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We consider gauge theories on noncommutative euclidean space . In particular, we

discuss the structure of gauge group following standard mathematical definitions

and using the ideas of Ref. 2.

The goal of this note is to consider gauge theories on noncommutative
euclidean space and, in particular, to study the structure of gauge group. This
group was analyzed by J. Harvey in recent paper.1 It was suggested in this paper
that the definition of the gauge group “presumably can be derived from the
first principles.” We would like to analyze the relation of Harvey’s definition
to the standard mathematical definition using as a starting point some ideas
of Ref. 2, in particular, the idea that the theory becomes more transparent
if along with simple modules An we consider more complicated modules Frn.
(The central point of Ref. 2 — the suggestion to work with unitized algebras
— is mentioned only in passing at the very end.)

Mathematical definition of a gauge field is based on a notion of connection
on a module E over associative algebra A. There exist different versions of
this notion (see Ref. 3 for details, Ref. 4 for more general treatment). Our
consideration does not depend on these subtleties. We can use, for example,
the very first definition;5 in this definition linear operators ∇1,...,∇d specify a
connection on right A-module E if they satisfy Leibniz rule:

∇α(ea) = (∇αe) · a+ e∂αa

where ∂1, ..., ∂d are derivations on A, e ∈ E, a ∈ A. One assumes that these
derivations (i.e. infinitesimal automorphisms) constitute a basis of a Lie al-
gebra. By definition a gauge field is a unitary connection (i.e. ∇α should be
anti-Hermitian operators).

It is supposed usually that A is a unital Banach algebra over C and E is a
Hilbert A-module (i.e. E is equipped with A-valued Hermitian inner product
〈 , 〉; then the condition of unitarity of connection takes the form

〈∇αa, b〉+ 〈a,∇αb〉 = ∂α〈a, b〉 .
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(By definition a Banach algebra is an associative algebra with a norm and an
involution obeying natural conditions. The vector space An of column vectors
with entries from A, considered as a right A-module, can be equipped with
A-valued Hermitian inner product a+

1 b1 + ... + a+
n bn. Hence all projective A-

modules, i.e. direct summands in An, can be considered as Hilbert modules.)
For every unital Banach algebra A we can construct a group U(A) con-

sisting of unitary elements of A. The topology of this group and of groups
Un(A) = U(Matn(A)) is closely related to the K-theory of A, namely,

Ki(A) = πi−1(U∞(A)) ,

where U∞(A) = ∪Un(A) is a union (or more precisely direct limit) of groups
Un(A). (This is one of possible definitions of K-groups.) Notice, that

πi(U∞(A)) = πi+2(U∞(A)) ,

(Bott periodicity theorem) for i ≥ 0; using this periodicity we can define groups
πi(U∞(A)) for negative i.

The definitions and results that we formulated for Banach algebras can be
applied also to more general algebras, equipped with antilinear involution.

In the definition of connection, we have used, the role of gauge transfor-
mations is played by unitary endomorphisms of E (unitary A-linear maps of E
into itself). This follows from the fact that for every unitary endomorphism ϕ
the correspondence ∇α → ∇′ = ϕ∇αϕ

−1 transforms a unitary connection ∇α

into a unitary connection ∇′; corresponding curvatures are related in standard
way: F ′αβ = ϕFαβϕ

−1. Considering the curvature of unitary connection as a
field strength of a gauge field we obtain that all reasonable action functionals
are invariant with respect to unitary endomorphisms. It is possible to consider
the group of unitary endomorphisms U(EndAE) (the group of unitary elements
of endomorphism algebra EndAE) as a gauge group. If E = A1 (U(1)-gauge
field in the terminology of physicists) this group is isomorphic to U(A) and
in the case of E = An (the case of U(n)-gauge fields), it is isomorphic to
Un(A) = U(Matn(A)). (We use the notation Matn(A) for the algebra of n×n
matrices with entries from A. The endomorphisms of An, considered as a right
module, can be identified with elements of Matn(A) acting on An from the
left.) It is important to notice that usually physicists work with a little bit
different definition of gauge field, that is equivalent to the above definition
restricted to the modules E = An (free modules).

The above consideration can be applied also to non-unital algebras; the
only essential difference is that the elements of Matn(A) don’t exhaust in this
case all endomorphisms of An (the modules An cannot be considered as free
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modules). The algebraM(A) of endomorphisms of A1 is called multiplier alge-
bra of A; using this definition one can represent endomorphisms of An as ma-
trices with entries from M(A). We see that U(EndAAn) = U(Matn(M(A))).

As we have seen one can consider U(EndAE) as a gauge group. This means
that we can identify two gauge fields connected by gauge transformation and
use the integration over the quotient space C/G, where G = U(EndAE), to
quantize the gauge theory. (Here C stands for the space of all gauge fields.)
However, sometimes it is more convenient to introduce a stronger notion of
gauge equivalence replacing G = U(EndAE) with its subgroup G′ ⊂ G. As
long as G/G′ is compact we can use C/G′ instead of C/G in the quantization
procedure. However, if G′ acts freely on C it is more convenient to work with
C/G′.(This space is non-singular and its homotopy groups can be calculated
in terms of homotopy groups of G′.)

For example, if we work with ordinary U(n)-gauge theory on compact
manifold X (i.e. A = C(X) is a commutative algebra of functions on X) and
E = An is a trivial Hermitian vector bundle then G = U(EndAE) consists
of functions on X taking values in unitary matrices. In this case it is more
convenient to consider as a gauge group the subgroup G′ of G consisting of
functions ϕ ∈ G obeying ϕ(x0) = 1 for a fixed point x0 of X. The quotient
group G/G′ can be identified with the group of global gauge transformations.
Notice that the separation of gauge transformations (that we use to define
gauge classes) and global symmetry transformations is not physical in this
case (it depends on the choice of x0.) However, sometimes the reduction of G
to G′ is prompted not only by mathematical convenience, but also by physical
considerations. (It can happen, that it is necessary to consider observables
that are G′-invariant, but not G-invariant.)

In particular, if we consider ordinary U(n)-gauge theory on Rd, the action
functional is invariant with respect to gauge transformations corresponding to
U(n)-valued functions g(x), that have a limit as x → ∞. However, it is rea-
sonable to consider as a gauge group a smaller group G′ imposing a condition
limx→∞ g(x) = 1. (This means that we exclude global gauge transformations.)

The idea that one can modify the notion of gauge group without changing
physics is reinforced by obvious remark that we can impose conditions partially
removing gauge freedom (i.e. making the gauge group smaller).

Let consider now gauge theories on noncommutative euclidean space Rd

following the ideas of Ref. 2.

In this case we can work with various algebras corresponding to different
behavior of gauge fields at infinity. Let us start with a (non-unital) algebra
A = S(Rd

θ) of Schwartz functions on Rd equipped with a star-product. Every
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connection on An has the form

∇µ = ∂µ + aµ (1)

where aµ is an n × n matrix with entries the multiplier algebra M(A) =
M(S(Rd

θ)). One can consider the multiplier algebra as an algebra of general-
ized functions (distributions) with the multiplication defined as a star-product.
In the case θ = 0 the algebra M(A) consists of smooth functions, having
derivatives with at most polynomial growth at infinity. For nonvanishing θ the
description ofM(A) is more complicated, see Ref. 6–8. This algebra essentially
depends on the choice of θ. One can prove that for nondegenerate θ a contin-
uous functional on Schwartz space S(R)d (a distribution) specifies an element
of M(A) = M(S(Rd

θ)) if at infinity (i.e. in the complement to a compact set)
it can be represented by a smooth function with all derivatives bounded by
polynomials of the same degree.8 However, there exist multipliers that do not
belong to this class.8

Notice, that we worked with right modules; then multipliers are realized by
means of multiplication from the left. In the case of left modules multipliers act
from the right. There exists an interesting algebra consisting of distributions
that can be considered as left and right multipliers at the same time.6−8

Considering aµ as a gauge field we can say that our gauge fields not nec-
essarily decrease at infinity (they can even grow, but at most polynomially).
Therefore we should impose an additional condition that gauge fields at hand
have finite euclidean action (or finite energy). In the ideology of functional
integral this condition follows from the fact the contribution of fields with in-
finite action vanishes. Notice that instead of the algebra A = S(Rd

θ) we can
work, for example, with algebra of functions on Rd that have derivatives of all
orders and all these derivatives tend to zero at infinity (the multiplication is
again defined as a star-product). This algebra is bigger, it has less connections
(gauge fields are bounded in this case). However, this makes no difference:
gauge fields having finite action are the same (if we impose some mild regular-
ity conditions).

The condition of finiteness is a complicated non-linear condition. In the
case when the dimension of the space is at least 4 we replace it with a condition
that the gauge field is gauge trivial at infinity. We say that a connection on
An = (S(Rd

θ))
n is gauge trivial at infinity if it can be represented in the form

∇µ = T ◦ ∂µ ◦ S + (1− TS) ◦ ∂µ + σµ (2)

where T, S ∈ EndA(A
n) are operators obeying 1−TS = Π ∈ A, 1−ST = Π′ ∈

A and σµ is small at infinity in appropriate sense. We will always assume that
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T belongs to HΓm,m0

1 , then there exists such S ∈ HΓ−m,−m0

1 that 1−TS ∈ A,
1 − ST ∈ A. (See Refs. 9, 2 or Appendix for the definition of the class of
hypoelliptic symbols HΓm,m0

ρ and for the definition of the class Γmρ ; roughly
speaking a ∈ Γmρ if ‖a‖ ≤ const ‖x‖

m
at infinity and T ∈ HΓm,m0

ρ if at infinity
T ∈ Γmρ and T−1 ∈ Γ−m0

ρ .) We will make precise the statement that σµ is
small at infinity requiring that σµ ∈ Γ where Γ stands for the union of Γ

m
1

with m < −1 (this means that σµ tends to zero faster than ‖x‖
−1, i.e. faster

than the first term in (2) ). Let us denote by C (T ) the class of connections
that can be represented in the form (2) with fixed T and σµ ∈ Γ. Considering
T ∈ HΓm,m0

1 as a matrix valued function on Rd we obtain an element of
πd−1(GL(n)) = πd−1(U(n)) as a homotopy class of the map of large sphere
Sd−1 ⊂ Rd. The class HΓm,m0

1 consists of components labeled by elements of
πd−1(U(n)). Let us fix an element Tk in every component of HΓ

0,0
1 and define

C(k) as C(Tk).

If T and Tk determine the same element of πd−1(U(n)) one can prove that
a gauge field (unitary connection) belonging to C (T ) is gauge equivalent to a
gauge field from C(k) = C (Tk) (i.e. these two gauge fields are related by unitary
endomorphism). Moreover, in the case θ 6= 0 this statement remains correct
if we impose weaker condition that T and Tk determine the same element of
stable homotopy group πd−1(U(∞)) (we will prove this statement below for
the case of nondegenerate θ).

Working with gauge fields (unitary connections) it is convenient to replace
(2) by an explicitly unitary expression

∇µ = T ◦ ∂µ ◦ T
+ +Π ◦ ∂µ ◦Π+ ρµ (3)

where T ∈ HΓ0,0
1 , Π = 1 − TT+ ∈ A, Π′ = 1 − T+T ∈ A, ρµ = ρ+

µ ∈ Γ.
It is easy to check that every unitary connection belonging to C(T ) where
T ∈ HΓ0,0

1 can be represented in the form (3). Notice, that in the case of
nondegenerate θ we can consider elements of Matn(M(A)) as pseudodifferential
operators acting on S(Rm) where d = 2p. The topological class of T can be

considered as index of corresponding pseudodifferential operator T̂ . Without
loss of generality we can assume that either T+T = 1 (i.e. Ker T̂ = 0) or

TT+ = 1 (i.e. Ker T̂+ = 0).

We conjecture that calculating correlation functions we can do functional
integral over fields that are gauge trivial at infinity. In very vague way one
can say that “almost all” (but not necessarily all) fields having finite action are
gauge trivial at infinity. (One can say that the finiteness of action implies gauge
triviality for fields obeying some regularity conditions at infinity.Some results
of this kind can be derived in commutative case from Uhlenbeck theorem.10)
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It is convenient to modify the definition of gauge triviality at infinity in
the following way: we say that the gauge field belongs to the class Cm if T
in (3) belongs to HΓ0,0

1 and ρµ belongs to Γ
m where Γmstands for the union

of Γm
′

1 with m′ < m. We always assume that m ≤ −1; under this assumption
Cm ⊂ C−1, i.e. a gauge field of the class Cm is gauge trivial at infinity. It
easy to check that the euclidean action of a gauge field from Cm is finite if
m ≤ 1 − d

2 . (Here d stands for the dimension of noncommutative euclidean
space.)

Let us consider for definiteness the case d = 4. Noticing that π3(U(n)) = Z
we obtain that HΓ0,0

1 consists of countable number of components labeled by
an integer. Let us fix one operator Tk in every component and define Ck

mas a
set of gauge fields of the form (3) with T = Tk and ρµ ∈ Γ

m = ∪
m′<m

Γm
′

1 . Every

gauge field ∇µ ∈ Cm is gauge equivalent to a gauge field from C′m = ∪
k∈Z

Ck
m.

(Recall that we consider the group of unitary endomorphisms U(Matn(M(A)))
as a gauge group.) We see that we can restrict ourselves to the gauge fields
from C′m. The gauge group becomes smaller after this restriction.

Similar statements are correct in any dimension. There are some com-
plications related to the fact that in general the group πd−1(U(n)) does not
coincide with stable homotopy group πd−1(U(∞)) = πd−1(U∞(C)). However,
in noncommutative case (θ 6= 0) the sets Ck

m and Cl
m defined by means Tk

and Tl correspondingly are related by gauge transformation if Tk and Tl deter-
mine the same element of πd−1(U(∞)). ( A proof for nondegenerate θ is given
below.)This means that for odd d we need only one T, and for even d we should
take C′m = ∪r∈ZCr

m where the index r labels elements of πd−1(U(∞)) = Z.
It is easy to check that a unitary endomorphism ϕ = 1 + τ , where τ is

a matrix with entries from Γm+1 transforms C′m into itself. It is convenient
to consider the group G = G(m+1) consisting of endomorphisms of such a
kind as residual gauge group, that remains when we restrict ourselves to the
gauge fields from C′ = C′m. (We omit the indexm in topological considerations,
because homotopy groups ofG and C′ don’t depend onm.) It is easy to describe
the topology of the group G. If θ is nondegenerate then πi(G) = πi(U∞(C));
this homotopy group vanishes for odd i and is isomorphic to Z for even i
(Bott periodicity theorem). This statement becomes almost obvious if we
take into account that the group G lies between U∞(C) and the group K of
unitary transformations of the form 1 + τ where τ is a compact operator.
(See Refs. 11–13 for the analysis of topological properties of different spaces of
operators in infinite-dimensional case.)

If θ = 0 it is easy to check that πi(G) = πi+d(U(n)). If θ is degenerate, but
θ 6= 0 we have for even d the same answer as for the case of non-degenerate θ; for
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odd d we obtain that πi(G) = πi+d+1(U∞(C)) (i.e. π2k(G) = 0, π2k+1(G) = Z).
The calculations for degenerate θ are based on the remark that in this case an
element ofG can be considered as a map of Sd−rank θ intoK. (If θ is degenerate,
but not equal to zero, we can assume that the first d−rank θ coordinates
commute with all coordinates and the last rank θ coordinates obey canonical
commutation relations. Considering the first coordinates as parameters we
obtain that an element of G can be regarded as a map of Rd−rank θ into K.
This map can be extended to a continuous map of Sd−rank θ into K.)

The group G deserves the name of gauge group of Yang -Mills theory
on Rd

θ if we are working only with gauge fields from C′ = C′m. This means,
in particular, that corresponding functional integral can be taken over C′/G.
(Notice that C′ is a disjoint union of contractible sets, therefore it is easy
to analyze the topology of C′/G using the results above). However, one can

show that the group G̃ consisting of unitary endomorphisms (of elements of
U(Matn(M(A))) ) that transform C′ into itself is larger then G. This follows
from the consideration below, but it is possible to show this directly. Namely, if
the commutator of unitary endomorphism U with the operator Tk that enters
the definition of C′ belongs to Γm then U ⊂ G̃. It is easy to construct examples
of such endomorphisms that don’t belong to G, but it is not so easy to give a
complete description of G̃ .

There exists another language that is more convenient to deal with fields
gauge trivial at infinity. Let us consider at first the case when the parameter
of noncommutativity θ is a non-degenerate matrix. Then the dimension d is
even and the algebra S(Rd

θ) is isomorphic to the algebra of integral operators
acting on the space S(Rp) where 2p = d and having a kernel, belonging to
S(Rd). This means that we can consider S(Rm) as a A-module; we denote
this module (Fock module) by F. The module F can be considered as a Hilbert
module over A = S(Rd

θ). We assume that in the definition of gauge triviality

at infinity we have T ∈ HΓ0,0
1 and T+T = 1 (i.e. Π′ = 0). Then one can

prove that KerT+ =KerTT+ =Ker (1 − Π) =ImΠ considered as A-module
is isomorphic to Fr for some r ≥ 0. (The proof is based on a remark that
Π ∈ S(Rd

θ) obeys Π
2 = Π, Π = Π+, and therefore the corresponding integral

operator is a projector on finite-dimensional subspace of S(Rp).)

Using this fact we construct a map of An onto Fr⊕An transforming y ∈ An

into (Πy, T+y). This map is an isomorphism of A-modules. (The inverse map
transforms (ξ, x) ∈KerT+ ⊕An into ξ + Tx ∈ An .)

Notice, that the isomorphism class of the module Ker T+ depends only
on the element of stable homotopy group πd−1(U(∞)) determined by T . This
remark proves the statement that gauge fields in C(T ) are gauge equivalent to
the fields in C (T

′

) if T and T
′

determine the same element of πd−1(U(∞)) (for
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the case when θ is non-degenerate).
Every connection on a module Frn = Fr⊕An =Ker T+⊕An has the form

∇µ = ∇
st
µ + νµ (4)

where ∇st
µ stands for the standard connection (i(θ

−1)αβ x̂
β , ∂α) = (Π∂µΠ, ∂µ)

and

νµ =

(
Mµ Nµ

Rµ Sµ

)
(5)

is an endomorphism of Frn represented by a block matrix whereMµ is an r×r
matrix with entries from C, Nµ is an r × n matrix with entries from F, Rµ is
an n × r matrix with entries from F, and Sµ is an r × r matrix with entries
from M(A).

Notice that in the above consideration instead of A = S(Rd
θ) we can con-

sider other algebras; for example, one can take A = Γm with m ≤ 0.
Let us consider now a gauge field (3) where ρµ ∈ Γ

m (i.e. a gauge field
from the class Cm). Then it is easy to check that the for corresponding gauge
field on Frn we have Sµ ∈ Γ

m. (More precisely, Sµ has the same behavior at
infinity as ρµ.) This means that instead of gauge fields that belong to the class

Cr
m we can work with the class C̃r

m consisting of gauge fields on Frn obeying

Sµ ∈ Γ
m. (We constructed a one-to-one correspondence between Cr

m and C̃r
m.)

The gauge group in this formalism should be considered as the group of
unitary endomorphisms of Frn that are represented by matrices of the form

(
M N

R S

)
(6)

where S − 1 ∈ Γm+1. Due to the correspondence between Cr
m and C̃r

m this
group can be considered also as a group of gauge transformations acting on
Cr
m . Imposing conditions M = 1, N = R = 0, we obtain transformations of

Cr
m belonging to G = G(m+1); if these conditions are not satisfied we obtain

gauge transformations of Cr
m that don’t belong to G,but belong to G̃. We

see that the gauge group is larger than G. However, it is easy to verify, that
its topological properties are the same. They coincide with the topological
properties of the gauge group considered in Ref. 1.

It seems that the simplest way to work with noncommutative gauge theo-
ries on Rd is to consider unitized algebras. (This is the viewpoint advocated
in Ref. 2.) We can reformulate the above consideration working with the alge-

bra Γm and corresponding unitized algebra Γ̃m. The gauge fields from C̃r
m are

precisely the fields that can be regarded as connections on Frn, considered as
Γ̃m-module.
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Let us consider now the case when the dimension of the space (Rd) is less
than 4. In this case fields of the form ∇µ = ∂µ + ρµ where ρµ ∈ Γ

m and
m = 1− d

2 have finite euclidean action. Let us denote the class of fields of this
kind by D. We expect that “almost all” gauge fields having finite euclidean
action are gauge equivalent to the fields belonging to D. It is easy to check that
a unitary endomorphism corresponding to a matrix T ∈ HΓ0,0

1 transforms D

into itself. The group consisting of endomorphisms of this kind be considered
as a gauge group.
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Appendix

Let us denote by Γmρ (R
d) the class of smooth matrix functions a(z) on Rd

obeying

‖∂αa(z)‖ ≤ Cα 〈z〉
m−ρ|α|

(7)

where α = (α1, ..., αd), |α| = α1+...+αd,m ∈ R, 0 < ρ ≤ 1, 〈z〉 = (1+‖z‖
2
)1/2.

We define the star-product of matrix functions using the star-products of their
entries and standard rules of matrix multiplication. (The star-product a ?θ b
as always depends on antisymmetric matrix θ.) One can prove that the star-
product of functions a′ ∈ Γm1

ρ and a
′′

∈ Γm2
ρ belongs to Γm1+m2

ρ . (In particular,
Γmρ is an algebra if m ≤ 0 .)

A matrix function a(z) belongs to the class Γ̃mρ (R
d) if

‖a(z)‖ ≤ const · 〈z〉
m

, ‖∂αa(z)‖ ≤ Cα ‖a(z)‖ 〈z〉
−ρ|α|

. (8)

(This condition is stronger than (7).)

One says that a ∈ HΓm,m0
ρ if a ∈ Γ̃mρ and a−1 ∈ Γ̃−m0

ρ . (We don’t assume

that a(z) is invertible for all z ∈ Rd, however, we suppose that a−1(z) exists
for sufficiently large ‖z‖.) One can prove that for every function a(z) from
HΓm,m0

ρ and for any θ in the definition of star-product there exists such a
function b(z) ∈ Γ−m,−m0

ρ that 1 − a ?θ b and 1 − b ?θ a are matrix functions

with entries from S(Rd) .
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