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Lu18 showed that any dynamical r-matrix for the pair (g, u) naturally induces
a Poisson homogeneous structure on G/U . She also proved that if g is complex
simple, u is its Cartan subalgebra and r is quasitriangular, then this correspondence
is in fact 1–1. In the present paper we find some general conditions under which
the Lu correspondence is 1–1. Then we apply this result to describe all triangular
Poisson homogeneous structures on G/U for a simple complex group G and its
reductive subgroup U containing a Cartan subgroup.
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Foreword by Alexander Stolin

I met Misha Marinov at the Max Born Symposium in Poland in 1996, where
Misha presented a group-theoretical approach to construction of dynamical
systems.19 His construction was based on a homogeneous space M = G/K
equipped with a Kähler structure. We immediately realized that the con-
struction is related to some solution of the classical Yang-Baxter equation and
Misha’s quantization of this Kähler structure leads to a solution of the quantum
Yang-Baxter equation.

Interplay between physics and geometry interested Misha for a long
time.1,20 We planned further development of ideas about connections between
geometry of homogeneous spaces and the Yang-Baxter equation. Unfortu-
nately Misha’s unexpected death stopped our plans.

1 Introduction

The notion of a Poisson-Lie group was introduced almost 20 years ago by
Drinfeld.5 Its infinitesimal counterpart, Lie bialgebras, were introduced in the
same paper and later it was explained that these objects are in fact quasiclas-
sical limits of quantum groups.6 Lie bialgebra structures on a Lie algebra g

are in a natural 1–1 correspondence with Lie algebra structures on the vector
space D(g) = g ⊕ g∗ with some compatibility conditions. D(g) with this Lie
algebra structure is called the double of the Lie bialgebra g.

The most popular and important class of Lie bialgebras is the class of
quasitriangular Lie bialgebras.6 They can be defined by an element r ∈ g ⊗ g

(called the classical r-matrix) such that

Ω := r + r21

is g-invariant, and the classical Yang-Baxter equation (CYBE)

[r12, r13] + [r12, r23] + [r13, r23] = 0

is satisfied. If r is skew-symmetric, then one says that the corresponding Lie
bialgebra is triangular. In general, Λ := r − Ω

2 (i.e., the skew-symmetric part
of r) satisfies the modified CYBE

[Λ12,Λ13] + [Λ12,Λ23] + [Λ13,Λ23] =
1

4
[Ω12,Ω23].

It is well known (and can be easily shown) that if g is a complex simple
finite-dimensional Lie algebra, then any Lie bialgebra structure on g is quasi-
triangular. For the case Ω 6= 0 (“quasitriangular case in the strict sense”) they
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were classified by Belavin and Drinfeld.2,3 The triangular case was studied by
Stolin.22,23,24

It was shown25 that for such g there are only two possible structures of the
D(g). In the triangular case D(g) = g[ε] = g⊕gε, where ε2 = 0 and otherwise,
D(g) = g×g (and g is embedded diagonally into g×g). Then it is clear that
solutions of the CYBE (resp. the modified CYBE with Ω 6= 0) are in a 1–1
correspondence with Lagrangian subalgebras l in g[ε] (resp. in g×g) such that
l ∩ g = 0.

Along with the Poisson-Lie groups it is natural to study their Poisson
actions, and in particular their Poisson homogeneous spaces. Drinfeld8 gave a
general approach to the classification of Poisson homogeneous spaces. Namely,
he showed that if G is a Poisson-Lie group, g is the corresponding Lie bialgebra,
then Poisson homogeneous G-spaces are essentially in a 1–1 correspondence
with G-orbits on the set of all Lagrangian subalgebras in D(g). A classification
of Lagrangian subalgebras in some important cases (including the case g is
complex simple, D(g) = g×g) was obtained by Karolinsky.15,16,17

At the same time an important generalization of the CYBE, the dynamical
classical Yang-Baxter equation, was introduced in physics and mathematics.
Notice that this equation is defined for a pair (g, u), where u is a subalgebra of
g. From the mathematical point of view it was presented by Felder.12,13 This
equation and its quantum analogue were studied in many papers.9,11,21,26 First
classification results for the solutions of the classical dynamical Yang-Baxter
equation (dynamical r-matrices) were obtained by Etingof and Varchenko,11

and Schiffmann.21

Later Lu18 found a connection (which is essentially a 1–1 correspondence)
between dynamical r-matrices for the pair (g, u) (where u is a Cartan subalge-
bra of the complex simple finite-dimensional algebra g), and Poisson homoge-
neous G-structures on G/U . Here U ⊂ G are connected Lie groups correspond-
ing to u ⊂ g, and G is equipped with the standard quasitriangular (with Ω 6= 0)
Poisson-Lie structure. Lu also noticed that this connection can be generalized
to the case u is a subspace in a Cartan subalgebra (with some “regularity”
condition). The dynamical r-matrices for the latter case were classified by
Schiffmann.21

Now let G be a complex connected semisimple Lie group, and let U be
its connected subgroup. Suppose u ⊂ g are the corresponding Lie algebras.
In the present paper we consider connections between Poisson homogeneous
structures on G/U related to the triangular Poisson-Lie structures on G (i.e.,
with Ω = 0), where U is a reductive subgroup containing a Cartan subgroup
of G, and triangular dynamical r-matrices for the pair (g, u).

In fact, our results are based on a general result on relations between dy-



Classical dynamical r-matrices 255

namical classical r-matrices and Poisson homogeneous structures (see Theorem
12), which is valid also in the quasitriangular case. Notice that the results of
Sections 2 and 3 can be used to describe a 1–1 correspondence between dy-
namical r-matrices for the pair (g, u), where u ⊂ g is a Cartan subalgebra, and
Poisson homogeneous G-structures on G/U , where G is equipped with any
quasitriangular (with Ω 6= 0) Poisson-Lie structure (of course the latter result
is due to Lu). Our approach is based on some strong classification results for
dynamical r-matrices given recently by Etingof and Schiffmann.10

The paper is organized as follows. In Section 2 we describe a correspon-
dence between the (moduli space of) dynamical r-matrices for a pair (g, u)
and Poisson homogeneous G-structures on G/U proving that under certain
assumptions it is a bijection. In Section 3 we consider a procedure of twisting
for Lie bialgebras and examine its impact on the double D(g) and Poisson
homogeneous spaces for corresponding Poisson-Lie groups. Then we use the
twisting to weaken some restrictions needed in Section 2. Finally, in Section
4 we consider the basic example of our paper: g is semisimple, u ⊂ g is a
reductive Lie subalgebra that contains some Cartan subalgebra of g, and the
Lie bialgebra structure on g is triangular (i.e., D(g) = g[ε]).

2 Classical dynamical r-matrices and Poisson homogeneous spaces

In this section we assume g to be any finite-dimensional Lie algebra over C.
Let G be a connected Lie group such that LieG = g. Let u ⊂ g be a Lie
subalgebra (not necessary abelian). By U denote the connected subgroup in
G such that LieU = u. We propose (under certain conditions) a connection
between dynamical r-matrices for the pair (g, u) and Poisson structures on
G/U that make G/U a Poisson homogeneous G-space (for certain Poisson-Lie
structures on G). Note that this connection was first introduced by Jiang-Hua
Lu18 for the case g is simple, u is a Cartan subalgebra, and the dynamical
r-matrix has non-zero coupling constant.

In order to recall the definition of the classical dynamical r-matrix we
need some notation. Let x1, ..., xr be a basis of u. By D denote the formal
neighborhood of 0 in u∗. By functions from D to a vector space V we mean the
elements of the space V [[x1, ..., xr]], where xi are regarded as coordinates on
D. If ω ∈ Ωk(D,V ) is a k-form with values in a vector space V , we denote by
ω : D → ∧ku⊗V the corresponding function. Finally, for an element r ∈ g⊗g

we define the classical Yang-Baxter operator

CYB(r) = [r12, r13] + [r12, r23] + [r13, r23].

Recall that a classical dynamical r-matrix for the pair (g, u) is an u-
equivariant function r : D → g⊗ g that satisfies the classical dynamical Yang-
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Baxter equation (CDYBE):

Alt(dr) + CYB(r) = 0, (1)

where for x ∈ g⊗3, we let Alt(x) = x123 + x231 + x312 (see Etingof and
Schiffmann,9,10 Etingof and Varchenko11). Usually one requires also an ad-
ditional quasi-unitarity condition:

r + r21 = Ω ∈ (S2g)g.

Note that if r satisfies the CDYBE and the quasi-unitarity condition then Ω
is a constant function.

Suppose Ω ∈ (S2g)g. Let us denote by Dynr(g, u,Ω) the set of all classical
dynamical r-matrices r for the pair (g, u) such that r + r21 = Ω.

Denote by Map(D,G)u the set of all regular u-equivariant maps from D
to G. Suppose g ∈Map(D,G)u. For any u-equivariant function r : D → g⊗g

set
rg = (Adg ⊗Adg)(r − ηg + ηg

21 + τg),

where ηg = g−1dg, and τg(λ) = (λ ⊗ 1 ⊗ 1)([ηg
12, ηg

13](λ)). Then r
is a classical dynamical r-matrix iff rg is (see Etingof and Schiffmann10).
The transformation r 7→ rg is called a gauge transformation. It is in-
deed an action of the group Map(D,G)u on Dynr(g, u,Ω) (i.e., (rg1)g2 =
rg2g1). Following Etingof and Schiffmann10 denote by M(g, u,Ω) the moduli
space Map0(D,G)u\Dynr(g, u,Ω), where Map0(D,G)u is the subgroup in
Map(D,G)u consisting of maps g satisfying g(0) = e.

In what follows we need some notation. Suppose a ∈ g⊗k. By −→a (resp.
←−a ) denote the left (resp. right) invariant tensor field on G corresponding to a.

Suppose ρ ∈ g ⊗ g satisfies the classical Yang-Baxter equation (CYBE),
i.e., CYB(ρ) = 0. Assume also that ρ + ρ21 = Ω (i.e., ρ = Ω

2 + Λ, where

Λ ∈ ∧2g). Introduce a bivector field πρ = −→ρ −←−ρ =
−→
Λ −

←−
Λ on G. It is well

known that (G, πρ) is a Poisson-Lie group.
Now let r ∈ Dynr(g, u,Ω). We have r = Ω

2 + A, where A ∈ ∧2g. Set

π̃r :=
−−→
r(0) −←−ρ =

−−→
A(0) −

←−
Λ . Consider a bivector field πr on G/U defined by

πr
(

g
)

= p∗π̃r(g), where p : G→ G/U is the natural projection, and g = p(g).
Note that πr is well defined since r(0) ∈ (g⊗ g)u.

The following proposition belongs to Jiang-Hua Lu18 (note that it is stated
there for the case g is simple, u is a Cartan subalgebra, but the proof fits the
general case).

Proposition 1. The bivector field πr is Poisson, and (G/U, πr) is a Poisson
homogeneous (G, πρ)-space. ¤
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Proposition 2. Suppose g ∈Map0(D,G)u. Then πr = πrg .

Proof. Since (G/U, πr) is a Poisson homogeneous (G, πρ)-space, we see that πr
depends only on πr(e) = the image of r(0) − ρ in ∧2(g/u). Thus it is enough
to note that rg(0)− r(0) ∈ u⊗ g + g⊗ u. ¤

Corollary 3. The correspondence r 7→ πr defines a map from M(g, u,Ω) to
the set of all Poisson (G, πρ)-homogeneous structures on G/U . ¤

Suppose now that the following conditions hold:

(a) u has an u-invariant complement m in g (we fix one).

(b) Ω ∈ (u⊗ u)⊕ (m⊗m).

(c) ρ ∈ Ω
2 + (∧2m)u.

Theorem 4. Under the assumptions above the correspondence r 7→ πr is a
bijection between M(g, u,Ω) and the set of all Poisson (G, πρ)-homogeneous
structures on G/U .

The rest of this section is devoted to the proof of Theorem 4. First we
recall some results belonging to Etingof and Schiffmann.10 Assume that (a)
holds. Set

MΩ =

{

x ∈
Ω

2
+ (∧2m)u

∣

∣

∣
CYB(x) = 0 in ∧3 (g/u)

}

.

Theorem 5 (Etingof, Schiffmann10). 1. Any class C ∈ M(g, u,Ω) has a
representative r ∈ C such that r(0) ∈MΩ. Moreover, this defines an embedding
M(g, u,Ω)→MΩ.

2. Assume that (b) holds. Then the mapM(g, u,Ω)→MΩ defined above
is a bijection. ¤

Now suppose b ∈ (∧2(g/u))u = (∧2m)u. Set π
(

g
)

= (Lg)∗b + p∗πρ(g).
Since ρ is u-invariant, we see that πρ(g) = 0 for g ∈ U ; therefore π is a
well-defined bivector field on G/U .

Proposition 6. The bivector field π is Poisson iff CYB(ρ+b) = 0 in ∧3(g/u).

Proof. Set a = Λ+b. Define a bivector field π̃ on G by the formula π̃ = −→a −
←−
Λ .

Note that π̃ =
−→
b + πρ, therefore π = p∗π̃. Let us normalize the Schouten
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bracket of the bivector fields on G in a way that [−→x ,−→x ] =
−−−−−→
CYB(x) for all

x ∈ ∧2g. Then we have

[π̃, π̃] = [−→a ,−→a ]− 2[−→a ,
←−
Λ ] + [

←−
Λ ,
←−
Λ ] =

−−−−−→
CYB(a)−

←−−−−−
CYB(Λ).

Since ρ = Ω
2 + Λ satisfies the CYBE, we see that CYB(Λ) = 1

4 [Ω
12,Ω23] ∈

(∧3g)g. Thus

[π̃, π̃] =

−−−−−−−−−−−−−−−−→

CYB(a)−
1

4
[Ω12,Ω23] =

−−−−−−−−−−→

CYB

(

Ω

2
+ a

)

=
−−−−−−−−→
CYB(ρ+ b).

To finish the proof it is enough to note that [π, π] = p∗[π̃, π̃]. ¤

Proof of Theorem 4. Let us construct the inverse map. Suppose (G/U, π) is
a Poisson homogeneous (G, πρ)-space. Set b = π(e) ∈ ∧2(g/u) = ∧2m. The
condition (c) implies that in fact b ∈ (∧2(g/u))u = (∧2m)u. Furthermore, (c)
yields that ρ+ b ∈ Ω

2 + (∧2m)u. By Proposition 6, we have CYB(ρ+ b) = 0 in
∧3(g/u), i.e., ρ+ b ∈MΩ. Then, by Theorem 5, there exists r ∈ Dynr(g, u,Ω)
such that r(0) = ρ+b, and the image of r inM(g, u,Ω) is uniquely determined.
It is now easy to verify that π = πr. ¤

3 Twisting of Poisson homogeneous structures

Assume again that g is an arbitrary finite-dimensional Lie algebra over C.
Recall that a Lie bialgebra structure on g is a 1-cocycle δ : g → ∧2g which
satisfies the co-Jacobi identity. Denote by D(g, δ) the classical double of (g, δ).

We say that two Lie bialgebra structures δ1, δ2 on g are in the same
class if there exists a Lie algebra isomorphism f : D(g, δ1) → D(g, δ2) which
intertwines the canonical forms Qi on D(g, δi), and such that the following
diagram is commutative:

g //

""F

F

F

F

F

F

F

F

F

D(g, δ1)

f

²²

D(g, δ2).

Theorem 7. Two Lie bialgebra structures δ, δ′ on g are in the same class if
and only if δ′ = δ + ds, where s ∈ ∧2g and

CYB(s) = Alt(δ ⊗ id)(s). (2)
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Proof. Let us consider D(g, δ) = g⊕g∗. Notice that Lie bialgebra structures on
g that are in the same class with δ are in a 1–1 correspondence with Lagrangian
subalgebras l ⊂ D(g, δ) such that l ∩ g = 0.

Any s =
∑

i s
′
i ⊗ s′′i ∈ ∧

2g defines a linear map S : g∗ → g, S(l) =
∑

i〈l, s
′
i〉s
′′
i . Let l ⊂ D(g, δ) be the graph of S. Clearly, l ∩ g = 0, and l is a

Lagrangian subspace because s is skew-symmetric.
It is easy to verify that for any l1, l2, l3 ∈ g∗,

〈l1 ⊗ l2 ⊗ l3,CYB(s)−Alt(δ ⊗ id)(s)〉 = Q([l1 + S(l1), l2 + S(l2)], l3 + S(l3)),

where 〈· , ·〉 is the canonical pairing, and Q is the canonical bilinear form on
D(g, δ). Therefore l is a subalgebra if and only if (2) holds.

Suppose s ∈ ∧2g satisfies (2). Let δ′ be the Lie bialgebra structure on g

defined by s. It is straightforward to verify that δ′ = δ + ds. This completes
the proof of the theorem. ¤

Remark 8. If we consider our Lie bialgebra (g, δ) as a Lie quasibialgebra,
then (g, δ + ds) is called “twisting via s”. The notions of Lie quasibialgebra
and twisting via s was introduced by Drinfeld.7 The theorem above can be also
deduced from the general results on Lie quasibialgebras (see Drinfeld7).

Further, we are going to examine the effect of the twisting on Poisson
homogeneous spaces. First we recall some definitions and rather well-known
results.

Let G be a connected complex Poisson-Lie group, (g, δ) its Lie bialgebra,
and D(g) = D(g, δ) the corresponding classical double of g with the canonical
invariant form Q.

Recall that an action of G on a Poisson manifold M is called Poisson if
the defining map G ×M → M is a Poisson map, where G ×M is equipped
with the product Poisson structure. If the action is transitive, we say that M
is a Poisson homogeneous G-space.

Let M be a homogeneous G-space, and let π be any bivector field on M .
For any x ∈M let us consider the map

πx : T ∗xM → TxM, πx(l) = (l ⊗ id)(π(x)).

On the other hand, M ∼= G/Hx and TxM = g/hx, T
∗
xM = (g/hx)

∗ = h⊥x ⊂ g∗,
where Hx is the stabilizer of x, and hx = LieHx. Therefore we can consider
πx as a map πx : h⊥x → g/hx.

Now let us consider the following set of subspaces in D(g) = g⊕ g∗:

lx = {a+ l | a ∈ g, l ∈ h⊥x , πx(l) = a}, (3)
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where a is the image of a in g/hx. Observe that lx are Lagrangian subspaces,
and lx ∩ g = hx. The following result was obtained by Drinfeld.8

Theorem 9 (Drinfeld8). (M,π) is a Poisson homogeneous G-space if and
only if for any x ∈M the subspace lx is a subalgebra of D(g), and lgx = Adglx
for all g ∈ G. ¤

Now set δ′ = δ+ds, where s ∈ ∧2g satisfies (2). Then we have two Poisson-
Lie groups, (G, πδ) and (G, πδ′), whose Lie bialgebras are (g, δ) and (g, δ′)
respectively. Let (M,π) be a Poisson homogeneous (G, πδ)-space. Consider
a bivector field ξ on M defined by the formula ξ(x) = the image of s in
∧2(g/hx) = ∧

2TxM . Set π′ = π − ξ.

Proposition 10. (M,π′) is a Poisson homogeneous (G, πδ′)-space, and thus
one obtains a bijection between the sets of all Poisson (G, πδ)- and (G, πδ′)-
homogeneous structures on M .

Proof. Theorem 7 allows one to identify D(g, δ) and D(g, δ′). It is easy to verify
that under this identification the sets of Lagrangian subspaces that correspond
to (M,π) and (M,π′) are the same. This completes the proof, according to
Theorem 9. ¤

Finally, we are going to generalize the main result of the previous section
to the twisted case. Assume that (g, δ) is a quasitriangular Lie bialgebra, i.e.,
δ = dρ, where ρ ∈ g⊗g and CYB(ρ) = 0. It is easy to verify that the condition
(2) for an element s ∈ ∧2g is equivalent to

CYB(s) + [[ρ, s]] + [[s, ρ]] = 0, (4)

where for a, b ∈ g⊗2 we set [[a, b]] = [a12, b13] + [a12, b23] + [a13, b23] ∈ g⊗3 (i.e.,
CYB(a) = [[a, a]]).

Fix Ω ∈ (S2g)g and assume that ρ ∈ Ω
2 + ∧2g. As before, consider the

Poisson-Lie group (G, πδ), where πδ = πρ = −→ρ −←−ρ . Suppose s ∈ ∧2g satisfies

(4). Set δ′ = δ + ds = d(ρ+ s); then πδ′ = πρ,s :=
−−−→
ρ+ s−

←−−−
ρ+ s, and (G, πρ,s)

is a Poisson-Lie group.
Let U be a connected Lie subgroup in G, and u = LieU . Consider

r ∈ Dynr(g, u,Ω). As usually, set π̃r =
−−→
r(0) − ←−ρ and denote by πr the

natural projection of π̃r on G/U . By Proposition 1, (G/U, πr) is a Poisson

homogeneous (G, πρ)-space. Set also π̃r,s = π̃r −
←−s =

−−→
r(0)−

←−−−
ρ+ s and denote

by πr,s its projection on G/U . According to Proposition 10, (G/U, πr,s) is a
Poisson homogeneous (G, πρ,s)-space.

Moreover, if we combine Theorem 4 and Proposition 10, we get the follow-
ing
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Theorem 11. Assume that u, Ω, and ρ satisfy the conditions (a), (b), and
(c) from the previous section. Then the correspondence r 7→ πr,s is a bijection
betweenM(g, u,Ω) and the set of all Poisson (G, πρ,s)-homogeneous structures
on G/U . ¤

Clearly, this can be reformulated as follows:

Theorem 12. Assume that u and Ω satisfy the conditions (a) and (b) from
the previous section. Suppose also that there exists s ∈ ∧2g such that (4) holds,
and ρ+s ∈ Ω

2 +(∧2m)u. Then the correspondence r 7→ πr is a bijection between
M(g, u,Ω) and the set of all Poisson (G, πρ)-homogeneous structures on G/U .
¤

Let us apply our previous results to the triangular case.

Corollary 13. Assume that u satisfies the condition (a) from the previous
section. Set Ω = 0. Consider any ρ ∈ ∧2g that satisfies the CYBE. Then
the correspondence r 7→ πr is a bijection between M(g, u,Ω) and the set of all
Poisson (G, πρ)-homogeneous structures on G/U .

Proof. Set s = −ρ and apply Theorem 12. ¤

4 Poisson homogeneous structures in the triangular case

Now assume that g is semisimple. Fix a Cartan subalgebra h ⊂ g and denote
by R the corresponding root system. In this section we apply the results of
the previous sections to the case u is a reductive Lie subalgebra in g containing
h, Ω = 0, and ρ ∈ ∧2g such that CYB(ρ) = 0.

To be more precise, consider U ⊂ R, and suppose u = h ⊕ (
⊕

α∈U
gα) is

a reductive Lie subalgebra in g. If this is the case, then we say that a subset
U ⊂ R is reductive (i.e., (U +U) ∩R ⊂ U and −U = U; see Gorbatsevich,
Onishchik, and Vinberg14). Condition (a) is satisfied since m =

⊕

α∈R\U gα is
an u-invariant complement to u in g.

Applying Corollary 13 (and results of Etingof and Schiffmann cited in
Section 2), we get:

1. Any structure of a Poisson homogeneous (G, πρ)-space on G/U is of the
form p∗(

−→x −←−ρ ), where x ∈MΩ.

2. If x ∈ MΩ, then there exists (a unique up to the Map0(D,G)u-action)
r ∈ Dynr(g, u,Ω) such that r(0) = x.
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Let us now describeMΩ and thus get an explicit description of all Poisson
(G, πρ)-homogeneous structures on G/U . Recall that in our case by definition

MΩ =
{

x ∈ (∧2m)u
∣

∣

∣
CYB(x) = 0 in ∧3 (g/u)

}

.

We need to fix some notation. Fix a nondegenerate invariant bilinear form
(invariant scalar product) 〈· , ·〉 on g. For any α ∈ R choose Eα ∈ gα such that
〈Eα, E−α〉 = 1. Further, suppose N is a reductive subset which contains U.
We say that h ∈ h is (N,U)-regular if α(h) = 0 for all α ∈ U, and α(h) 6= 0
for all α ∈ N \U.

Proposition 14. x ∈MΩ iff

x = xN, h =
∑

α∈N\U

1

α(h)
Eα ⊗ E−α, (5)

where N is a reductive subset in R containing U, and h ∈ h is (N,U)-regular.

Proof. One can easily prove the following lemmas:

Lemma 15. x ∈ (∧2m)u iff

x =
∑

α∈R\U

xα · Eα ⊗ E−α,

where x−α = −xα, and for all α, β ∈ R \ U such that α + β ∈ U, we have
xα + xβ = 0. ¤

Lemma 16. Suppose

x =
∑

α∈R\U

xα · Eα ⊗ E−α ∈ (∧2m)u.

Then x ∈ MΩ iff the following condition holds: for all α, β, γ ∈ R \U, α +
β + γ = 0, we have xαxβ + xβxγ + xγxα = 0. ¤

Now consider the following properties of the function R\U→ C, α 7→ xα:

(d) x−α = −xα for all α ∈ R \U.

(e) If α, β ∈ R \U, α+ β ∈ U, then xα + xβ = 0.

(f) If α, β, γ ∈ R \U, α+ β + γ = 0, then xαxβ + xβxγ + xγxα = 0.
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It is also straightforward to prove the following:

Lemma 17. xα satisfies (d)–(f) iff

xα =

{

1/α(h), if α ∈ N \U
0, if α ∈ R \N,

for a certain reductive subset N ⊂ R such that N ⊃ U, and (N,U)-regular
element h ∈ h. ¤

The last lemma proves the proposition. ¤

Remark 18. We note that Lemmas 15, 16, and 17 are essentially contained
in the paper by Donin, Gurevich, and Shnider.4

In that paper, among other results, the symplectic G-invariant structures
on G/U are classified if U is a Levi subgroup of G. Actually, in this case
there exists a G-equivariant symplectomorphism from G/U to a semisimple
coadjoint G-orbit equipped with the Kirillov-Kostant-Souriau bracket.

Moreover, it is easy to show that if G/U has a G-invariant symplectic
structure, then U is a Levi subgroup. Indeed, let p∗

−−−→xN, h (where xN, h is defined
by (5)) be a G-invariant Poisson structure on G/U . Obviously, it is symplectic
iff N = R. Since h is (R,U)-regular, i.e., α(h) = 0 for all α ∈ SpanU and
α(h) 6= 0 for all α ∈ R \U, we see that (SpanU) ∩R = U. It is well known
that the latter condition is equivalent to the fact that U is a Levi subgroup.

Let us also remark that the existence of reductive non-Levi subgroups
is the main difference between the triangular and the strictly quasitriangular
cases. Indeed, suppose U is a Cartan subgroup. Then in the triangular case the
Poisson homogeneous structures on G/U relate to all reductive subgroups of
G, while in the strictly quasitriangular case they relate to the Levi subgroups
only (see Karolinsky17 and Lu18).

Finally we are going to describe the Lagrangian subalgebras corresponding
to the Poisson (G, πρ)-homogeneous structures on G/U . Since the Lie bialge-
bras corresponding to (G, πρ) are all in the same class, we may assume without
loss of generality that ρ = 0. It is clear that the corresponding Manin triple
is (g[ε], g, gε), where g[ε] = g⊕ gε, ε2 = 0, and the canonical form is given by
the formula

Q(a+ bε, c+ dε) = 〈a, d〉+ 〈b, c〉.

Suppose ρ = 0. Assume that N and h are as in Proposition 14. Set
πN, h = p∗

−−−→xN, h, where xN, h is defined by (5). By lN, h denote the Lagrangian
subalgebra corresponding to (G/U, πN, h) at the base point e.
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Proposition 19. lN, h = u⊕
(

⊕

α∈R\N εgα

)

⊕
(

⊕

α∈N\U(1− α(h)ε)gα

)

Proof. By definition (see (3)),

lN, h = {a+ bε | a ∈ g, b ∈ u⊥ = m, (b⊗ 1)(xN, h) = a},

where a is the image of a in g/u = m. Suppose b = Eα, where α ∈ R \ U.
Then

(b⊗ 1)(xN, h) =

{

− 1
α(h)Eα, if α ∈ N \U

0, if α ∈ R \N.

This completes the proof. ¤
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maticians, Zürich 1994, pp. 1247–1255.

13. G. Felder, “ Elliptic quantum groups,” in Proceedings of the ICMP, Paris
1994 [hep-th/9412207].

14. V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, “Structure of
Lie groups and Lie algebras,” in Encyclopaedia of Math. Sci. Vol. 41,
(Springer-Verlag, Berlin, 1994).

15. E. Karolinsky, “A classification of Poisson homogeneous spaces of a com-
pact Poisson-Lie group,” Mathematical Physics, Analysis, and Geometry,
3, 274-289 (1996) (in Russian).

16. E. Karolinsky, “A classification of Poisson homogeneous spaces of com-
pact Poisson-Lie groups,” Doklady Math. 57, 179-181 (1998).

17. E. Karolinsky, “A classification of Poisson homogeneous spaces of com-
plex reductive Poisson-Lie groups,” Banach Center Publications, 51, 103-
108 (2000) [e-print math.QA/9901073].

18. J.-H. Lu, “Classical dynamical r-matrices and homogeneous Poisson
structures on G/H and K/T ,” Commun. Math. Phys. 212, 337-370
(2000) [e-print math.SG/9909004].

19. M. Marinov, “Homogeneous phase-space manifolds: classical and quan-
tum theory,” in New symmetries in the theories of fundamental inter-
actions (Max Born Symposium, Karpacz, 1996), pp. 313–323, (PWN,
Warsaw, 1997).

20. M. Marinov and E. Strahov, “A geometrical approach to non-adiabatic
transitions in quantum theory: applications to NMR, over barrier reflec-
tion and parametric excitation of quantum oscillator,” J. Phys. A, 34,
1741-1752 (2001).

21. O. Schiffmann, “On classification of dynamical r-matrices,” Math. Res.
Letters, 5, 13-30 (1998) [e-print q-alg/9706017].

22. A. Stolin, “On rational solutions of Yang-Baxter equation for sl(n),”
Math. Scand. 69, 57-80 (1991).

23. A. Stolin, “Constant solutions of Yang-Baxter equation for sl(2), sl(3),”



266 E. Karolinsky and A. Stolin

Math. Scand. 69, 81-88 (1991).
24. A. Stolin, “On rational solutions of Yang-Baxter equation. Maximal

orders in loop algebra,” Commun. Math. Phys. 141, 533-548 (1991).
25. A. Stolin, “Some remarks on Lie bialgebra structures on simple complex

Lie algebras,” Comm. Algebra, 27, 4289-4302 (1999).
26. P. Xu, Triangular dynamical r-matrices and quantization, e-print

math.QA/0005006.


