let P3X(t), P2X(t) and P1X(t) denote the probabilities respec-
tively for the system to be in the triply-excited, doubly-excited and singly-
excited states. The decay rates from these states are respectively 3λ, 2λ and λ
and the probabilities P3X(t), P2X(t) and P1X(t) satisfy the differential equa-
tions and initial conditions:

dP3X

dt
= −3λP3X ; P3X(0) = 1 , P3X(t) = e−3λt , (6)
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dP2X

dt
= −2λP2X −

dP3X

dt
; P2X(0) = 0 , (7)

dP1X

dt
= −λP1X −

dP2X

dt
− dP3X

dt
; P1X(0) = 0 , (8)

where we have also given the trivial solution of the equation for P3X(t). These
can be rewritten in a compact general form in terms of the number N of
initial nuclear excitations, where N = 3 in this case, but the results are easily
extended to hold for all values of N .

dPkX
dt

= −kλPkX −
N
∑

j=k+1

dPjX
dt

; PkX(0) = δkN . (9)

The total radiation emitted from all nuclei is given by

R(t) = 3λP3X(t) + 2λP2X(t) + λP1X(t) =

N
∑

k=1

kλPkX(t); R(0) = Nλ . (10)

Substituting Eqs. (6-8) gives the differential equation for R(t) which is easily
solved,

dR

dt
= −λR; R(t) = Ne−λt . (11)

Thus, although the individual probabilities PkX(t) contain several exponen-
tials, the total radiation decays exponentially with the single exponent of the
decay rate for a single nucleus. All other exponential terms drop out of the
total radiation.

To show that this treatment applies to the cascade decay of a general
N-fold excited state we note that Eqs. (9) and (10) will hold for all values
of N if we generalize the assumption that the decay rate for the transition
kX → (k − 1)X is kλ to hold for all values of k. Eq. (9) can be rearranged to
the form

N
∑

j≥k

dPjX
dt

= −kλPkX ; PkX(0) = δkN . (12)

This simply states that the change in the total probability for the system to be
in a state of k or more excitations is given by the decay of the k-fold excited
state with the initial condition that all N nuclei are excited at t = 0. The
general result that Eq. (11) holds for all values of N follows from summing this
over the index k, rearranging and evaluating the sums,

−R = −
N
∑

k=1

kλPkX =
N
∑

k=1

N
∑

j≥k

dPjX
dt

=
N
∑

j=1

j
∑

k=1

dPjX
dt

=
N
∑

j=1

j
dPjX
dt

=
1

λ
· dR
dt

.

(13)
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We have therefore resolved the apparent contradiction about different ex-
ponentials. The radiation for the cascade decay of a state with k excitations
via coherent states is therefore the same as for k independent decays with the
normal lifetime. Thus the radiation does not show the presence of a cascade
decay with a speeded-up first decay.

However, one apparently new phenomenon remains. The natural line
width for the excitation of the state with k excitations from a state with k− 1
coherent excitations is k times the normal line width. For ordinary decays of
systems with n excited nuclei this analysis merely confirms what we already
know. That coherent states like |2coh〉 and |1coh〉 are produced in the decays of
states with multiple excitations is only of academic interest since such coher-
ence is never observed in real experiments. The one case where the coherence
is of interest is in the production and decay of nuclear excitons where the co-
herent state is actually created experimentally. In this case the enhancement
of the width for excitation from a state which contains coherent excitations
can be very important for excitation from a broad-band synchrotron radiation
source with an energy band width much larger than the natural line width of
the nuclear resonance.

We now show in detail how these same results hold for systems of coher-
ently excited nuclear excitons and their cascade decays.

2 Simple properties of multiphoton excitation

2.1 What exactly is a nuclear exciton?

Coherent scattering and Bragg scattering of Mössbauer resonance radiation
are now well understood and well established experimentally. 1,3-5,7-10 But this
is all at the one-photon level, where the coherent excitation of many nuclei has
been described as a nuclear exciton.3-5 Only one nucleus is excited, but it can
be one of many, and the amplitudes for the excitations of different nuclei add
coherently to produce a forward peak in the outgoing radiation, a speedup of
the nuclear lifetime, and peaks at Bragg angles.7,8

Synchrotron radiation beams of sufficient intensity may be available to
enable the excitation of several nuclei simultaneously in the same synchrotron
pulse. The question arises what happens when several nuclear excitons are
present in a lattice as a result of excitation by several photons. How does
the presence of several excitons affect the cross section for additional excita-
tion by another photon? How does the presence of several excitons affect the
decay lifetime? Do nuclear excitons behave like bosons? One can immedi-
ately see a number of interesting analogies which are not quite right: Dicke
superradiance,11 atomic excitons, spin waves, and gauge fields.
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We are still a long way from coherent γ-ray light and γ-ray lasers. The
energy difference between a state with one nuclear excitation and a state with
two nuclear excitations is much too large to maintain any phase coherence
between these two states. There is a factor of 1012 between the resonance
energy of the order of tens of kilovolts and the natural line widths which are
of order of tens of nanovolts. Thus the relative phase between a one-exciton
and a two-exciton state reverses 1012 times during the lifetime of the nuclear
excitation. There is little hope of maintaining any phase coherence over such
a long period.

The presence of several excited nuclei which can decay coherently suggests
Dicke superradiance.11 But the distances between nearest neighbors are com-
parable to the wave length of the radiated photons. This makes the physics
very different and more complicated than simple superradiance.12

One can follow the Dicke example and define a quasispin for each nucleus
which is “up” when the nucleus is excited and “down” when the nucleus is
in its ground state. The nuclear exciton then appears as a kind of “quasispin
wave”. The wave function differs from the Dicke case because the quasispins
are located at definite lattice points and there is a definite phase between the
amplitudes at different lattice points. But the wave does not move; there are
no quasispin-quasispin interactions that can flip quasispins. The same is true
for the atomic exciton analogy. The nuclear exciton is created and decays, but
does not move in space.

One can also describe the relative phases of the quasispins at different
points on the lattice as a kind of gauge field. Transformations of these phases
resemble gauge transformations since they do not change the lattice energy,
which depends only upon the number of excited nuclei; i.e. upon the z-
component of the total quasispin. Quasispin rotations about the z-axis can
be described as SU(1) gauge transformations under which the Hamiltonian of
the lattice is “gauge invariant”. But the relevant physics of emission and ab-
sorption of photons is not invariant under these gauge transformations. The
coherence properties of excitation and decay are very sensitive to these phases.

So far no consistent framework has been developed to enable the inclusion
of these various coherence effects in the calculation of the production and decay
of these multi-exciton states.

2.2 Problems with a classical approach

We now try to pinpoint the differences between conventional treatments of
the Mössbauer effect and what is needed to treat multiphoton processes and
multiple excitations in the crystal.
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The first treatment by Hamermesh et al 13 using a classical radiation field
obtains all the correct results for one photon processes. The extensive devel-
opment of this approach is now summarized in an excellent review by Hannon
and Trammell.4 One might expect that a classical description of the electro-
magnetic field which works for even one photon should work even better for
many photons. However, the problem here is not in the classical description of
the photon; it is the quantum effects not considered in the classical description
of the lattice.

This problem is simply seen in the example of a photon incident on a thick
crystal where so may photons have already passed through the first part of the
crystal that all the Mössbauer nuclei in this part of the crystal have already
been excited. The photon will pass through this part of the crystal without
seeing any Mössbauer nuclei that can be excited and therefore without seeing
anything like the dielectric constant and index of refraction that was seen by
the first photon. Clearly the classical formulation does not work here. The
nuclear excitation changes the properties of the crystal.

The classical picture describes the photon propagation through a medium
in terms of parameters like a refractive index and a dielectric constant. To
determine these parameters from theory requires a microscopic picture in which
the medium consists of nuclei having very sharp resonances. The presence
of different nuclei with different hyperfine splittings produces a complicated
structure in the frequency spectrum of the dielectric constant and index of
refraction.

All this is still well defined when there is only one photon and the treat-
ments of Hamermesh et al 13 and all those following are valid. But nuclear
excitations in the medium can produce a variation in the dielectric constant
and index of refraction of a crystal as a function of the number of excited nuclei
present which changes with time during the nuclear lifetime when photons are
emitted and the number of nuclear excitations is changing. Perhaps there is a
classical way to describe this with the properties of the medium being affected
by the strength of the electromagnetic field in the sample.

This now suggests an anology with lasers and nonlinear optics. But here
the Mössbauer situation introduces two important differences: (1) a very long
lifetime; (2) a very short wave length of the same order as the distance between
neighboring atoms. The parameters describing these lifetimes and distances
differ by many orders of magnitude from the values relevant to conventional
lasers and nonlinear optics. Thus extrapolations from this other physics are
highly questionable. This is already seen in the lifetime speedup at the one
photon level. There the speedup does not go as the number of excited atoms,
N , but as N (1/3) because the wave length is not very much longer than the



Coherent effects 137

distances between atoms.5,6

We attempt here to avoid the complications of nonlinear optics by using
the microscopic quantum picture of the lattice with nuclear excitons. This
solves one problem, and may offer some insight. But it raises another.

The simple classical method with a medium described by bulk properties
like a dielectric constant and index of refraction describes the passage of a radi-
ation field through a medium and includes all the effects of multiple scattering
which must be taken into account in the microscopic photon picture.

Multiple scattering of nuclear excitons is not simple. In a thick sample
a nuclear exciton exists with amplitudes for nuclear excitation over a finite
range in the sample. When it decays and progresses through the sample, it
produces a new nuclear exciton further forward in the sample with a different
spatial distribution. Meanwhile, if there were several nuclear excitations ini-
tially present there are still other nuclear excitations present with the initial
spatial distribution.

The question of how to take all these complications into account is not
clear. Perhaps it can be handled with classical nonlinear optics with the prop-
erties of the medium simply being functions of the electromagnetic field. Per-
haps it is necessary to describe the medium itself by a quantum-mechanical
wave function in which there are different probability amplitudes for each state
of the medium with each having different dielectric constants and different in-
dices of refraction.

Before attacking these problems we try to start in a simple way, with
simple toy models of states having a small number of nuclear excitons in a thin
sample with no multiple scattering. We consider the case where the number N
of nuclei which can be excited to make a single nuclear exciton is large, while
the number Ne of simultaneously excited nuclei; i.e. the number of nuclear
excitons is small but finite, N À Ne > 1.

3 A quasispin description of nuclear excitons

3.1 The quasispin description of two-level systems

It is convenient to introduce a quasispin formalism using the SU(2) Lie algebra
approach to collective excitations in 2-level systems first developed for the
nuclear shell model.14 A similar formalism was also used by Dicke to treat
superradiance.11

Consider a crystal containing N atoms, in which each nucleus can be either
in an excited state or the ground state. We describe the state of each nucleus by
a two-component spinor, and define Pauli spin matrices denoted by σiµ where
i = 1, 2, 3 and µ = 1......N and σ3

µ has the eigenvalue +1 if nucleus number
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µ is excited and has the eigenvalue −1 if nucleus number µ is in its ground
state. The interaction Hamiltonian describing transitions between the excited
and ground state of a nucleus by the emission or absorption of a photon with
wave number ~k is

Hint(~k) = g ·
(

N
∑

µ=1

a†~k
e−i

~k·(~rµ+~ξµ)σ−µ +

N
∑

µ=1

a~ke
i~k·(~rµ+~ξµ)σ+

µ

)

, (14)

where ~rµ denotes the equilibrium position of nucleus µ, ~ξµ the displacement of

the nucleus from its equilibrium position, and ~pµ its momentum, a†~k
is a creation

operator for a photon with momentum ~k, we neglect spin, σ±µ = ((σ1
µ+ iσ2

µ)/2
is a quasispin raising or lowering operator and g is a constant specifying the
strength of the interaction which multiplies all transition matrix elements and
determines absolute decay rates. The unperturbed Hamiltonian for the system
including the lattice dynamics can be written:

H =
ε

2

N
∑

µ=1

σ3
µ +

~p2
µ

2M
+

N
∑

µ,ν=1

Vµν , (15)

where ε is the nuclear excitation energy, M is the mass of the atom or ion
and Vµν is some two-body interaction potential depending only upon the co-
ordinates of the atoms and not on their momenta.

The transition rate for elastic (Mösssbauer) photon emission between some
initial state denoted by |ψi〉 and a final state denoted by |ψf 〉 in which the
state of the lattice is unchanged is given by the Fermi Golden Rule of time-
dependent perturbation theory as proportional to the square of the transition
matrix element of the operator Eq. (14),

W el
i→f (

~k) = g2fLM · | 〈ψf |
N
∑

µ=1

e−i
~k·~rµσ−µ |ψi〉 |2 , (16)

where fLM denotes the Lamb-Mössbauer factor

fLM =| 〈ψi| e−i~k·~ξµ |ψi〉 |2 , (17)

which gives the probability that the transition is elastic and we assume that
fLM is the same for all nuclei µ. This must be corrected in the case where
the Mössbauer nuclei occupy different types of lattice sites and have different
values for fLM , but does not affect our conclusions regarding the effects of
multiple excitation coherence.
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Thus the sum of the elastic transition rates over all final states is propor-
tional to the sum of Eq. (16) and a common phase space factor , which we
disregard. Evaluating this sum by closure gives

Wi(~k) =
∑

f

W el
i→f (

~k) = g2fLM · 〈ψi|
N
∑

µ,ν=1

ei
~k·~rνσ+

ν e
−i~k·~rµσ−µ |ψi〉 . (18)

The direct term in the sum with µ = ν is can be trivially evaluated to give

Wi(~k) = g2fLM ·Ne + g2fLMδWi(~k) (19)

where Ne denotes the number of excited nuclei in the initial state and the
interference term δWi(~k) is given by

δWi(~k) = 〈ψi|
N
∑

ν=1

N
∑

µ=1
µ6=ν

ei
~k·~rνσ+

ν e
−i~k·~rµσ−µ |ψi〉 . (20)

The direct term arises from the independent emission from each excited
atom and is proportional to the number Ne of excited nuclei. The interference
term expresses the quantum mechanics of the coherence between the excita-
tions of a nucleus at the point ~rν and a nucleus at the point ~rµ. This is the
direct analog of the famous two slit experiment in which the amplitudes of the
waves passing through the two slits must be added if the slit through which
the particle passed is not known. Here the amplitudes from the excitations
of two nuclei must be added if it is not known which nucleus was excited.
The relative phase of the two excitations is determined by the phase factor

ei
~k·~rν · e−i~k·~rµ appearing in the interaction operator and by the relative phase

in the initial state |ψi〉; e.g. by the phase in a nuclear exciton determined by
the way it was produced. When this produces constructive interference the
resulting enhancement has sometimes been called superradiance, but this has
been confused in the literature.

There are two different sources for enhancement. One source is the in-
terference between amplitudes for the emission of a photon by different nuclei
from a state when only one nucleus is excited; i.e. Ne = 1, when the state
is described as the state of a single nuclear exciton. The enhancement factor
here is a function of the total number of nuclei N which can be excited. This
coherent emission is sometimes also called superradiance, but this designation
is controversial. The other source for enhancement arises from the presence
of several excitations; i.e. Ne > 1. This introduces a combinatorial factor
proportional to Ne which is generally called superradiance. This is just the
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enhancement factor that arose in the simple examples (2) and (3) and can
be considered as analogous to stimulated emission of excitons considered as
bosons.

3.2 The wave functions of states with one or two nuclear excitons

We now construct explicitly the wave functions for states with one or two
nuclear excitons and examine the coherence effects discussed in the simple
model with several independent excitations.

Let |ψ0i〉 denote the initial state with no nuclei excited and the lattice
in a state denoted by i. The elastic transition in the lattice induced by the
absorption of a photon with wave vector ~k is described by the interaction
Hamiltonian (14) and leads to a final state of the lattice with one nuclear
excitation

|ψf1〉 = Hint(~k) |ψ0i〉 = g
√

fLM ·
N
∑

µ=1

ei
~k·~rµσ+

µ |ψ0i〉 . (21)

This is just the nuclear exciton state. The norm of this state is

〈ψf1 |ψf1〉 = g2fLMN . (22)

Thus the normalized state with one excitation (the one-exciton wave function)
is

|ψ1〉 =
1√
N
·
N
∑

µ=1

ei
~k·~rµσ+

µ |ψ0i〉 =
1

g ·
√
fLMN

·Hint(~k) |ψ0i〉 . (23)

The transition rate given by the Fermi Golden Rule is proportional to the
square of the transition matrix element

| 〈ψ1|Hint(~k) |ψ0i〉 |2 = g2NfLM . (24)

This proportionality to g2NfLM is exactly the same as for the transition rate
in the incoherent excitation of N nuclei.

We now consider the transition in the lattice induced by the absorption of
two photons with wave vector ~k and described by the interaction Hamiltonian
(14) as a double excitation. This leads to a two-exciton final state of the lattice:

|ψf2〉 = [Hint(~k)]
2 |ψ0i〉 = g2fLM ·

N
∑

µ,ν=1

ei
~k·~rµσ+

µ e
i~k·~rνσ+

ν |ψ0i〉 , (25)

|ψf2〉 = g ·
√

fLMN · [Hint(~k)] |ψ1〉 . (26)
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The normalized two-exciton wave function is easily obtained by using some
quasispin algebra

σ−τ σ
−
ρ σ

+
µ σ

+
ν |ψ0i〉 = δτµδρν + δτνδρµ − 2δτµδρνδµν |ψ0i〉 , (27)

〈ψf2 |ψf2〉 = g4 · 2N(N − 1)fLM , (28)

|ψ2〉 =
1

√

2N(N − 1)
·

N
∑

µ,ν=1

ei
~k·~rµσ+

µ e
i~k·~rνσ+

ν |ψ0i〉 , (29)

|ψ2〉 =
1

g ·
√

2(N − 1)fLM
·Hint(~k) |ψ1〉 . (30)

The transition rate for the excitation of the second exciton from a one-
exciton state is given by the Fermi Golden Rule as proportional to the square
of the transition matrix element

| 〈ψ2|Hint(~k) |ψ1〉 |2 = 2g2(N − 1)fLM . (31)

This is double that for the transition rate in incoherent double excitation of
N nuclei. It appears that there is an enhancement of the cross section by
a factor of two because of the coherence between the two nuclear excitons.
This is the same factor of two that appeared in the simple example (4-13).
The Lamb-Mössbauer factor appears here just as in the normal case of double
excitation.

3.3 Decays of states with one or two nuclear excitons

The cross section calculated above by first-order perturbation theory may not
be valid for the case of a resonance. For a more reliable estimate, we follow
the procedure used in the simple example described in Eqs. (4-13) and examine
the decays of states with one or two nuclear excitons. We note that the wave
vector ~k′ of the emitted photon can be different from wave vector ~k of the
photon that created the exciton. The transition matrix element for such a
decay from a state with a single nuclear exciton (23) is

〈ψ0i|T (~k′) |ψ1〉 = 〈ψ0i|Hint(~k
′) |ψ1〉 = g · 〈ψ0i|

N
∑

ρ=1

e−i
~k′·~rρσ−ρ |ψ1〉 , (32)

〈ψ0i|T (~k′) |ψ1〉 =
g√
N
· 〈ψ0i|

N
∑

µ,ρ=1

e−i
~k′·~rρσ−ρ e

i~k·~rµσ+
µ |ψ0i〉 , (33)
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〈ψ0i|T (~k′) |ψ1〉 =
g√
N
· 〈ψ0i|

N
∑

ρ=1

ei(
~k−~k′)·~rρ |ψ0i〉 . (34)

The transition for photon emission from a two-exciton state (29) is de-
scribed as a decay in two steps : first by emission of a photon with wave vector
~k′ to a singly excited state and subsequently to a state with no excitation.

The transition matrix element between this two-exciton state |ψ2〉 and a

final one-exciton state by emission of a photon with wave vector ~k′ is

〈ψ1|T (~k′) |ψ2〉 = g · 〈ψ1|
N
∑

ρ=1

e−i
~k′·~rρσ−ρ |ψ2〉 (35)

〈ψ1|T (~k′) |ψ2〉 =

=
g

N
√

2(N − 1)
·

N
∑

µ,ν,ρ,τ=1

〈ψ0i| e−i~k·~rτσ−τ e−i
~k′·~rρσ−ρ e

i~k·~rµσ+
µ e

i~k·~rνσ+
ν |ψ0i〉 , (36)

〈ψ1|T (~k′) |ψ2〉 = g ·
√

2(N − 1)

N
·
N
∑

ρ=1

〈ψ0i| ei(~k−~k
′)·~rρ |ψ0i〉 , (37)

〈ψ1|T (~k′) |ψ2〉 =
√

2(N − 1)√
N

· 〈ψ0i|T (~k′) |ψ1〉 , (38)

where we have used Eq. (27).
Comparing this result with the transition matrix element for a one-exciton

decay, we see that the double excitation enhances the decay rate by a factor
2(N − 1)/N ≈ 2. This is exactly the same enhancement that appeared in the
simple example (4-13) and (31) observed for the excitation of a two-exciton
state from a one-exciton state where we have used the Fermi Golden Rule
to describe the excitation. While the Golden Rule may not be adequate to
describe a resonance excitation, it is definitely adequate to describe the decay
of an excited state into the continuum by the emission of a photon, and the
same combinatorial factor describing the effects of exciton coherence appears
in both excitation and decay.

The same factor of two applies both to inelastic photon emission and in-
ternal conversion. For these cases the transition matrix element for inelastic
emission or internal conversion has the same form as in Eqs. (35-37) except
that there is no sum over the index ρ. Since it is known by the nuclear recoil
and/or the vacancy produced by the conversion electron which nucleus emit-
ted the photon, the transitions in different nuclei are incoherent, and the total
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transition rate is obtained by squaring the transition matrix element for each
nucleus and then summing over all nuclei. The result gives the same factor of
two.

Regardless of whether the decay of the first excitation is coherent or in-
coherent, the system remains in a nuclear exciton state with a single excited
nucleus in the lattice. However there is also a single photon present. The
lattice transition matrix element is now exactly the same as for the single nu-
clear exciton. But there is now an additional possible enhancement due to
stimulated emission.

This suggests that if a synchrotron radiation pulse is incident on a crystal
which contains one nuclear exciton, the width of the resonance for excitation
producing a second nuclear exciton is double the width for the case where no
nuclear exciton is initially present. This can be a very important effect if the
number of excitons present is appreciable.

3.4 Decays via internal conversion and inelastic scattering

To consider the case of a decay via internal conversion, we write the normalized
wave functions for the final states after singly and doubly excited states have
decayed via internal conversion in an atom at ~rµ leaving a hole in an electron
shell,

|ψ0hµ〉 = h†(~rµ) |ψ0i〉 (39)

|ψ1hµ〉 =
1√

N − 1
·

N
∑

ν=1;ν 6=µ

h†(~rµ)e
i~k·~rνσ+

ν |ψ0i〉 , (40)

where h†(~rµ) denotes an operator that creates a hole in an electron shell of the
atom at ~rµ.

The matrix element for an internal conversion transition is

〈ψ1hµ|T †(h) |ψ2〉 = g′ · 〈ψ1hµ|h†(~rµ)σ−µ |ψ2〉 , (41)

〈ψ1hµ|T †(h) |ψ2〉 =
g′

(N − 1)
√
2N

×
N
∑

ν 6=µ,ρ,τ,=1

〈ψ0i| e−i~k·~rνσ−ν h(~rµ)h†(~rµ)σ−µ ei
~k·~rρσ+

ρ e
i~k·~rτσ+

τ |ψ0i〉 . (42)

Thus,

〈ψ1hµ|T †(h) |ψ2〉 =
√
2 · 〈ψ0hµ|T †(h) |ψ1〉 . (43)
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Inelastic emission is treated in the same way as internal conversion. Since
it is known by the nuclear recoil as in the vacancy produced by the conversion
electron which nucleus emitted the photon, the transitions in different nuclei
are incoherent, and the total transition rate is obtained by squaring the tran-
sition matrix element for each nucleus and then summing over all nuclei. The
result gives the same factor of two.

3.5 The difference between coherent and incoherent cascade decays

We now show by the use of explicit nuclear exciton wave functions how the
conclusions from the simple example (4-13) apply to the exciton case, and the
excitation widths are different for coherent and incoherent excitations. The
two-exciton cascade decay can be written:

|ψ2〉 →
√
2 · 〈ψ0i|T (~k′) |ψ1〉 · |ψ1, γ〉 →

√
2 · [〈ψ0i|T (~k′) |ψ1〉]2 · |ψ0, 2γ〉 . (44)

The analogous incoherent cascade beginning with two well-defined excited
nuclei at lattice points µ and ν is described by the simple model in Eqs. (4)
and (5) for the more general case of a triple cascade.

Both the coherent and incoherent transitions have the same doubling of
the decay rate for the first transition from the doubly excited state to the singly
excited state in comparison with the decay rate for the singly excited state.
In the time reversed transitions the excitation of a second nucleus from the
intermediate state with one excitation has double the width of the resonance for
the excitation of a single nucleus. But the state describing the coherent single
independent excitation at two well defined lattice sites cannot be produced
in any realistic excitation experiment. However, the single nuclear exciton
excitation which occurs in the decay (44) is easily achieved in an excitation
experiment by exciting the crystal with a synchrotron radiation photon.

In the coherent case, the transition occurs between a coherent state with
two excitations and a coherent state with a single excitation, accompanied by
a single photon state. The factor of two implies a speedup of the decay of a
single transition and a doubling of the natural line width. There then follows
the decay of the single coherent state, now with the normal speeded up lifetime
for the single transition.

The coherent two-step transition is therefore a cascade, whose time behav-
ior is exactly the same as in the simple example (4-13).

Regardless of whether the decay of the first excitation is coherent or in-
coherent, the system remains in a coherent state with a single excited nucleus
in the lattice. The lattice transition matrix element is now exactly the same
as for the singly excited coherent case. However in the coherent case there is
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also a single photon present and therefore an additional possible enhancement
due to stimulated emission. However, probability of such stimulated emission
is probably small.

4 The quasispin description of states with many nuclear excitons

4.1 Explicit description of multiple exciton states

We construct the whole set of nuclear exciton states explicitly using our qua-
sispin algebra. We immediately encounter a crucial difference between the nu-
clear exciton and Dicke superradiance.11 Because each excited nucleus is at a
different well-defined point on a lattice or in an amorphous solid, an additional
degree of freedom arises here which does not exist in Dicke superradiance.

The physics of the difference is seen by noting that in any system of N
nuclei, located at different points in a solid, there are N independent states of
the system in which one nucleus is excited and all the others are in their ground
state. The nuclear exciton created by the absorption of a single photon from
a synchrotron radiation source is a well-defined linear combination of these N
states with well defined phases between them determined by the production
mechanism. With these phases, the amplitudes for the decay by emission of a
photon in the forward direction all interfere constructively, while the amplitude
for emission in the forward direction vanishes for all the other N − 1 states of
the N nucleon system which are orthogonal to the nuclear exciton state.

This physics is conveniently described formally in our quasispin descrip-
tion by noting that an arbitrary phase arises in defining the total quasispin
of the system, and that this phase can be chosen to pick out the particular
states for which interference between different forward emission amplitudes is
constructive. We begin by defining the quasispin operators for each nucleus
as objects with quasispin 1/2 defined in terms of the Pauli spin operators ~σµ
with the conventional factor (1/2),

~sµ = (1/2)~σµ; s±µ = σ±µ . (45)

We now define the total quasispin of the system by choosing appropriate phase
factors as follows:

S±~k
=

N
∑

µ=1

e±i
~k·~rµs±µ =

N
∑

µ=1

e±i
~k·~rµσ±µ ; S3 =

N
∑

µ=1

s3µ = (1/2)

N
∑

µ=1

σ3
µ , (46)

(S~k)
2 ≡ (1/2)(S+

~k
S−~k

+ S−~k
S+
~k
) + (S3)2 . (47)
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The total quasispin operators satisfy angular momentum commutation
rules by construction,

[S3, S±~k
] = ±S±~k ; [S

+
~k
, S−~k

] = 2S3; [(S~k)
2, (S+

~k
] = [(S~k)

2, S−~k
] = [(S~k)

2, S3] = 0 .

(48)
Any arbitrary choice of phases with opposite signs for the raising and low-

ering quasispin operators will give total quasispin operators that satisfy the
angular momentum commutation rules. Changing these phases by adding an
additional space-dependent phase gives a unitary transformation which resem-
bles a gauge transformation. However, the interaction Hamiltonian (14) is not
invariant under such an apparent gauge transformation. The choice of phases
(46) chooses a “gauge” in which the interaction Hamiltonian (14) assumes the
very simple form:

Hint(~k) = g · (a†~kS
−
~k
+ a~kS

+
~k
) , (49)

and the total Hamiltonian (14-15) which includes the part of the interaction

that describes emission and absorption of photons of wave vector ~k can be
written

Htot(~k) = H +Hint(~k) =
ε

2
S3 +

~p2
µ

2M
+

N
∑

µ,ν=1

Vµν + g · (a†~kS
−
~k
+ a~kS

+
~k
) . (50)

We now note that this piece of the total Hamiltonian commutes with the total
quasispin

[(S~k)
2, Htot(~k)] = 0 . (51)

The operators S±~k
are seen to be operators which excite and de-excite nuclear

exciton states. The operator S3 simply counts the number Ne of excited nuclei.
Its eigenvalues are Ne−(N/2) and varies from −N/2 when no nuclei are excited
to +N/2 when all nuclei are excited.

The states of the system can be classified into quasispin multiplets labeled
by the eigenvalue of the operator (S~k)

2 denoted in the common notation by
S~k(S~k + 1). The individual states in the multiplet can be labeled by the
eigenvalues of S3 denoted by m. We immediately note that the lowest state in
any given multiplet with m = −S~k is annihilated by the interaction operator
(49) if there are no photons initially present,

Hint(~k)
∣

∣S~k,−S~k
〉

= g · a†~kS
−
~k

∣

∣S~k,−S~k
〉

= 0 . (52)

Thus these lowest states in the quasispin multiplet cannot radiate photons
in the forward direction; i.e. in the direction of ~k. This is trivially obvi-
ous for the case S~k = N/2 where the lowest state in the multiplet contains
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no excited nuclei. However, for other values of S~k the lowest state contains
Ne = (N/2) − S~k excited nuclei which from Eq. (52) are not allowed to de-
cay by emitting forward photons. These excited states of the system are thus
called “subradiant”5 in the forward direction, in contrast to the coherent nu-
clear exciton states which are sometimes called “superradiant” in the forward
direction.

The states in a given multiplet can be characterized by a “seniority num-
ber” v ≡ (N/2)−S~k which is just the number of subradiant nuclear excitations
in the system which cannot radiate in the forward direction. The states in the
multiplet are created by adding nuclear excitons.

For the case where the number of excitations Ne is small it is convenient to
define “normalized exciton creation and destruction operators”, and verify that
in the approximation where the number of excited nuclei is small compared to
the total number of nuclei, 2Ne/N ¿ 1 they indeed satisfy boson commutation
rules.

X† =
1√
N
· S+

~k
; X =

1√
N
· S−~k , (53)

[X†, X] =
1

N
· [S+

~k
, S−~k

] =
2

N
· S3 = −1 + 2Ne

N
= −1 +O

(

Ne

N

)

≈ −1 , (54)

[σ−µ , X
†] =

−2√
N
· ei~k·~rµs3µ =

1√
N
· ei~k·~rµ

[

1 +O

(

Ne

N

)]

≈ 1√
N
· ei~k·~rµ , (55)

where we have noted that the operator s3µ has the eigenvalue −1/2 for all terms
in the multiexciton wave function in which the nucleus at the point ~rµ is not
excited.

The Hamiltonian (50) is simply expressed in terms of these exciton oper-
ators,

Htot(~k) = H+Hint(~k) =
ε

2
S3+

~p2
µ

2M
+

N
∑

µ,ν=1

Vµν+g
√
N · (a†~kX+a~kX

†) . (56)

The transition matrix elements for the absorption or emission of a photon
from a state where there are already n excitons present and no subradiant
excitations; i.e. S~k = N/2, is seen to be

〈n+ 1|Hint(~k)
∣

∣

∣
n,~k

〉

= g 〈m+ 1|S+
~k
|m〉 = g

√

(S −m)(S +m+ 1) , (57)

〈n+ 1|Hint(~k)
∣

∣

∣
n,~k

〉

= g
√

(n+ 1)(N − n) ≈ g
√
nN , (58)

〈

n− 1, ~k
∣

∣

∣
Hint(~k) |n〉 = g 〈m− 1|S−~k |m〉 = g

√

(S −m+ 1)(S +m) , (59)
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〈

n− 1, ~k
∣

∣

∣
Hint(~k) |n〉 = g

√

n(N − n+ 1) ≈ g
√
nN . (60)

4.2 Explicit description of the two enhancements arising in a multiple exciton
state

We now generalize the treatment of two-exciton decays in Eqs. (35- 37) to the
general multi-exciton case using the formalism of Eqs. (18 - 20) and show the
interplay of the two enhancements.

We write the initial state with Ne excitons

|ψ(Ne)〉 ≡
(X†)Ne |ψ0i〉√

Ne!
. (61)

Then

σ−µ |ψ(Ne)〉 ≈ σ−µ ·
(X†)Ne |ψ0i〉√

Ne!
=

√

Ne

N
· ei~k·~rµ · (X

†)(Ne−1)

(Ne − 1)!
|ψ0i〉 . (62)

Substituting Eqs. (61) and (62) into Eq. (20) gives

δWNe
(~k′) ≈

N
∑

ν=1

N
∑

µ=1
µ6=ν

Ne

N
· 〈ψ0i| ei(~k

′−~k)·(~rν−~rµ)(X)(Ne−1)(X†)(Ne−1) |ψ0i〉
√

(Ne − 1)!
,

(63)

δWNe
(~k′) ≈

N
∑

ν=1

N
∑

µ=1
µ6=ν

Ne

N
· ei(~k′−~k)·(~rν−~rµ) ≈ Ne · δWNe=1(~k

′) . (64)

The factor Ne is the enhancement due to superradiance. The lattice sum over
the indices µ and ν determine the enhancement due to the coherence from the
nuclear exciton. This enhancement factor depends upon the geometry and is
not proportional to the number of nuclei N that can be excited. For a three
dimensional system this enhancement or speedup is proportional to N 1/3.

The enhancement factor Ne can also be seen as a “boson enhancement”
factor as in Eqs. (2) and (3) or as a simple combinatorial factor. A one-exciton
state in which any one of N nuclei can be excited with equal amplitude is the
sum of N equal terms each normalized by a factor 1/

√
N . A two-exciton state

in which any pair of the N(N−1)/2 possible pairs of nuclei can be excited with
equal amplitude is the sum of N(N − 1)/2 equal terms each normalized by a
factor

√
2/[N(N−1). Each term in the two-exciton state can decay into either

of two terms in the one-exciton state. Thus there are a total of N(N−1) equal
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terms contributing to the transition matrix element between the two-exciton
and the one-exciton state, and the product of the normalization factors for the
two states produce an overall normalization factor of

√

2/[N2(N − 1)]. This
gives an enhancement factor for the transition rate of 2× (N − 1). The factor
N − 1 arises from the coherence of the exciton decay in the exact forward
direction. The factor 2 arises because there are two excitons in the initial
state, Ne = 2. A similar combinatorial factor of Ne arises for all numbers of
excitations.

5 Conclusions

We find that nuclear excitons behave like a collective boson excitation, where
production of a nuclear exciton can be enhanced by a “stimulated emission
factor” if there are already nuclear excitons present. Thus the excitation of
the n-th nuclear exciton in a system which already contains n − 1 nuclear
excitons is enhanced by a factor n over the excitation of a single exciton when
no others are present. This implies that the partial width for the excitation of
the n-th exciton is enhanced by a factor n over the normal width for the decay
and excitation of a single exciton.

Since the excitation probability from a broad-band synchrotron beam with
a width much larger than the natural line width of the nuclear resonance de-
pends upon the integral of the cross section over the energy width of the beam,
the increased partial width of the resonance produces an increased excitation
probability from the broad beam.

The decay of an n-exciton state is the sum of exponentials corresponding to
the enhanced decay widths of each state containing more than a single nuclear
exciton. However, the time dependence of the radiation emitted is exactly the
same as for n independent excitons, and contains only a single exponential
which is the same as that for a single exciton.
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