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1 Introduction

Renormalization procedure in the theories with nontrivial internal symme-
tries, like gauge invariant models, is complicated by the necessity to provide
the symmetry of the renormalized theory. The crucial role in this procedure is
played by the relations between Green functions which are the quantum ana-
logue of a classical symmetry. In the case of Quantum Electrodynamics (QED)
these relations are Ward-Takahashi identities (WTI),1,2 which connect three-
and two-point Green functions. For non-Abelian gauge theories corresponding
relations (STI) were obtained in Refs. 3 and 4.

There are essentially two approaches to renormalization of gauge invariant
theories. The first one uses some intermediate gauge invariant regularization,
e.g. dimensional regularization,5,6 higher covariant derivatives,7−9 or lattice
regularization.10 Using these regularizations one can prove that the countert-
erms needed to eliminate ultraviolet divergencies preserve the gauge invariant
structure of the renormalized Lagrangian.

In the second approach, known as algebraic renormalization, one firstly
defines a finite renormalized theory following the Bogoliubov-Parasiuk R-
operation11 with some particular subtractions.12 This procedure in general
breaks gauge invariance, however one can use a finite renormalization freedom
to restore STI for renormalized Green functions13,14 (for recent development
and more complete references see Ref. 15).

Both these approaches have some advantages and disadvantages. Using
invariant regularizations allows to prove in a rather simple way gauge inde-
pendence of observables. Moreover, the dimensional regularization proved to
be an efficient way for calculations of Feynman diagrams. On the other hand
in this case the procedure is explicitely regularization dependent and, more
important, is not directly applicable to some theories including the Standard
Model and supersymmetric theories. The invariant regularization procedure
for anomaly free theories including chiral fermions, like Salam-Weinberg or uni-
fied models was constructed recently,16,17 and for general Feynman diagrams
is still rather complicated.

The algebraic renormalization uses only the algebraic structure of the un-
derlying theory and does not require any particular regularization. So it may
be applied to any anomaly free model. However to provide the validity of STI
for renormalized Green functions in this approach is a nontrivial problem and
calculations are rather clumsy. Note that it refers also to the models without
chiral fermions.

In the present paper I propose a new renormalization procedure which
shares the advantages of both these approaches. The procedure is regulariza-
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tion independent and at the same time provides automatically STI for renor-
malized Green functions.18

To formulate the main idea of the method I remind some general properties
of renormalization procedure which may be found in many textbooks (see e.g.
Ref. 19).

In any 4d renormalizable theory ultraviolet divergencies may occur in di-
agrams with the number of external lines less than five. The vertex functions
with three and four external lines may diverge linearly or logarithmically. Ac-
cording to the R-operation11,19 these divergencies are removed by recursive
subtractions of local counterterms (polynomials in momentum space), which
may be identified with the values of the vertex functions at some (infrared
safe) external momenta. Making these subtractions one firstly introduce some
intermediate regularization which makes the integral as a whole convergent
by power counting. Such a regularization which is removed after making all
necessary subtractions is assumed in the following. Finite renormalized func-
tions obtained in this way have an ambiguity which is a polynomial in external
momenta of the degree given by power counting (see Ref. 19).

In what follows we assume that if some intermediate regularization is in-
troduced, it satisfies some natural requirements which usually are tacitly as-
sumed. The most important properties are the following. Regularization does
not change the value of integrals convergent by power counting (i.e., in the
limit when the regularization is removed one gets the same result as without
regularization). Global symmetries are respected by the regularization.

After these preliminaries I formulate the general idea of the method. It
follows from the discussion above that ultraviolet divergencies of the vertices
with three and four external lines may be removed not necessarily by sub-
tracting the vertex at some fixed external momenta but also by subtracting
the values of the corresponding vertices with only one external momentum
fixed, in particular the fixed momentum may be equal to zero. In the case of
linear divergencies one has to use a properly symmetrized subtraction. Some-
times symmetrization is also useful for subtracting logarithmically divergent
integrals.

The subtraction procedure described above makes vertex functions finite
but obviously violates locality. To restore the locality one can use the fact that
in gauge theories the value of a vertex function at zero momentum of one of
the external gauge fields is related to the values of other correlators having
at least one external gauge field less. In QED this relation is given by WTI
and expresses the electron photon vertex at zero photon momentum in terms
of electron polarization. In non-Abelian models the corresponding relations
express the vertex functions with three and four external gauge fields in terms
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of polarization operators and ghost-gauge field vertices. Having this in mind
one can define the renormalized proper vertex functions as follows:

Γr(p, q, k) = Γ(p, q, k)− Γ(p, q, 0) + F r(p, q) . (1)

Here Γ(p, q, k) denotes some proper vertex function with indices suppressed
and F r is a combination of other renormalized correlators, such that for a
proper choice of renormalization freedom

Γr(p, q, 0)− F r(p, q) = 0 (2)

by virtue of gauge invariance. In other words, Eq. (2) is the renormalized WTI
in QED or renormalized STI in non-Abelian models. The notation Γr means
a renormalized vertex function.

The subtraction (1) involves the value of three or four point vertex func-
tions at one of the external momenta equal to zero. Obviously if at least one of
the remaining external momenta is different from zero, it serves as the infrared
regulator and this function is infrared finite. So our procedure does not meet
any infrared problems.

The renormalization procedure works loopwise. One firstly makes arbi-
trary (infrared safe) subtractions of one loop polarization operators and (in
non-Abelian models) ghost-gauge field vertices. Then one defines the renor-
malized three and four gauge field one loop correlators by the relations of the
type (1), where F r depends only on finite renormalized correlators. The r.h.s.
of the Eq. (1) is ultraviolet finite. The WTI and STI are obviously satisfied by
the renormalized functions (1). Finally, as was discussed above, the difference

Γ(p, q, 0)− F r(p, q) (3)

in any anomaly free model in the limit of an intermediate regularization re-
moved is a polynomial in p, q (with coefficients divergent in the limit when a
regularization is removed). It follows from the fact that Γr(p, q, 0) is obtained
from Γ(p, q, 0) by subtracting a polynomial. It proves the locality of our proce-
dure. Note that if one applies the same procedure to an anomalous model, the
difference (3) will not be local anymore, which makes the model inconsistent.

After defining renormalized one loop correlation functions one proceeds
defining multiloop correlators according to the standard R-operation. With
subgraph divergencies being removed one needs to make a subtraction corre-
sponding to the superficial divergency of the diagram, which is done by the
same procedure. There is nothing specific in our method at this point and we
refer for further details to textbooks (e.g. Ref. 19).

In the second section I illustrate the method by applying it to QED. In the
third section the renormalization of the Yang-Mills theory is constructed. In
the fourth section I discuss a simple anomaly free model with chiral fermions.
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2 Invariant regularization of QED

In Quantum Electrodynamics formal WT identities for proper Green functions
may be written in the form:

Γµ(p, 0) = e∂µΣ(p) , (4)

where Γµ is the proper photon-electron vertex and Σ is the electron self energy.
We shall define the renormalized Green functions which satisfy automatically
this identity.

The renormalization procedure works loopwise. We start by defining the
renormalized one-loop electron self energy. The most general structure of Σ is

Σ(p) = (p̂−m)Σ1(p
2) + Σ2(p

2) . (5)

Renormalized electron self energy is given by the folllowing equation,

Σr(p) = (p̂−m)
[

Σ1(p
2)− Σ1(a

2)
]

+Σ2(p
2)− Σ2(m

2) . (6)

Here a is some arbitrary (infrared finite) normalization point. Equation (6)
guarantees that the electron propagator has a pole at p2 = m2.

The renormalized vertex function is defined by the equation:

Γrµ(p, q) = Γµ(p, q)− Γµ(p, 0) + e∂µΣ
r(p) . (7)

Here Σr is the finite renormalized function defined by the Eq. (6). The vertex
function diverges logarithmically, so Γrµ is obviously finite and hence regular-
ization independent. By construction it satisfies WTI:

Γrµ(p, 0) = e∂µΣ
r(p) (8)

At first sight the subtraction (7) may seem to be nonlocal. However it is
not. Locality of our procedure follows from the fact that in any regularization
scheme the difference

Γµ(p, 0)− e∂µΣ
r(p) (9)

is a local polynomial. (See the discussion in the Introduction). In a gauge
invariant regularization scheme one can rewrite the Eq. (7) in the form

Γrµ(p, q)=Γinvµ (p, q)+(z2−1)γµ−
[

Γinvµ (p, 0)+(z2 − 1)γµ−e∂µΣ
inv,r(p)

]

. (10)

In an invariant regularization scheme the term in square bracketts vanishes
by virtue of WTI, and Γrµ(p, q) = Γinv,rµ (p, q). In a gauge invariant regulariza-

tion the Green functions Γinv,rµ and Σinv,r, renormalized by the counterterms
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obeying the relation z1 = z2, satisfy WT identity. The locality of the procedure
is manifest.

Gauge invariant renormalization of the vacuum polarization makes no
problems. The polarization tensor has the structure:

Πµν(p) = (gµνp
2 − pµpν)Π1(p

2) + gµνΠ2(p
2) . (11)

The renormalized polarization tensor is defined by the equation

Πr
µν = Pµα [Παν(p)−Παν(0)]− p

2Pµν Π1(b
2) . (12)

Here b is again some arbitrary normalization point and Pµν = gµν−pµpνp
−2 is

the transversal projection operator. The function Πr
µν is finite and obviously

satisfies the transversality condition

pµΠ
r
µν(p) = 0 (13)

required by gauge invariance.
To complete the one-loop renormalization we have to consider the dia-

gram with four photon external lines. The differential WTI for the function
Πµνρσ(p, q, k) reads:

Πµνρσ(p, q, 0) = 0 . (14)

This equation is preserved in any gauge invariant regularization scheme. As
was discussed in the introduction the result obtained in any other regularization
scheme may differ by a polynomial. As Πµνρσ is presented by a logarithmi-
cally divergent integral in arbitrary scheme after removal of an intermediate
regularization Πµνρσ(p, q, 0) is a zero order polynomial (constant tensor).

We define the renormalized four-point function by the equation:

Πr
µνρσ(p, q, k) = Πµνρσ(p, q, k)−Πµνρσ(p, 0, 0) . (15)

As the function Πµνρσ diverges logarithmically, the renormalized function de-
fined by the Eq. (15) is obviously finite. The external momentum p serves as
the infrared regulator, so no infrared problems arise. It also satisfies WTI (14).
Locality of the procedure holds for the same reasons as above.

Renormalization of the Green functions according to Eqs. (6, 7, 12, 15)
is equivalent to introducing the following one-loop counterterms to the QED
Lagrangian:

Lr = −
z3

4
FµνFµν + iz2ψ̄(∂̂ −m)ψ

+ δm ψ̄ψ + ez1ψ̄γµψAµ + z4(AµAµ)
2 + δµA2

µ . (16)
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Here

1− z2 = Σ1(a
2); δm = −Σ2(m

2); (1− z1)γµ = Γµ(p, 0)− e∂µΣ
r(p);

1− z3 = Π1(b
2); δµ = −Π2(0); z4 = −

1

3
Π0000(p, 0, 0) . (17)

In an invariant regularization scheme

δµ = 0; z4 = 0; z1 = z2 . (18)

Assuming that the one loop counterterms are introduced according to
Eqs. (16, 17), we define the renormalized two loop functions by Eqs. (6, 7,
12, 15). The divergencies in subgraphs of the diagrams corresponding to these
functions are killed by the one-loop counterterms (16), therefore they may
diverge only superficially. Repeating literally the discussion given above, we
prove the locality and gauge invariance of our procedure at two-loop level.
Extension to higher loops is straightforward. To avoid misunderstanding I em-
phasize that our renormalization is formulated as the recursive substraction
procedure and does not require explicit introduction of counterterms. Equa-
tions (16-18) are presented to establish the connection with more conventional
approach.

3 Renormalization of Yang-Mills theory

In this section we apply the same idea to renormalization of Yang- Mills theory.
The two-point Green functions will be renormalized with the help of local sub-
tractions compatible with gauge invariance, and renormalized vertex functions
will be defined by means of nonlocal subtractions supplemented by addition of
explicitly known finite terms restoring the locality and gauge invariance.

In a covariant α-gauge the effective action of Yang-Mills theory looks as
follows

S =

∫

d4x

[

−
1

4
F a
µνF

a
µν +

1

2α
(∂µBµ)

2 ++c̄a∂µ(δ
ab∂µ − gt

abcBc
µ)c

b

]

. (19)

We want to define renormalized Green functions so that they satisfy automa-
tically ST identities. For the Yang-Mills self energy these identities reduce to
the condition of transversality . So the one-loop renormalized Yang-Mills field
self energy may be defined in the same way as in QED, by the Eq. (12).

Next identity relates the three point function for the Yang-Mills field with
the ghost-gauge interaction vertex and ghost and gauge fields propagators.
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It follows from the structure of ghost interaction vertex and Lorentz in-
variance, that the ghost field self energy has the form

Πab
G (p2) = δabp2Π(p2) . (20)

We renormalize it by making a subtraction at arbitrary infrared finite point

Πr(p2) = Π(p2)−Π(c2) . (21)

The ghost-gauge vertex also may be renormalized at will. It diverges
logarithmically, and it follows from the structure of interaction that the corre-
sponding local structure is proportional to tabckµ, where kµ is the ghost field
momentum. Therefore we can perform the renormalization by the following
prescription:

Γabc,rµ (k, p) = Γabcµ (k, p)− kµΓ
abc(b2) , (22)

Γabcµ (k, p)p=0 = kµΓ
abc(k2) . (23)

In this equation p stands for the gauge field momentum.
The subtractions (12, 21, 22) are equivalent to introducing to the La-

grangian the following counterterms

−
z2 − 1

4

(

∂µB
a
ν − ∂νB

a
µ

) (

∂µB
a
ν − ∂νB

a
µ

)

+(z̃2 − 1) c̄a 2 ca − (z̃1 − 1) g tacb c̄a ∂µ(B
c
µc

b) . (24)

Now we should define the renormalized three-point Yang-Mills field vertex,
shown in Fig. 1, in such a way it satisfies the ST identities. We firstly assume

µ pa

ρ c q

kbν

Figure 1: Three-point vertex function for Yang-Mills fields.

that some gauge invariant regularization is introduced. Then one can get in a
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usual way the following identity for renormalized correlators

i

α

〈

Ba
µ(x)B

b
ν(y)∂ρB

c
ρ(z)

〉r
= z̃2

〈

∂µc
a(x)c̄c(z)Bb

ν(y)
〉r

− z̃2 g̃ t
ade

〈

Bd
µ(x)c

e(x)c̄c(z)Bb
ν(y)

〉r
+ (x→ y, a→ b, µ→ ν) . (25)

Here the parameter g̃ is the effective coupling constant which enters the gauge
transformations in the renormalized theory

δBa
µ = ∂µα

a − g̃tabcBb
µα

c . (26)

I recall that in this derivation we assume that some gauge invariant regular-
ization is present, so that Eq. (25) and the following equations make sense.
However the final definition of the renormalized vertices will be regularization
independent.

Our definition of the renormalized three-point Yang-Mills vertex is based
on the identity (25). So we firstly transform the Eq. (25) to a more convenient
form. In this transformation we shall use the quantum equations of motoin for
the ghost field c. These equations look as follows

∫

[

2ca(x)− g̃taed∂µ(B
e
µ(x)c

d(x)) + z̃−1
2 ηa(x)

]

eiLR dBµdc̄dc = 0 . (27)

Differentiating this equation with respect to ηb(y) and Jcµ(z) we have
〈

2ca(x) c̄b(y)
〉r
− g̃ taed

〈

∂µ(B
e
µ(x)c

d(x)) c̄b(y)
〉r

+ z̃−1
2 δabδ(x− y) = 0 (28)

and
〈

2ca(x) c̄c(z)Bb
ν(y)

〉r
− g̃ taed

〈

∂µ(B
e
µ(x)c

d(x)) c̄c(z)Bb
ν(y)

〉r
= 0 (29)

Note that Eqs. (27, 28, 29) are valid also in the “partially renormalized”
theory, described by the Lagrangian, including the counterterms (24) (no coun-
terterms for three- and four-point gauge field vertices). It follows from the
Eq. (29) that the sum of the first two terms in the l.h.s. of identity (25) is
transversal with respect to differentiation over xµ and remaining terms are
transversal with respect to differentiation over yν . Using this observation we
can rewrite the identity (25) as follows. We firstly perform a Fourier transfor-
mation of Eq. (25). Then cutting the Yang-Mills field propagators correspond-
ing to the external lines of the three-point correlator at the l.h.s. of the Eq. (25)
and taking into account the transversality of Yang-Mills field self energy, we
can write for the proper vertex function Γabc,rµνρ (p, q) the following identity:

qρΓ
abc,r
µνρ (p, q)− q2

[

(G−1
tr )rµα(p)G

r(q)Γabc,rαν (p, q)

+(µ→ ν, a→ b, p→ −p− q)] = 0 . (30)
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In deriving this equation we used the transversality of the r.h.s. of Eq. (25)
discussed above, and replaced the inverse gauge field propagator Gµν by its
transversal part. After such projection the first term in the r.h.s. of Eq. (25),
which is longitudinal, does not contribute. In this equation

δab(G−1
tr )rµν = Pµα(G

−1)ab,rαν ,

δabGr(p) = Gab,r(p) , (31)

Gab,r(p) is the renormalized ghost field propagator. The function Γabc,rµν (p, q)
is the Fourier transform of the expectation value of the composite operator

Γ̃abc,rµν = (G−1)rνα(y)(G
−1)r(z)

〈

z̃2g̃t
aedBe

µ(x)c
d(x)c̄c(z)Bb

ν(y)
〉r
. (32)

Differentiating the equality (30) with respect to qρ and putting q = 0 we get
the differential identity, which will be used for the definition of renormalized
three-point Yang-Mills field vertex

Γabc,rµνρ (p, 0)−
∂

∂qρ

[

q2(G−1
tr )rµα(p)G

r(q)Γabc,rαν (p, q)

+(µ→ ν, a→ b, p→ −p− q)
]

q=0
= 0 . (33)

The renormalized proper vertex function for gauge fields is defined by the
equation

Γabc,rµνρ (p, q) = Γabcµνρ(p, q)−
{

Γabcµνρ(p, 0) + Γabcµνρ(0, q) (34)

−
∂

∂qρ

[

q2(G−1
tr )rµα(p)G

r(q)Γabc,rαν (p, q) + (ν → µ, a→ b, p→ −p− q)
]

q=0

−
∂

∂pµ
[p2(G−1

tr )rρβ(q)G
r(p)Γcba,rβν (q, p) + (ν → ρ, c→ b, q → −p− q)]p=0

}

.

The divergent part of Γabcµνρ(p, q) is the first order polynomial in p, q. There-
fore the sum of the three first terms in the r.h.s. of Eq. (34) is finite. Below we
shall prove that the remaining terms in the r.h.s. of Eq. (34) are also finite.

As it was mentioned above the r.h.s. of Eq. (34) includes the expectation
value of the composite operator Γabcµν . So we have to prove that the countert-
erms (24) make it finite. In this proof we again shall use the quantum equations
of motion for gauge fields (27, 28, 29). The function Γ̃µν may be separated
into one particle reducible and irreducible parts as follows (see Fig. 2):

Γ̃abc,rµν (x, y, z) =

∫

G̃ad
µ (x− x′)Γ̃dbc,rν (x′, y, z)dx′ + (Γ̃ir)abcµν (x, y, z) . (35)
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q q

kk
pp

G Γ Γµ ν µν
ir

Figure 2: Decomposition of Γµν into one-particle reducible and irreducible parts.

Here Γ̃irµν denotes the strongly connected part of Γ̃µν , and Γrν is the renormal-
ized ghost-gauge field vertex. Finally

G̃ab
µ (x− x′) =

〈

z̃2g̃t
aedBe

µ(x)c
d(x)c̄b(x′)

〉

. (36)

By virtue of Lorentz invariance Gab
µ (p) is proportional to pµ. Then the Eq. (28)

gives

Gab
µ (p) = z̃2pµG

ab(p) + δabpµp
−2 (37)

Substituting the decomposition (35, 37) into Eq. (29) we get

Γabc,rν (p, q) + ipµ(Γ
ir)abcµν (p, q) = 0 (38)

This equation shows that the function pµ(Γ
ir)abcµν is finite. As the corresponding

integral diverges logarithmically, Lorentz invariance implies that (Γir)abcµν (p, q)
is also finite. The Eq. (38) expresses the well known fact, firstly established
in Ref. 3, that renormalization of the composite operator (32) is related to the
renormalization of the ghost-gauge field vertex. It can be taken as a definition
of the renormalized composite operator (32) in terms of the renormalized ghost-
gauge field vertex, or vice versa.

The function Γabcµν (p, q) enters into Eq. (34) being multiplied by the trans-
verse projector. As the Eqs. (35-37) show the reducible part of Γµν is longitu-
dinal and hence only irreducible part of Γµν contributes to Eq. (34). It proves
the finiteness of the r.h.s. of Eq. (34). Therefore the Eq. (34) indeed defines the
finite function Γabc,rµνρ (p, q) which does not depend on a particular regularization
scheme used for its calculation provided this regularization satisfies the natural
conditiona formulated earlier.

Now we shall prove that the definition (34) corresponds to subtraction
from Γabcµνρ(p, q) a local polynomial and that Γabc,rµνρ (p, q) satisfies ST identities.

In arbitrary regularization preserving a global symmetry of the model the
divergent part of the three point vertex has the following structure

i(z1 − 1)tabc [(p− k)ρgµν + (k − q)µgνρ + (q − p)νgµρ] . (39)
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Having this in mind we rewrite the sum of the three first terms in the r.h.s. of
Eq. (34) in the form

(

Γabcµνρ(p, q) + i(z1 − 1)tabc[(p− k)ρgµν + (k − q)µgνρ + (q − p)νgµρ]
)

−
(

Γabcµνρ(p, 0) + i(z1 − 1)tabc[2pρgµν − pµgνρ − pνgµρ]
)

−
(

Γabcµνρ(0, q) + i(z1 − 1)tabc[qρgµν − 2qµgνρ + qνgµρ]
)

. (40)

The constant z1 is defined by the condition

Γabcµνρ(p, 0) + i(z1 − 1)tabc(2pρgµν − pµgνρ − pνgµρ) (41)

−
∂

∂qρ

{

q2(G−1
tr )rµα(p)G

r(q)Γabc,rαν + (µ→ ν, a→ b, p→ −p− q)
}

q=0
= 0 .

Equation (41) is nothing but the differential STI, hence in any anomaly free
model in the limit when intermediate regularization is removed it may be sat-
isfied for a proper choice of z1. After such transformation the expression in the
curly bracketts in the r.h.s. of Eq. (34) vanishes in the limit when intermediate
regularization is removed and we get

Γabc,rµνρ (p, q) = Γabcµνρ(p, q)

+ i(z1 − 1)tabc[(p− k)ρgµν + (k − q)µgνρ + (q − p)νgµρ] . (42)

So we proved that in the limit when intermediate regularization is removed
our renormalization procedure coincides with the usual local subtraction. The
validity of STI is obvious.

The last one-loop diagram to be analyzed is the proper four-point Yang-
Mills vertex. It can be analyzed in exact analogy with the three point function.
However it also can be done in an easier way, which does not require the analysis
of composite operators. Below we present the corresponding construction.

In any regularization this function has the following structure

Πabcd
µνρσ(p, q, k) = P

[

Atabetcdegµρgνσ +Bδabδcdgµνgρσ
]

+O(p, q, k) . (43)

Here P is the symmetrization operator with respect to the pairs
(a, µ; b, ν; c, ρ; d, σ), A and B are some (divergent when regularization is re-
moved) constants, O(p, q, k) is a finite function.

It follows from Eq. (43) that

B =
1

3
p−4pµpνpρpσΠ

aaaa
µνρσ(p, 0, 0) +O1 (44)
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(no summation over a),

A =
1

3Np2
Pνρ(p)pµpσΠ

abab
µνρσ(p, 0, 0) +O2 (45)

(no summation over a, and a 6= b). Here N =
∑

b,e t
abetabe, Pµν is the

transversal projector operator and O1, O2 are some finite functions.
We define the renormalized four-point function as follows:

Πabcd,r
µνρσ (p, q, k) = Πabcd

µνρσ(p, q, k)

−P (tabetcdegµρgνσ)(3Np
2)−1Pβγ(p)p

αpδ(Πcon)
mnmn
αβγδ (p, 0, 0)

−P (gµνgσρδ
abδcd)3−1p−4pαpβpγpδ(Πcon)

mnmn
αβγδ (p, 0, 0) . (46)

Note that the subtracted terms at the r.h.s. of this equation include the func-
tions Πcon(p, 0, 0) which represent all connected one loop diagrams with four
external gauge field lines. They include apart from the proper four-point ver-
tex also weakly connected diagrams shown at Fig. 3. The divergent subgraphs
in these diagrams are assumed to be renormalized as described above and do
not introduce either ultraviolet or infrared singularities.

Figure 3: Weakly connected diagrams contributing to the l.h.s. of Eq. (46).

By virtue of Eqs. (44, 45) the renormalized function Πabcd,r
µνρσ (p, q, k) defined

by the Eq. (46) is finite.
To prove the locality and gauge invariance we use again differential STI.

The differential STI for the four point function imply the relation
〈

∂µB
a
µ(x)∂νB

b
ν(y)∂ρB

c
ρ(z)∂σB

d
σ(u)

〉

= δ(x− u)δ(y − z)δadδbc + ({x, a} → {y, b}) + ({x, a} → {z, c}) . (47)

This equation shows that the connected part of the correlator (47) is equal to
zero. The corresponding differential identity for the Fourier transform of the
four point vertex looks as follows

pµpν(Π
r
con)

abcd
µνρσ(p, 0, 0) = 0 . (48)

Let us replace all the functions Πabcd
µνρσ at the r.h.s. of Eq. (46) by the

functions renormalized with the help of local subtractions

Πabcd
µνρσ → Πabcd

µνρσ+(z4− 1)P (tabetcdegµνgρσ)+ (z̃4− 1)P
(

gµνgρσδ
abδcd

)

. (49)
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The constants z4 and z̃4 are defined by the condition that in the limit when
a regularization is removed the functions (49) satisfied the differential identity
(48). It is always possible in an anomaly free model. Such a substitution does
not change the Eq. (46) as the terms ∼ (z4 − 1) and ∼ (z̃4 − 1) in the first
the second and the third lines cancel. We see that the function renormalized
according to our prescription in the limit when a regularization is removed
coincides with the corresponding function renormalized with the help of local
subtractions. The differential STI are fullfilled by construction.

Extension to the higher loops is done exactly as in the case of QED. Intro-
ducing the one-loop counterterms we are left with the two-loop diagrams which
diverge only superficially. Using the standard R-operation we can define the
renormalized two- and higher loop correlation functions by the same equations
as above. They are obviously finite. The proof of locality is identical to the
one loop-case.

4 A model with chiral fermions

As the last example we consider a simple model which includes chiral fermions.
We choose the Abelian sector of Salam-Weinberg model with the Higgs interac-
tion switched off. This model is known to be anomaly free but not a vectorlike
one.

The Lagrangian looks as follows:

L = −
1

4
(∂µBν − ∂νBµ)

2 + i
∑

q±

ψ̄q±γµ(∂µ − igq±Bµ)ψq±

+ i
∑

l±

ψ̄l±γµ(∂µ − igl±Bµ)ψl± . (50)

Here ψq± and ψl± represent left (right) handed fields of quarks and leptons
respectively. The corresponding charges are denoted by gq± and gl±. Due to
the condition

∑

q±

g3
q± +

∑

l±

g3
l± = 0 (51)

the triangle anomaly is absent.

Renormalized gauge field and fermion propagators are defined by the
Eqs. (6, 12) of Sec. 2. The renormalized gauge field-fermion vertices are de-
fined as in Eq. (7),

Γµ,rq±,l± = Γµq±,l±(p, q)− Γµq±,l±(p, 0) + gq±,l±∂µΣ
r
q±,l±(p) . (52)
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The four-point gauge field correlator can be renormalized according to Eq. (15),
but in this case the subtracted term has to include all connected diagrams with
four external gauge field lines.

The only essentially new moment is a possible renormalization of the three-
point gauge field vertex. In QED it is zero due to Furry theorem, but in our
case it does not vanish.

WTI for this function have the same form as for the four-point function

pµΓµνρ(p, q) = 0; Γµνρ(0, q) = 0 . (53)

Accordingly we choose the following definition of renormalized vertex function

Γrµνρ(p, q) = Γµνρ(p, q)− Γµνρ(p, 0)− Γµνρ(0, q) . (54)

This function is finite and can be calculated in any regularization scheme. In
a gauge invariant scheme one has due to WTI (53)

Γrµνρ(p, q) = Γinvµνρ(p, q) . (55)

5 Discussion

The renormalization procedure presented above combines the advantages of
algebraic renormalization and invariant regularization schemes. It is regular-
ization independent and may be applied to any anomaly free model. At the
same time it preserves gauge invariance at all stages and does not require ad-
ditional fine tuning of counterterms to restore the symmetry. It also avoids
the problem of infrared singularities in renormalization of Green functions.

From the point of view of practical calculations it may be more complicated
than dimensional regularization if one is interested only in some particular
diagram. Our procedure is recurrent and it requires knowleadge of lower order
diagrams for some particular configurations of external momenta. However
it seems well suited for systematic calculation of Feynman diagrams up to a
given order. It is important to emphasise that our renormalization procedure
may be applied directly to the models where dimensional regularization fails,
in particular to the Standard Model and supersymmetric theories.

It is worth to mention that to make practical calculations easier one can
combine our renormalization procedure with the dimensional regularization.
For example in chiral fermion models one may define5,6 the γ5 matrix as the
product γ5 = γ0γ1γ2γ3, and then apply the dimensional regularization. For
diagrams with virtual fermion lines this definition is known to break chiral
invariance. However the symmetry may be easily restored with the help of
subtractions described above.
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It is worth to stress that our renormalization is defined as the subtraction
procedure using the combinatorics of the standard R-operation. It does not
require explicit calculation of counterterms. The expressions for counterterms
presented in the paper serve the goal to establish the connection with more
standard approaches and to facilitate the proofs.
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