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This article is a slightly expanded version of the talk I delivered at the Special Ple-
nary Session of the 46-th Annual Meeting of the Israel Physical Society (Technion,
Haifa, May 11, 2000) dedicated to Misha Marinov. In the first part I briefly discuss
quantum tunneling, a topic which Misha cherished and to which he was repeatedly
returning through his career. My task was to show that Misha’s work had been
deeply woven in the fabrique of today’s theory. The second part is an attempt
to highlight one of many facets of Misha’s human portrait. In the 1980’s, being a
refusenik in Moscow, he volunteered to teach physics under unusual circumstances.
I present recollections of people who were involved in this activity.
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1 Introduction

I am honored to give this talk at the special session of the Israel Physical Soci-
ety. A brief summary of Marinov’s life-long accomplishments in mathematical
and high-energy physics was given by Professor Lipkin. My task was to choose
one theme, from several which Misha considered to be central in his career,
to show how deeply it is intertwined in the fabrique of today’s theory. I was
asked to prepare a nontechnical presentation that would be understandable,
at least, in part, to nonexperts.

The center of gravity of Marinov’s research interests rotated around ad-
vanced aspects of quantum mechanics, quasiclassical quantization and func-
tional integration methods. For this event I have chosen the topic of quantum
tunneling, which Misha cherished and to which he was repeatedly returning
through his career, the last time in 1997.1 The reader interested in a more tech-
nical discussion of Misha’s results on quantum tunneling is referred to Segev’s
and Gurvitz’s articles in this Volume.2,3

Apart from the direct involvement in the tunneling-related projects, this
subject carries an imprint of other Marinov’s contributions – from dynamics
of the Grassmannian variables4 to the monopole studies in gauge theories.5 I
will explain this shortly. The second part of my talk is nonscientific. It is a
sketch, an attempt to present one of many facets of Misha’s human portrait.
In the 1980’s, being a refusenik in Moscow, he volunteered to teach physics
under unusual circumstances. I conducted interviews with people who were
involved in this activity.

2 What is quantum tunneling?

To demonstrate the essence of the phenomenon, let us consider a simple ex-
ample – the α decay of heavy nuclei. For definiteness, one can keep in mind
the decay

U238
92 → Th234

90 + α .

The energy of the emitted α particle in this decay is 4.7 MeV. The emitted α
particle and the daughter Th234

90 nucleus experience an interaction. At large
distances this is the Coulomb repulsion

VC =
Z1Z2e

2

r
=

2× 90× e2

r
=

260

r/fermi
MeV . (1)

The Coulomb potential is equal to 4.7 MeV at r = 55 fermi. At such distances
the nuclear force (which is attractive) is negligible since its range approximately
coincides with the nucleus radius,

Rn ≈ 1.2A1/3 = 1.2× (234)1/3 ≈ 7.4 fermi . (2)
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A sketch of the corresponding potential is shown in Fig. 1, where V ∗
C ≈ 35MeV.

At r >Rn the potential is purely Coulombic, while at r <Rn it is essentially
determined by the nuclear interaction and is flat in a rough approximation.
The energy of the α particle is denoted by E1. At the initial moment of
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Figure 1: A sketch of the potential energy for α particle in the α decay of U238
92

.

time the α particle is confined in the well at r < Rn. According to the laws
of the classical mechanics it will stay there forever – the potential barrier at
Rn <r<R1 prevents the classical particle from the leakage in the domain to
the right of R1. Thus, classically U238

92 is stable with respect to the α decay.
In actuality, the laws of quantum mechanics do allow the α particle to leak

under the barrier. This is called “Quantum Tunneling.” The wave function of
the α particle spreads under the barrier even if initially it was confined in the
well to the left of Rn. If the barrier is high, as is the case in the problem at
hand, the tunneling probability is exponentially small, and it can be calculated
quasiclassically. The tunneling amplitude is proportional to a

Atunneling ∝ exp

{

−

∫ R1

Rn

√

2m(V − E1) dr

}

. (3)

a Here and below I use units in which h̄ = 1, a standard convention in particle physics.
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The integral in the exponent runs over the classically forbidden domain. The
decay probability is given by |A|2; it can be readily evaluated using the simple
expression (3) which nicely explains the fact that the probability is extremely
small, of order 10−37 in the problem at hand, and is extremely sensitive to the
α particle energy. For all known α-particle emitters, the value of E1 varies
from about 2 to 8 MeV. Thus, the value of the α particle energy varies only
by a factor of 4, whereas the range of lifetimes (inverse probabilities) is from
about 1011 years down to about 10−6 second, a factor of 1024.

The quantum tunneling as an explanation of the heavy nuclei decays was
suggested by George Gamow6 in 1928 and, somewhat later, (but indepen-
dently) by Gurney and Condon.7

x

V(x)

+η−η

Figure 2: The double-well potential.

Quantum tunneling is at work in a much wider range of phenomena than
the heavy nuclei decays just discussed. I chose this example for illustrative
purposes since in these processes the consequences of the tunneling can be
readily explained to nonexperts. The very same tunneling determines a global
structure of the ground state in a wide variety of quantal and field-theoretical
problems. For instance, in the text-book problem of the double-well potential
(see Fig. 2), there is no instability. The tunneling from the left to the right well
and vice versa manifests itself in that the ground state is unique (rather than
doubly degenerate as would be the case in the classical theory). It is symmetric
with respect to x→−x, and there is an exponentially small energy splitting
between the low-lying P -even and P -odd states. This splitting is determined
by the very same expression (3) where one may put E1 =0, and the integral
runs from −η to η. It can be represented in an identical form as

Atunneling ∝ exp (−S0) , (4)
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where S0 is the action on the classical trajectory x(τ) connecting the points
−η to η in the distant past and distant future in the imaginary time. In the
real time there are no classical trajectories connecting − η and η, the domain
between these two points is classically forbidden. The particle tunneling can
be described as particle’s motion in the imaginary time, t→− iτ . Passing to
the imaginary time, t→− iτ , we effectively change the sign of the potential,
see Fig. 3. The double-well potential becomes two-hump. It is pretty obvious
that in the two-hump potential there is a classical trajectory

mẍ = −
dV

dx
, V (x) = −λ

(

x2− η2
)2

(5)

interpolating between − η and η. The minimal action is

S0 =
m2ω3

12λ
. (6)

x

V(x)

Figure 3: The potential relevant to the imaginary time classical motion in the double-well
problem.

This strategy is general in the problems of this type. The tunneling am-
plitude is determined (in the quasiclassical approximation) by the minimal
action attained on the least-action trajectory interpolating through the clas-
sically forbidden domain in the imaginary time. In one-dimensional problems
determination of such trajectories and calculation of the corresponding min-
imal action is a relatively trivial task. The task becomes exceedingly more
complicated in multi-dimensional quantal problems and in field theory. Much
of Marinov’s time and effort was invested in the theory of the multi-dimensional
tunneling.
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3 Multi-dimensional quantal problems

Now I would like to demonstrate, in some graphic examples, that 70 years
after its inception the topic is alive and continues to attract theorists’ atten-
tion. The formulation of the problem to be discussed below is inspired by
supersymmetry, although the corresponding dynamical systems need not be
supersymmetric. Supersymmetry, by the way, was also very close to Marinov’s
heart. The early work he did with Berezin4 on the classical description of
particles with spin in terms of the Grassmannian variables carries elements
inherent to supersymmetry. Moreover, the last paper on which Misha worked
being already terminally ill, was a historic essay on supersymmetry.8

In this section I will consider a class of quantal multi-dimensional problems.
Assume that we have n degrees of freedom, X1, X2, ..., Xn, described by the
Hamiltonian

H =
n
∑

`=1

1

2

(

Ẋ`
)2
+ V

(

X`
)

, (7)

where the potential V can be represented as

V =
1

2

n
∑

`=1

(

∂ W(X)

∂X`

)2

, (8)

W is a function of all variables X`, which I will call “superpotential”, bearing
in mind its origin in supersymmetric theories. The mass m is put m=1. This
is done for simplicity, and is by no means necessary. In the given context the
term superpotential is nothing but a convenient name for the function W .

Certainly, the potential (8) is very special. It has an interesting feature
that at the extremal points of the superpotential,

∂ W(X)

∂X`
= 0 , ` = 1, 2, ..., n , (9)

the potential V vanishes. Since the potential (8) is positive-definite these are
the classical ground states of the system. Let us assume that Eq. (9) has more
than one solution, and denote these solutions by ξa≡{ξ

`}a where the subscript
labels distinct solutions,

∂ W(X`)

∂X`
= 0 , at X` =

(

ξ`
)

a
, a = 1, 2, ... (10)

For simplicity I will assume that there are only two solutions, ξ1 and ξ2. This
assumption does not lead to the loss of generality, it just makes the notation
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ξ
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2

Figure 4: A profile of potential energy with two degenerate minima at ξ1 and ξ2. The
barrier separating these two points is assumed to be high, so that tunneling can be described
quasiclassically.

simpler. The barrier separating the points ξ1 and ξ2 is assumed to be high
(see Fig. 4), so that the tunneling problem is solvable in the quasiclassical
approximation.

The tunneling amplitude from the first to the second classical minimum
of the potential V is given by Eq. (4), but finding the tunneling trajectory and
the minimal action S0 in case of a significant number of variables, nÀ 1, does
not seem to be a trivial task, especially if the potential V is contrived.

In fact, I will show momentarily that S0 can be obtained9 without solving
the classical equations of motion for the trajectory,

S0 = |W (ξ1)−W (ξ2)| . (11)

The classical equations in the imaginary time take the form

Ẍ` =
∂ V(X)

∂X`
. (12)

This is a second order differential equation. Consider, instead, the following
first order differential equation

Ẋ` = −
∂ W(X)

∂X`
. (13)

If we manage to find a solution of this latter equation, it will be automatically
the solution of Eq. (12). Indeed, differentiating both sides of Eq. (13) over τ
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one gets

Ẍ` = −
∑

j

∂2W

∂X` ∂Xj
Ẋj =

∑

j

∂2W

∂X` ∂Xj

∂W

∂Xj
=

∂ V(X)

∂X`
. (14)

(The inverse is not true).
Equation (13) has a very graphic physical interpretation – it describes the

motion of a very viscous fluid (like honey) on the multi-dimensional profile
given by W (X`). The motion must originate in one extremal point of W
(which, obviously, must be a local maximum or a saddle point) and end up in
the second extremal point (which must be a local minimum or a saddle point).
The left-hand side is the velocity, there is no inertia; the right-hand side is the
“force.” The velocity is proportional to the force. That’s how honey flows.

Although it may be difficult to find the flow trajectory analytically for
contrived profiles, a rich mechanical intuition all of us have regarding this
type of motion tells us immediately whether the solution exists or there is an
obstruction, i.e. the honey flow from the summit is diverted away from the
minimum, into an abyss. Once we see that the solution exists, we can get S0

“for free”,

S0 =
1

2

∫

dτ

(

∑

`

Ẋ`Ẋ` + V (x)

)

≡
1

2

∫

dτ

{

(

∑

`

Ẋ`+
∂W

∂X`

)2

− 2
dW

dτ

}

. (15)

The expression in the parentheses on the right-hand side vanishes on the solu-
tion, while the second term, the full time derivative, yields Eq. (11).

It may happen that the flow equations (13) do not have a solution with
the proper asymptotics – honey does not want to flow from the a-th to the b-th
extremum of W . The second order equations (14) always do have a solution,
however. From (15) we see that in this case S0 > |W (ξb)−W (ξa)| , and

exp
(

− |W (ξb)−W (ξa)|
)

(16)

presents an upper bound on the tunneling amplitude.
The set-up described above (with the first order equations replacing the

second order equations of motion) is called the Bogomol’nyi-Prasad-Sommer-
field (BPS) saturation.10,11 BPS saturated objects are in the focus of today’s
research in supersymmetric theories – from supersymmetric gluodynamics to
string and brane theory, where the BPS saturation acquires a deep symme-
try foundation. The BPS saturated objects preserve 1/2 or 1/4 of the orig-
inal supersymmetry. The set-up was introduced by Bogomol’nyi in the pre-
supersymmetry era. In 1975 Zhenya Bogomol’nyi was a Ph.D. student at
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ITEP, like myself. Immediately after the discovery of the ’t Hooft-Polyakov
monopoles he started calculating their masses. The first calculation was nu-
merical, a joint project with Misha Marinov.5 In this work Bogomol’nyi and
Marinov observed that the limit of the vanishing Higgs self-coupling was spe-
cial; in this limit the monopole mass tended to 4πMW/g2, with the coefficient
exactly equal to 1. This observation served as a hint and an initial impetus
for the subsequent work,10 where the limit of the vanishing Higgs self-coupling
was worked out analytically, and the monopole mass was reduced to a surface
term, the magnetic charge.

4 Dynamics on manifolds

The above example describes dynamics generated by the potential V(X) related
to the superpotential W(X) through Eq. (8). The space is flat, X ` ∈Rn. In
fact, one can readily generalize the problem to include the motion on nontrivial
manifolds T , endowed with the metric tensor gij(X

`),

L =
1

2
gijẊ

iẊj −
1

2
gij ∂W

∂Xi

∂W

∂Xj
, (17)

where the coordinates X` parametrize T , and W(X`) is a function on T . As
is evident from Eq. (17), the formula for the potential that replaces Eq. (8) is

V (X) =
1

2
gij ∂W

∂Xi

∂W

∂Xj
. (18)

I have already mentioned in the beginning of my talk that quantization on
group manifolds (a particular class of nontrivial T ’s) was Misha’s perennial
topic. Together with Terentev, he wrote a famous article on this subject.12

The BPS equations in this case take the form

dXi

dτ
= −gij ∂W

∂Xj
, (19)

with the boundary conditions that the trajectory starts at one minimum of
the potential V and ends at another (i.e. interpolates between two distinct
extremal points of W ). The solution of this equation interpolating between ξa

and ξb, if it exists, determines the minimal action and the tunneling amplitude
(in the exponential approximation). As previously, the minimal action can be
inferred without the knowledge of the explicit solution, and is given by the
same formula, see Eq. (11). A remarkable feature is its metric-independence.

The existence/nonexistence of the solutions of Eqs. (19) depends on the
global (topological) characteristics of the manifold T and the superpotential
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W . The corresponding theory – it goes under the name of the Morse theory –
is a well-developed and quite beautiful branch of mathematics (see e.g. Refs.
13 and 14). Unfortunately, I have no time to dwell on it, even briefly. The best
I can do is to offer a simple illustration.

Let us assume that T is a two-dimensional sphere S2, and the superpoten-
tial is such that it has two isolated extremal points, one at the north pole and
another at the south (Fig. 5).

2
ξ

ξ 1

Figure 5: Tunneling trajectories for the particle on the sphere. The thick line is the flow line
of the honey droplet from one extremal point of W to another.

If one extremal point is the maximum of W , another one has to be the
minimum. Alternatively, they can be saddle points. In both cases it is obvious
that a droplet of honey, being placed in one extremal point, will find its way
to another – the solution of the BPS equations always exists. In the first
case (maximum at the north pole and minimum at the south), there exists a
continuous family of solutions – the flow lines of the droplet can leave the pole
along any meridian.

Now, one can start deforming T and W . For instance, one can squeeze
the sphere of Fig. 5 transforming it into the surface of, say, a melon or a
lemon, or another surface. As far as the existence of the BPS solution is
concerned, nothing will change for small continuous deformations of T and W .
The particular form of the solution will change, of course, but not the fact of
its existence.

The solution connecting the north and south poles may disappear only if
the deformations will be so strong that either topology of T changes or W
develops new extremal points which might trap the droplet on its way from
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one pole to another. If there are several extremal points, T splits into several
domains – they are called the Morse cells. Each cell Mab presents a domain
swept by the family of trajectories connecting a and b,

T =
∑

pairs

Mab .

5 Beyond physics

I would like to conclude my talk on a personal note. I first saw Misha Marinov
when I came to ITEP around 1969 to pass my entrance examinations. The
examination session was chaired by Professor V.B. Berestetskii. I do not re-
member exactly what topic was under discussion. I remember, however, that
when a certain subtle point was raised, Berestetskii interrupted the session and
said that at this point it would be appropriate to consult Okun. We went to
his office, which was across the hall, and Marinov was there. Okun introduced
us.

Since then we would occasionally bump into each other in the corridors of
ITEP, or in the seminar hall. In 1979 Misha became a refusenik, a nonperson
according to the Orwellian nomenclature. I remember that this news – that
Marinov had applied for emigration to Israel – came when many of us were
at the Odessa School of Physics organized by the Landau Institute. I heard
Okun telling somebody that Marinov had left ITEP. In those days such a step
actually meant “disappearance beyond the horizon”. In 1986, in the beginning
of perestroika, when Marinovs finally got their exit visas to Israel, I came to
their place to say farewell, since I was absolutely sure that I would never ever
see any of them again (as were many other friends and colleagues who gathered
in tiny Marinov’s apartment on Bolotnikovskaya street that night).

Well, life can be much richer than our imagination. It was not Marinov
who was forced to give up his dream to live and die on the land of his ancestors,
but, rather, the antihuman system which kept him hostage for years and to
which he resisted, collapsed.

Many people in this audience knew Misha from the human side, as a
person on whom one could always rely on a rainy day, always open to one’s
needs and ready to help. I’d like to say a few words on that, dwelling on one of
Misha’s activities which, regretfully, remains virtually unknown to public. In
Marinov’s obituary in Physics Today (the September 2000 issue) it is mentioned
that in the early 1980’s “... he volunteered to teach physics at the unofficial
university organized by refuseniks to educate Jewish students who were barred
by authorities from regular universities.”
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In fact, Misha volunteered to teach at the so-called “Jewish People’s Uni-
versity” in Moscow which was organized in the late 1970’s by Bella Abramovna
Subbotovskaya. At this time discrimination against Jews in the admission poli-
cies of the Soviet universities reached its peak. Sure enough, it was not the first
peak, but it was especially strong. In fact, virtually all Departments of Mathe-
matics in Soviet Union completely closed their doors to Jewish students.b I do
not know why, but (this is a well-known fact) the Soviet mathematical commu-
nity, which gave to the world some of the most outstanding mathematicians,
was also pathologically anti-Semitic. Such great mathematicians as Pontryagin
and Vinogradov, who had enormous administrative powers in their hands, were
ferocious anti-Semites. The tactics used for cutting off Jewish students were
very simple. At the entrance examination special groups of “undesirable ap-
plicants” were organized.c They were then offered killer problems which, as a
rule, were at the level of international mathematical competitions; sometimes,
they were flawed, or even completely wrong.d

Bella Subbotovskaya’s idea was to launch something like unofficial exten-
sion classes, where children unfairly barred from the official universities could
get food for their the hungry minds from the hands of the first-class mathe-
maticians and physicists. It was supposed that the classes would take place
on a regular basis through the entire school year, that they would be open
to everybody (no registration or anything of this kind was required) and that
the spectrum of courses offered would be broad and deep enough to provide a
serious educational background in the exact sciences.

Andrei Zelevinsky (now at the North-Eastern University, Boston) recol-
lects:

“Bella Abramovna was the main organizer [...]. I didn’t know her
very well: she was much older than me [...]. It was she who brought
Fuchs and me to teach there. I was truly impressed with her
courage and quiet determination to run the whole thing. All the or-
ganizational work, from finding the places for our regular meetings
to preparing sandwiches for participants was done by her and two
other activists: Valery Senderov and [...] Boris Kanevsky. Both as

b Statistical data illustrating this fact in the most clear-cut manner were presented in samiz-

dat essays, Refs. 15 and 16, and in Freiman’s book.17 I am grateful to Natasha Zanegina,
Gabriel Superfin, and Gennady Kuzovkin for providing me with these materials.
c The working definition of “Jewishness” was close to that of Nazis; having at least one
Jewish parent of even grandparent would almost certainly warrant one’s placement in the
category of undesirables.
d An extremely illuminating analysis of such killer problems which had been collected in
Ref. 18 was published by Ilan Vardi.19 Another brief collection of the killer problems can be
found in Appendix B in Ref. 17.
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I understand, were active dissidents at the time. I think they made
a deliberate effort to separate mathematics from politics, in order
to protect us, professional research mathematicians.”

Another professor of this “university”, Dmitry Fuchs (now at UC, Davis),
writes:

“We taught there major mathematical disciplines corresponding
to the first two years of the Mekh-Mat curriculum: mathemati-
cal analysis, linear algebra and geometry, abstract algebra and so
on. I taught there since 1980 through 1982, until Subbotovskaya’s
sudden death in September or October of 1982 put an end to this
enterprise. Bella Abramovna was tragically killed in a hit-and-run
accident which was universally believed to be the act of KGB. This
has never been officially confirmed though. At this time we did
not use any particular name for our courses. In spirit, this was
more a continuous seminar rather than a university. Among other
teachers, I knew Andrei Zelevinsky, Boris Feigin, and Alexei Sossin-
ski [...]. The number of students varied between 60 and 20. The
place of our meetings was not permanent: we met at an elementary
school where Bella Abramovna worked as a teacher, at the Gubkin
Institute for Petrol and Gas, at the Chemistry and Humanities
Buildings of the Moscow State University, and so on. Anywhere,
where we could get permission to occupy a large enough room. . . .
I personally asked the Deputy Dean of the Chemistry Department
for such a permission, and it was granted. All instructors prepared
notes which were photocopied and distributed among the students.
An article on our “school” was published by a Russian-Israeli news-
paper some time ago. It was interesting but excessively emotional.
Among other things, the authors had a tendency to exaggerate the
Jewish nature of our “university.” It is certainly true that a sub-
stantial part of both, students and teachers, were ethnic Jews. This
was the result of the well-known policy of the Mechmat admission
committee, and the Soviet State at large, rather than the deliberate
aim of the organizers. After all, we taught only exact sciences. No
plans were made to teach Jewish culture, history, or language.”

Needless to say that all teachers were enthusiasts, and they received no reward
other than the wonderful feeling that what they were doing was a good deed,
a mitzva. Misha Marinov taught topics in physics.

Although the goals of this “university” were purely educational, the very
fact of its existence was considered by the authorities as a political act of
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resistance. Any association with it was dangerous. The tragic fate of Bella
Subbotovskaya remains uninvestigated so far. Perhaps, in the future her life
will become a subject of a historical treatise, or a novel, who knows? Another
activist who was mentioned above by Andrei Zelevinsky, Valery Senderov,
was sentenced to 7 years in jail with the subsequent 5-year exile to Siberia
on charges of anti-Soviet agitation and propaganda in 1983. One of the main
pieces of incriminating evidence supporting the charges was his and Kanevsky’s
essay Intellectual Genocide.16 If one reads this essay now it is hard to under-
stand how a person could be sent to prison for describing mathematical prob-
lems suggested to particular applicants at the entrance examinations at the
Department of Mathematics of the Moscow University. Well, they say that
everything goes in the struggle of classes. Why not mathematics?

But let me return to Misha and his generous contribution to this endeavor.
A former student of Misha, Boris Shapiro recollects (his article20 is published
in this Volume):

“Soon after the beginning of the lectures on mathematics, Bella
Abramovna announced that for all who desire to come, there would
be a series of lectures by a famous physicist on quantum mechanics
and field theory.[...] The very next Thursday, I think, in the tiny
two-room apartment of Bella Abramovna on Nametkina Street,
eight or nine people met, mainly second-year students [...]. There
appeared a tall, sinewy gray-haired man, with a slight lisp. The
man was Misha Marinov, the name by which he introduced himself.
By his appearance, Misha was close to forty-five years old; he had
already been a refusenik for some time, and had seen a great deal.
He had, until he applied for his exit visas, worked in ITEP and
was personally acquainted with famous people. [...] For me, he
represented that heroic epoch when Jews were still accepted into
the realm of physics and mathematics, where they uncovered so
much. My impression was reinforced by occasional Misha’s stories
of L.D. Landau, whose biography the younger generation was also
eagerly reading. He spoke of his cooperation with F.A. Berezin,
and it was then that I first heard of “supermanifold” [...] On the
other hand, once (during a tea break), he told us about a team of
construction workers, shabashniks-refuseniks, to which he belonged,
consisting entirely of Ph.D. holders and professors. Those were
dark times, and it was uncertain when and to where they would let
him go. It was for this reason that Misha was very careful not to
compromise the entire system of the “Jewish University” and other
teachers, more or less well off and at that time far from any desire
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to immigrate. As they say, “some are no longer with us, and the
others are far away. . . ”.

The following quotation from Shapiro’s essay gives an idea of Misha’s
choice of physics topics for teaching. It speaks also of his attitude, thoughtful
and demanding. This was his usual attitude.

“Misha’s lectures were not simple. An understanding of mechan-
ics, functional analysis, differential equations, differential geometry
and the like was necessary. Despite this, I remember the ease and
clarity with which he explained the fundamental ideas behind the
difficult make-up of quantum mechanics. He pointed out the sim-
ilarities and complexities of classical mechanics such that even I
had the impression that I understood everything. I remember the
interesting discussions on harmonic and anharmonic oscillators and
the difficulties in the quantization of the latter. He even managed
to discuss with the second-year students “supermathematics” on
the basis of Grassmann algebra. [...] He tried with all his strength
to bring us to the level of current research, though this was not
very realistic, meeting once a week with second-year students. In
this way two intensive years went by, until in the spring of 1982 we
were all stunned by the death of Bella Abramovna. Everyone went
around very crushed, and the “Jewish University” soon fell apart.”
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