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We analyze properties of the Sp(2M) conformally invariant field equations in the
recently proposed generalized 1

2
M(M + 1)− dimensional space-time MM with

matrix coordinates. It is shown that classical solutions of these field equations
define a causal structure in MM and admit a well-defined decomposition into
positive and negative frequency solutions that allows consistent quantization in a
positive definite Hilbert space. The effect of constraints on the localizability of
fields in the generalized space-time is analyzed. Usual d−dimensional Minkowski
space-time is identified with the subspace of the matrix space MM that allows
true localization of the dynamical fields. Minkowski coordinates are argued to be
associated with some Clifford algebra in the matrix spaceMM . The dynamics of a
conformal scalar and spinor inM2 andM4 is shown to be equivalent, respectively,
to the usual conformal field dynamics of a scalar and spinor in the 3d Minkowski
space-time and the dynamics of massless fields of all spins in the 4d Minkowski
space-time. An extension of the electro-magnetic duality transformations to all
spins is identified with a particular generalized Lorentz transformation in M4.
The M = 8 case is shown to correspond to a 6d chiral higher spin theory. The
cases of M = 16 (d=10) and M = 32 (d=11) are discussed briefly.
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828 M.A. Vasiliev

To the memory of Michael Marinov

During several years I had the opportunity to appreciate the attractiveness and
power of Misha Marinov’s personality. Participating in the same seminars at
Lebedev Physical Institute and Moscow State University we discussed physics
many times. I was particularly happy to be able to discuss with Misha some
questions related to the theory of higher spin gauge fields, such as star product
algebras, symbols of operators and others. These discussions gave me a lot.
Misha’s attitude to a scientific question always depended on the extent he
believed the topic belonged to a true physics area. Of course, every physicist
has his own feeling of “true physics”. An “invariant” principal part Misha
insisted on was that there always must be a particular physical problem behind
any formal manipulations. That was certainly a good school. I hope that this
contribution fits Misha’s high standard.

After Misha moved to the Land of his Forefathers one obvious and not at
all surprising change I noticed during our short but full of discussions meeting
at a conference in 1996 was how much he appreciated and enjoyed to be an
independent Man, the feeling he was not allowed to have while living in the
Soviet Union. It is too unfair that Misha was not given more time to live a full
life and too unfortunate that no one can any longer discuss physics to Michael
Marinov.

1 Introduction

In the recent paper1 the system of conformally invariant equations of motion
for 4d massless fields of all spins (for more details on the theory of 4d higher
spin gauge fields we refer the reader to Refs. 2) was shown to exhibit generalized
conformal symmetry a Sp(8) and was argued to be equivalent to a system of
equations for scalar and spinor in the generalized ten-dimensional space-time.
An extension of these equations to the generalized 1

2M(M + 1)-dimensional
space-time with arbitrary evenb M was proposed in the same Ref. 1. Based
on the idea of Bogolyubov transform duality3 between classical and quantum
pictures, the proposed equations in MM were argued1 to admit a consistent
quantization in a positive definite Hilbert space. The aim of this paper is to
reconsider the Sp (2M) invariant equations in MM from the perspective of
the standard field-theoretical approach. We will show that these equations
define a causal structure of the generalized space-time and admit consistent

aWe use notation Sp (2M) for the noncompact real group Sp (2M,R) constituted by
2M×2M real matrices that leave invariant a non-degenerate real 2M ×2M antisymmet-
ric bilinear form.
b Note that M is required to be even by the AdS version of the model discussed in Ref. 1.
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quantization with positive and negative frequency solutions giving rise to the
creation and annihilation operators in a positive definite Hilbert space. Usual
Minkowski space-time will be identified with some d ≤ M + 1−dimensional
submanifold of the generalized space-time that admits localization of fields.
From this perspective, the usual space-time can be thought of as a visualization
of the generalized space-time. Remarkably, the space-time submanifolds that
admit localization turn out to be related to certain Clifford algebras which, in
turn, give rise to the usual Minkowski geometry.

The formulations of Sp (2M) invariant systems in terms of the generalized
space-timeMM and usual space-time are equivalent and complementary. The
description in terms of MM provides clear geometric origin for the Sp (2M)
generalized conformal symmetry. In particular it provides a geometric interpre-
tation of the electromagnetic duality transformations as particular generalized
Lorentz transformations. However, to define true local fields, one has to resolve
some constraints. The description in terms of the Minkowski space-time, that
solves the latter problem, makes some of the symmetries not manifest.

The study of the dynamical equations inMM is likely to be of key impor-
tance for the analysis of dynamical systems that exhibit Sp (2M) symmetries.
In particular, the formulation in terms of generalized space-time MM is ex-
pected to be useful for the investigation of the M-theory through the algebras
sp(32), sp(64) and their superextensions.4,5 Various ideas on a possible struc-
ture of alternative to Minkowski space-times have appeared both in the field-
theoretical6−8 and world particle dynamics 9 contexts. In particular, relevance
of a Sp(8) invariant 10-dimensional space-time for the description of the mass-
less fields of all spins in four dimensions was emphasized by Fronsdal in Ref. 7
where also a realization of Sp (2M) in the 1

2M(M +1)− dimensional manifold
formed by isotropic M−forms was given, which construction is closely related
to the one discussed in this paper. To the best of our knowledge, the dynamical
equations we study in this paper, that allow for physical interpretation of the
generalized space-time, were first suggested in Ref.1.

The generalized flat 1
2M(M+1)−dimensional space-timeMM is described

by the matrix coordinates Xαβ = Xβα (α, β = 1 . . .M). The Sp (2M) gener-
alized conformal symmetry transformations in MM are realized by the vector
fields1

Pαβ = −i ∂

∂Xαβ
, (1)

Lα
β = 2iXβγ ∂

∂Xαγ
, (2)

Kαβ = −iXαγXβη ∂

∂Xγη
. (3)
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The (nonzero) sp(2M) commutation relations are

[Lα
β , Lγ

δ] = i
(

δδαLγ
β − δβγLαδ

)

, (4)

[Lα
β , Pγδ] = −i

(

δβγPαδ + δβδ Pαγ

)

, [Lα
β ,Kγδ] = i

(

δγαK
βδ + δδαK

βγ
)

,

(5)

[Pαβ ,K
γδ] =

i

4

(

δγβLα
δ + δγαLβ

δ + δδαLβ
γ + δδβLα

γ
)

. (6)

Here Pαβ and Kαβ are generators of the generalized translations and spe-
cial conformal transformations. The glM algebra spanned by Lα

β decomposes
into the central subalgebra associated with the generalized dilatation generator

D = Lα
α (7)

and the slM generalized Lorentz generators

lα
β = Lα

β − 1

M
δβαD . (8)

The infinitesimal transformations generated by the vector fields (1)-(3) can
be integrated to the finite group transformations

Xαβ → X̃αβ = Xαβ + aαβ (9)

for generalized translations,

Xαβ → X̃αβ = aαγa
β
δX

γδ (10)

for generalized Lorentz SLM transformations (det|aαγ | = 1) or dilatations
(aαγ = κδαγ , κ 6= 0), and

Xαβ → X̃αβ = (Xαβ + aαβ)
−1 (11)

for generalized special conformal transformations where Xαβ is the inverse to
Xαβ :

XαγX
γβ = δβα . (12)

Like in the standard conformal transformations the full generalized conformal
group contains inversion R

R(Xαβ) = Xαβ , (13)

which is involutive
R ◦R = Id . (14)
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A generalized special conformal transformation S(aαβ) can be represented
as a combination of two inversions and some translation

S(aαβ) = R ◦ T (aαβ) ◦R . (15)

It is possible to define the action of the Sp (2M) transformations on a gener-
alized tensor field φα1...αn

β1...βm(X) as follows. A finite translation T (a) with
the parameter aαβ is defined as usual

T (a)
(

φα1...αn
β1...βm(X)

)

= φα1...αn
β1...βm(X + a) . (16)

A finite GLM transformation with the parameter aαβ that contains generalized
Lorentz transformations (det |a| = 1) and dilatations (aαβ ∼ δαβ ) is

G(a)
(

φα1...αn
β1...βm(X

νµ)
)

(17)

=
(

det |a|
)∆

a−1α1
γ1
. . . a−1αnγna

δ1
β1
. . . aδmβmφ

γ1...γn
δ1...δm(a

ν
ηa

µ
σX

ησ) ,

where the parameter ∆ is the generalized conformal weight of the tensor field
φ. A finite generalized special conformal transformation with the parameter
aαβ is

S(a)
(

φα1...αn
β1...βm(X

νµ)
)

(18)

=
(

det |Q|
)∆

Q−1α1
γ1
. . . Q−1αnγnQ

δ1
β1
. . . Qδm

βmφ
γ1...γn

δ1...δm(Q
ν
ηX

ηµ) ,

where
Q−1αβ = δαβ +Xαγaγβ . (19)

Finally, the inversion (13) interchanges upper and lower indices according to
the rule

R
(

φα1...αn
β1...βm(X)

)

= φ̃α1...αn
β1...βm(X−1)

)

(20)

=
(

det |X|
)−∆

X−1α1γ1
. . . X−1αnγnX

δ1β1 . . . Xδmβmφγ1...γn
δ1...δm(X

−1) .

The singularities of special conformal transformations are localized where
the matrix Q−1αβ (19) degenerates. To define a globally defined action of the
conformal group the generalized space-time MM has to be compactified to
CMM by adding the “infinity” strata associated with the degenerate matrices
Xαβ . (The generalized conformal infinity is a stratified manifold because the
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equations that single out the space of degenerate real matrices of a given rank
are singular). Compactified matrix spaces were defined e.g. in Refs. 6 and 7.
A simple coset space realization of CMM is given in section 9.

The equations of motion proposed in Ref. 1 read

( ∂2

∂Xαβ∂Xγδ
− ∂2

∂Xαγ∂Xβδ

)

b(X) = 0 (21)

for a scalar field b(X) and

∂

∂Xαβ
fγ(X)− ∂

∂Xαγ
fβ(X) = 0 (22)

for a svector field fβ(X). (We use the name “svector” (symplectic vector) to
distinguish fβ(X) from vectors of the usual Lorentz algebra o(d− 1, 1). Note
that svector fields will be shown to obey the Fermi statistics). For M = 2,
because antisymmetrization of any two-component indices α and β is equiv-
alent to their contraction with the 2 × 2 symplectic form εαβ , (21) and (22)
coincide with the 3d massless Klein-Gordon and Dirac equations, respectively.
For M = 4, the equations (21) and (22) in the generalized ten-dimensional
space-timeM4 were argued in Ref. 1 to encode the infinite set of the usual 4d
equations of motion for massless fields of all spins.

The equations (21) and (22) are invariant under the Sp (2M) generalized
conformal symmetry transformations provided that both b(X) and fα(X) have
conformal weight ∆ = 1

2 . The invariance under generalized translations and
Lorentz transformations is obvious. To prove the full invariance it is enough
to check that the equations (21) and (22) are invariant under generalized di-
latations and inversions. The infinitesimal transformations are1

δb(X) =

(

εαβ
∂

∂Xαβ
+

1

2
εαα + 2εαβX

βγ ∂

∂Xαγ

− εαβ

[1

2
Xαβ +XαγXβη ∂

∂Xγη

]

)

b(X) , (23)

δfγ(X)=

(

εαβ
∂

∂Xαβ
+

1

2
εαα + 2εαβX

βη ∂

∂Xαη

− εαβ

[1

2
Xαβ +XαδXβη ∂

∂Xδη

]

)

fγ(X) +
(

εβγ − εηγXηβ
)

fβ , (24)

where εαβ , εαβ and εαβ are, respectively, X−independent parameters of gen-
eralized translations, Lorentz transformations along with dilatations, and spe-
cial conformal transformations. These transformations can be extended to
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OSp (1, 2M) acting on the supermultiplet formed by scalar b(X) and svec-
tor fα(X) and to extended conformal supersymmetries OSp (L, 2M) acting on
appropriate sets of scalars and svectors1 (see also section 8).

Note that we refer to the Sp (2M) as to generalized conformal symmetry
not only because of similarity with the usual conformal symmetry but also be-
cause, as shown in section 7, it extends the usual conformal symmetry SO(d, 2)
acting in the theory. (For example, for the case of d = 4 (M = 4) this is in
accordance with the well-known fact that o(4, 2) ∼ su(2, 2) ⊂ sp(8).) An im-
portant feature of the equations (21) and (22) is that they do not contain any
metric tensor. As a result, the interpretation of Sp (2M) as a conformal sym-
metry associated with some metric re-scaling may not necessarily be relevant
for the full theory in MM . In particular, the inversion R (13) is defined with-

out any metric tensor, as opposed to the usual inversion xi → xi

xjxkηjk
where

ηjk is the Minkowski metric tensor.

The rest of the paper is organized as follows. In section 2 we solve the
equations (21) and (22) by means of Fourier transform and analyze some par-
ticular solutions associated with Green functions. The causal structure of the
generalized space-time MM is investigated in section 3 where the concepts of
global Cauchy surface and time are defined. The generalized Lorentz transfor-
mations are discussed in section 4. The problem of localizability of fields in
MM is studied in section 5 where the concept of local Cauchy bundle with the
usual space as base manifold σ is introduced. The particular cases of M = 2
and M = 4 are considered in detail in subsections 5.1 and 5.2. It is also shown
in 5.2 that the 4d electro-magnetic duality transformations along with their
extension to higher spins identify with certain generalized Lorentz transforma-
tions. Quantization of the free fields in the generalized space-time is performed
in section 6 where the positive-definite Hilbert space of one-particle states is
built, D functions and Green functions are found and the microcausality is
analyzed including the analysis of the spin-statistics relationship. A structure
of the generalized space-time for higher M is discussed in section 7 with the
emphasize on the key role of Clifford algebras in the definition of the space
σ for generic M . Generalized electro-magnetic duality is identified with the
subgroup of the generalized Lorentz symmetry that leaves invariant a local
Cauchy surface σ. Particular attention is paid to the M = 8 case that corre-
sponds to a 6d chiral higher spin theory. The cases of M = 16 and M = 32
corresponding to some 10d and 11d theories are also discussed in section 7.
A osp(2L, 2M) invariant superspace extension of the proposed equations is
formulated in section 8. Coset constructions for the compactified generalized
(super)spaces are given in section 9. A summary of the obtained results and
outlook is the content of section 10.
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2 Classical solutions

The equation (21) admits a solution of the form

b(X) = φ(ξαξβX
αβ) , (25)

with an arbitrary function of one variable φ(z) and constant parameters ξα.
Such solutions are analogous to the plane wave light-like solutions in the usual
Minkowski space-time with coordinates xn (n = 0 . . . d− 1)

b(x) = φ(xnkn) , knk
n = 0 . (26)

For M = 2 and d = 3 the two formulas are equivalent because ξα defines a
light-like direction. For d = 4, light-like wave vectors admit the analogous
twistor representation kaḃ = ξaξ̄ḃ (a, b . . . = 1, 2; ȧ, ḃ . . . = 1, 2).

To show that the set of solutions (25) is complete consider Fourier trans-
form. For a particular harmonic

b(X) = b0 exp ikαβX
αβ , (27)

(21) requires

kαβkγδ = kαγkβδ . (28)

This is solved by the twistor ansatz

kαβ = kξαξβ , (29)

with an arbitrary commuting real svector ξα and a factor k. The equivalent
statement is that any non-zero matrix kαβ satisfying (28) has rank 1. For
the proof it is enough to diagonalize the symmetric matrix kαβ by a slM
transformation to see that the product of any two different eigenvalues is zero
by (28) at α 6= β. Modulo rescalings of k and ξα, there are two essentially
different options in (29) with k = 1 or k = −1. These correspond to the
positive and negative frequency solutions, respectively.

The situation with the Dirac-like equation (22) is analogous because it
follows that fα(X) satisfies (21)

(

∂2

∂Xαβ∂Xγδ
− ∂2

∂Xαγ∂Xβδ

)

fσ(X)

=
∂

∂Xσδ

(

∂

∂Xαβ
fγ(X)− ∂

∂Xαγ
fβ(X)

)

= 0 . (30)
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A plane wave solution for the svector field fα(X) has a form which is analogous
to (25)

fα(X) = ξαφ(ξγξβX
γβ) . (31)

The Dirac-like equation (22) requires fα to be proportional to ξα. As a result,
the harmonic svector plane wave solution has the form

fα(X) = f0ξα exp ikξγξβX
γβ . (32)

Scalar and svector therefore have equal numbers of on-mass-shell degrees of
freedom.

An important particular solution of the equation (21) has the form

b(X) = det−
1
2 |X −X0| , (33)

where X0 is any fixed point of MM . Setting X0 = 0, one gets

∂

∂Xαβ
det−

1
2 |X| = −1

2
Xαβdet

− 1
2 |X| . (34)

Taking into account

∂

∂Xαβ
Xγδ = −

1

2

(

XαδXβγ +XαγXβδ

)

, (35)

one obtains

∂2

∂Xαβ∂Xγδ
det−

1
2 |X| = 1

4

(

XαβXγδ +XαγXβδ +XαδXβγ

)

det−
1
2 |X| . (36)

This expression is totally symmetric with respect to α, β, γ, δ. As a result, the
antisymmetric part of the second derivative of det−

1
2 |X| corresponding to the

left hand side of (21) vanishes.

Analogously, the svector equation (22) admits a solution

fα(X) = (X −X0)αβη
βdet−1/2|X −X0| , (37)

with an arbitrary constant polarization svector ηβ .

Formulas (33) and (37) solve (21) and (22) at least in the regions where the

matrix Xαβ−Xαβ
0 is nondegenerate. In section 6 we show that these solutions

are related to the Green functions of the scalar and svector in the generalized
space-time and give more precise definition of their singularities.
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3 Causal structure and time

The equations (21) and (22) imply propagation along the generalized light-like
directions

∆Xαβ = ηαηβ , (38)

where ηα is a twistor dual to ξβ . The sign choice on the right hand side of (38)
fixes a choice of the time arrow.

One way to reach this conclusion is to analyze the characteristic equation
for the front of discontinuity of a field amplitude. Let nαβ be proportional
to the infinite part of the derivative ∂

∂Xαβ b(X). For the front discontinuity of
co-dimension one to be compatible with the field equations the normal vector
nαβ has to satisfy the equation analogous to (28) and therefore has to be of
the form

nαβ(z) = ±ξα(z)ξβ(z) , (39)

where the coordinates z parametrize the wave front. For example, this formula
is true for the solution (25) with the step-function φ(z). The discontinuity
fronts of the solutions (33) and (37) are described by the surfaces of degenerate
matrices

det|X −X0| = 0 . (40)

For a front of co-dimension one its normal vector is described by a rank 1
matrix nαβ satisfying

(Xαβ −Xαβ
0 )nβγ = 0 . (41)

The svector ξα in the formula (39) identifies with the null-vector of the matrix

Xαβ −Xαβ
0 .

Suppose that a light-like signal emitted from some point Xαβ
0 of the gen-

eralized space-time reaches some other point Xαβ
1 = Xαβ

0 + ηαηβ switching on
a new process that emits a signal in a different light-like direction.c Provided
this happens several times, any point

∆Xαβ =

M
∑

i=0

ηαi η
β
i , (42)

can be reached where ηαi is a complete set of contravariant svectors dual to the
complete set of covariant svectors ξiα

ξiαη
β
i = δβα , ξiαη

α
j = δij . i, j = 1 . . .M . (43)

c Let us note that the assumption that a process can be switched on locally may or may not
be true for particular dynamical equations. In fact, as discussed in more detail in section 5,
the equations (21), (22) do not admit true localization in MM . We do not expect this to
affect our conclusions on the causal structure of the generalized space-time, however.
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Formula (42) describes a general positive semi-definite symmetric matrix
∆Xαβ . Let us note that analogous representation of positive semi-definite
matrices in the context of analysis of BPS states was used recently in Ref. 10.
The authors called the elementary twistors ηαi preons.

We see that the relativistic geometry that follows from the equation (21)
identifies the future cone C+X0

of a point X0 with the set of matrices Xαβ

such that ∆Xαβ = Xαβ −Xαβ
0 is positive semi-definite. Time-like vectors are

described by positive definite matrices

∆Xαβξαξβ > 0 , ∀ξα . (44)

Light-like vectors identify with degenerate positive semi-definite matrices

det|∆X| = 0 , ∆Xαβξαξβ ≥ 0 , ∀ξα . (45)

We will distinguish between rank - k light-like directions described by matrices
of rank k. The concepts of time-like and rank - k light-like vectors are invariant
under the generalized Lorentz group SLM .

The equation (21) describes propagation of signals along the most degen-
erate light-like directions of rank 1. Using the technique developed in Ref. 1
one can work out a form of the equations that describe propagation along less
degenerate light-like directions. We will come back to this question elsewhere.

The past cone C−X0
is defined analogously as the set of negative semi-definite

matrices
(Xαβ −Xαβ

0 )ξαξβ ≤ 0 , ∀ξα . (46)

If Y ∈ C+X then X ∈ C−Y and 2X − Y ∈ C−X . Note that C+X is the convex cone:
∀X1, X2 ∈ C+X , λ, µ ∈ R+ , λX1 + µX2 ∈ C+X .

To define the concept of time let us first introduce a concept of space-like
global Cauchy surface as such a submanifold Σ of some (generalized) space-
time manifold M that
(i) ∀X1, X2 ∈ Σ, X1 /∈ C±X2

and X2 /∈ C±X1
for X1 6= X2.

(ii) any point of M belongs to either future or past cone of some point of Σ.
No point Y ∈M can belong to the future cone of some point X1 ∈ Σ and past
cone of some other point X2 ∈ Σ.

The meaning of the definition of global Cauchy surface is obvious: no pair
of observers on Σ are allowed to exchange causal signals, i.e. a global Cauchy
surface is space-like; emitting causal signals from a Cauchy surface, one can
reach any point in the future, and the space-like global Cauchy surface can
be reached by a signal from any space-time point in the past.d Note that for

d Note that this definition can be adjusted to a particular type of signals by replacing in the
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the particular case under consideration with M = MM being a linear space
R

1
2
M(M+1) and convex future (past) cones the second part of the requirement

(ii) is a consequence of (i).
Provided thatM admits a fibration into a set of space-like global Cauchy

surfaces Σt parametrized by some parameter(s) t, this defines the concept of
time(s).

Let Tαβ be some positive definite matrix. The axioms (i) and (ii) are
satisfied with the space-like global Cauchy surfaces Σt parametrized as

Xαβ ∈ Σt : Xαβ = xαβ + tTαβ , (47)

where the space coordinates xαβ are arbitrary T− traceless matrices

xαβTαβ = 0 , TαβT
βγ = δγα . (48)

Indeed, the difference of any two matrices of the form (47) at fixed t is traceless
and therefore it is neither positive definite nor negative definite. As a result,
any two points of Σt at some fixed t are separated by a space-like interval.
The rest of the axioms is a consequence of the trivial decomposition (47) of a
matrix into the sum of its trace and traceless parts.

An important output of this analysis is that the generalized space-time
MM has just one evolution parameter

t =
1

M
XαβTαβ . (49)

The ambiguity in the choice of a positive definite matrix T αβ parametrizes the
ambiguity in the choice of a particular coordinate frame like in Einstein special
relativity: any two positive definite matrices T αβ

1,2 with equal determinants
are related by some generalized SLM Lorentz transformation. The dilatation
allows one to fix a scale of time in an arbitrary way.

Note that rank - k light-cone time parameters can be defined analogously
with positive semi-definite matrices T αβ in (47).

4 Generalized Lorentz transformations

Having defined the concept of time, we are now in a position to analyze the
generalized Lorentz transformations

X ′αβ = aαγa
β
δX

γδ . (50)

condition (ii) the future and past cones by their boundary of a particular type (say, rank 1
for the case under consideration). Such a specification does not make difference at least for
the particular dynamical system we study.
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Here aαγ is an SLM matrix

det |aαγ | = 1 . (51)

The space symmetry subalgebra of the Lorentz-like group SLM consists of
the elements that leave invariant the positive definite symmetric matrix T αβ

associated with time

Tαβ = ao
α
γao

β
δT

γδ . (52)

It is isomorphic to the compact group SO(M) being the maximal compact
subgroup of SLM . SO(M) is the analog of the usual space rotations SO(d−
1) of the SO(d − 1, 1) Lorentz invariant space-time. The dimension of the
coset space SLM/SO(M) equals to the number of the space (traceless) matrix
coordinates 1

2M(M + 1) − 1. As a result, very much as for the usual Lorentz
transformations, the parameters of the generalized Lorentz group turn out to
be associated with the space symmetry and the generalized velocities.

Let us introduce the following quantities

uαβ(a) = aαγa
β
δT

γδ − Tαβγ(a) , (53)

rγδ(a) = aαγa
β
δTαβ − Tγδγ(a) , (54)

γ(a) =
1

M
aαγa

β
δT

γδTαβ , (55)

defined in such a way that

uαβTαβ = 0 , rαβT
αβ = 0 . (56)

According to these definitions, uαβ(a) and rαβ(a) parametrize the right and
left coset spaces SLM/SO(M), respectively,

uαβ(aao) = uαβ(a) , rαβ(aoa) = rαβ(a) , (57)

where ao ∈ SO(M) is any generalized space rotation satisfying (52). The
parameter γ(a) is left and right invariant

γ(aao) = γ(aoa) = γ(a) . (58)

It is not independent, but can be uniquely expressed in terms of either uαβ or
rαβ . To see this, consider the positive definite symmetric matrices

Uαβ(a) = aαγa
β
δT

γδ , Rγδ(a) = aαγa
β
δTαβ , (59)
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and their characteristic equations

det
∣

∣

∣
Uαβ(a)− λTαβ

∣

∣

∣
= 0 , det

∣

∣

∣
Rαβ(a)− λTαβ

∣

∣

∣
= 0 . (60)

It is elementary to see that, the equations on U and R in (60) are equivalent
and, therefore, have the same sets of eigenvalues λi. Since Uαβ , Rαβ and Tαβ
are positive definite, all eigenvalues are strictly positive e

λi > 0 . (61)

From (51) it follows that
M
∏

i=1

λi = 1 . (62)

The eigenvalues of uαβ and rαβ are

ui = λi −
1

M

M
∑

j=1

λj . (63)

Taking into account that

γ(a) =
1

M

M
∑

j=1

λj , (64)

(62) acquires the form
M
∏

i=1

(ui + γ) = 1 . (65)

This equation allows one to express γ in terms of ui uniquely at the condition
that all factors (ui + γ) are strictly positive (the function

∏M
i=1(ui + γ) is

monotonic in γ in the region where the factors (ui + γ) are positive). This
proves that γ expresses in terms of both rαβ and uαβ . As a consequence of the
well-known inequality between the arithmetic and geometric averages, from
(62) and (64) it follows that

γ(u) ≥ 1 . (66)

e Let us note that the construction of the representatives of the left and right coset spaces
Uαβ and Rαβ is analogous to the construction of the metric tensor in the frame formulation

of gravity (aαβ and Tαβ are analogues of the frame field and flat metric, respectively). The
eigenvalues (63) parametrize the double coset space SO(M) \ SLM/SO(M).



Quantization and duality in the Sp(2M) space-time 841

Now we rewrite the generalized Lorentz transformations in terms of the
decomposition (47)

x′αβ = aαγa
β
δx

γδ − 1

M
Tαβrγδx

γδ + tuαβ . (67)

t′ =
1

M
rαβx

αβ + γt . (68)

In this analysis we assume that the space-time decomposition (47) is defined
with respect to the same matrix Tαβ in the both frames. If one would rotate
the matrix Tαβ by the same Lorentz transformation the description in the two
systems would be identical. For example the 3d coordinates in the decompo-
sition Xαβ = tIαβ + x1σαβ1 + x2σαβ3 are defined for the fixed basis matrices

Tαβ = Iαβ and σαβi .
From (68) one observes that γ(u) is a generalization of the relativistic

Lorentz factor that relates the time scales in the two systems. The velocity of
the origin of coordinates xαβ of the unprimed generalized inertial coordinate
frame with respect to the primed one is

vαβ =
uαβ

γ(u)
. (69)

The eigenvalues vi of the traceless matrix vαβ are

vi =
Mλi

∑M
j=1 λj

− 1 . (70)

From this formula it follows that the eigenvalues satisfy the restrictions

M − 1 ≥ vi ≥ −1 . (71)

If one of the eigenvalues λi → ∞, vi saturates the upper bound while vj at
j 6= i saturate the lower bound. For these limiting cases the relativistic factor
γ(v)→∞. It is elementary to see using (51) that this is a general phenomenon:
if some vi →M − 1 then vj → −1 j 6= i and γ(v)→∞. Moreover, γ(v)→∞
whenever at least one of the eigenvalues vj → −1 (while the upper bound may
not be saturated).

The condition (71) is a generalization of the Lorentz geometry restriction
that one system cannot move with respect to another with the speed exceeding
the speed of light. Let us note that there is no symmetry vi → −vi in the gen-
eralized geometry because eigenvalues vi are invariants of the space symmetry
group SO(M). In the usual Lorentzian geometry a sign of the velocity vector
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can be changed by a space rotation. A generalization of this symmetry to
the generalized geometry is the symmetry under permutations of eigenvalues
vi ↔ vj . Note that, according to the realization of Lorentz boosts (160) of sec-
tion 7, usual Lorentz transformations identify with such generalized Lorentz
transformations that there are only two different eigenvalues among vi which,
therefore, can differ only by sign, thus belonging to the interval 1 ≥ vi ≥ −1.
In particular, this is obviously the case for M = 2.

The transform from the primed frame to the unprimed one is described by
the inverse SLM transform and, therefore is characterized by the replacement
λi → λ−1i . Note that the relativistic factors γ(v) of the direct and inverse
transforms are not necessarily equal to each other. However, because of (51)
they tend to infinity simultaneously, i.e. if a system A is ultrarelativistic with
respect to the system B, then the system B is ultrarelativistic with respect to
A. A system at rest is characterized by vi = 0.

5 Field localizability

The definition of a global Cauchy surface suggests that it is enough to know
values of the fields along with some their time derivatives on a global Cauchy
surface to fix a particular solution in the whole generalized space-time MM .
This is certainly true. The question is what is a set of initial data that can
be fixed arbitrarily to determine the time evolution of fields. Because a single
field b(X) satisfies the system of equations (21), some of these equations play
a role of constraints on the global Cauchy surface thus restricting a possible
choice of the initial data. This is analogous to the usual constraint dynamics.
For example the Gauss low constraint ∂iE

i = 0 in the pure electrodynamics
restricts initial data for the electric field Ei.

Indeed, using the decomposition (47) we have

∂

∂Xαβ
=

1

M
Tαβ

∂

∂t
+

∂

∂xαβ
, (72)

where the space coordinates xαβ are traceless in the sense of (48). From (21)
one derives the wave equation

( ∂2

∂t2
− M

M − 1
TαγT βδ

∂2

∂xαβ∂xγδ

)

b(X) = 0 (73)

and constraints
(

Tαβ
∂

∂xγδ
+ Tγδ

∂

∂xαβ

)

p(X) (74)

+
(

M
∂2

∂xαβ∂xγδ
+

1

M − 1
TαβTγδT

νµT ρσ
∂2

∂xνρ∂xµσ

)

b(X)− (β ↔ γ) = 0 ,
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where p(X) = ∂
∂tb(X) . Note that the totally T−transversal part of the con-

straints (74) is independent of the momentum p thus imposing constraints on
the space derivatives of b(X).

The constraints restrict initial data for the field b(x, t0) and its first deriva-
tive p(x, t0) on the global Cauchy surface. In particular, it is not possible
to choose initial data localized at some point x0 with b(x, t0) ∼ δ(x − x0),
p(x, t0) ∼ δ(x − x0). This is why we say that the fields b(X) and fα(X) are
not localizable in the generalized space-time MM .

This conclusion is not surprising because, as shown in section 2, the generic
solutions of the equations (21) and (22) have the form

b(X) =
1

π
M
2

∫

dMξ
(

b+(ξ) exp iξαξβX
αβ + b−(ξ) exp−iξαξβXαβ

)

, (75)

fγ(X) =
1

π
M
2

∫

dMξ ξγ

(

f+(ξ) exp iξαξβX
αβ + f−(ξ) exp−iξαξβXαβ

)

. (76)

Both for the scalar b(X) and svector fα(X), the space of solutions is
parametrized by two functions ofM variables ξα. Because odd functions b±(ξ)
and even functions f±(ξ) do not contribute to (75) and (76), respectively, we
require

b±(ξ) = b±(−ξ) , f±(ξ) = −f±(−ξ) . (77)

The integration in (75) and (76) is thus carried out over RM/Z2. The origin of
coordinates ξα = 0 is invariant under the Z2 reflection ξα → −ξα and therefore
is a singular point of the conical orbifold RM/Z2.

Using the ambiguity in b±(ξ) and f±(ξ) it may be possible to achieve
localization in at most M coordinates that, generically, is much less than the
dimension of the global Cauchy surface dim(Σ) = 1

2M(M + 1)− 1.
Let us now introduce the concept of local Cauchy bundle. Naively, one

might try to identify it with some submanifold σ of the global Cauchy surface
Σ such that, fixing a certain number of arbitrary functions on σ, the constraints
(74) reconstruct the initial data on Σ. This would imply that the fields would
allow a true localization on σ rather than on Σ. Since local observers can
only distinguish between local events such a picture would mean that σ is
a visualization of the global Cauchy surface by means of a particular field
dynamics under consideration.

This idea is basically true with the correction that a number of space
coordinates d − 1 that allow true localization may be even less than M . A
relevant object called local Cauchy bundle E is a M−dimensional fiber bundle
over an appropriate d−1−dimensional base manifold σ ∈ Σ called local Cauchy
surface and treated as the space manifold. The local Cauchy surface σ is a
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submanifold ofMM . The space-time manifold is R×σ ⊂MM where R is the
time axis. Note that the local Cauchy bundle E is not necessarily a submanifold
ofMM . Since the dynamics in the generalized space-time was argued in section
3 to be compatible with the causal structure of the generalized space-time, the
projection of this dynamics to the space-time R × σ that admits localization
of the fields is expected to be compatible with the microcausality principle,
i.e. the restriction of the Green functions to some local Cauchy surface σ is
expected to vanish for the space-like separated regions. We will come back to
this point in section 6.

Let us stress that different types of fields that may live in the same gen-
eralized space-time may require local Cauchy bundles of different dimensions
thus providing different visualizations of the same generalized space-time. This
phenomenon is analogous to the fact known after Dirac11 that the singleton
field lives on the boundary of AdS4 while all other AdS4 fields live in the
bulk. The parallels with the ideas of holography12,13 and brane dynamics are
self-suggestive either. Note that even for the same dynamical system a choice
of a particular local Cauchy bundle E may a priori be not unique. Different
choices of E can lead to different descriptions of the same dynamical system.
Although being equivalent, the descriptions in terms of different local Cauchy
bundles may look differently and, in fact, describe dual versions of the same
model that has a uniform description in the full generalized space-time.

Let us consider some examples.

5.1 M=2

For M = 2, the generalized space-time reduces to the usual 3d space-time
geometry while the equations (21) and (22) are equivalent to the usual massless
equations for 3d scalar and spinor. There are no constraints (74) for M = 2.
Let us show that, for this case, the representation (75) allows for the usual
field localizability.

We set

Tαβ = δαβ ,

Xαβ = tδαβ + x1σαβ1 + x2σαβ3 ,

where σαβ1,3 are the two traceless symmetric Pauli matrices having unit square.
Restriction of the solution (75) to the global Cauchy surface t = 0 gives

b(x, 0)=
1

π

∫

d2ξ
(

b+(ξ) exp i(k1x
1 + k2x

2) + b−(ξ) exp−i(k1x1 + k2x
2)
)

, (78)
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where

k1 = ξ21 − ξ22 , k2 = 2 ξ1ξ2 . (79)

The combinations of the integration variables (79) map R2/Z2 on R2. This
map is bijective with the expected singularity at ξα = 0

dk1 ∧ dk2 = 4
(

ξ21 + ξ22

)

dξ1 ∧ dξ2 . (80)

Note that

ξ21 + ξ22 =
√

k21 + k22 . (81)

Setting

b±(ξ) =
1

2π

(

ξ21 + ξ22

)

exp∓ikixi0 , (82)

one obtains

b(x, 0) = δ(xi − xi0) ,
∂

∂t
b(x, t)

∣

∣

∣

t=0
= 0 . (83)

Analogously, setting

b±(ξ) = ± 1

2πi
exp∓ikixi0 , (84)

we obtain

b(x, 0) = 0 ,
∂

∂t
b(x, t)

∣

∣

∣

t=0
= δ(xi − xi0) . (85)

Thus, the twistor parametrization (75) of the solutions of the 3d field
equations is equivalent to the standard Minkowski parametrization with the
integration measure d3kδ(k2). As expected, the initial data for b(X) and its
first time derivative can be fixed in an arbitrary way on the global Cauchy
surface Σ. The analysis of the fermionic solutions (76) is analogous.

5.2 M=4

The case of M = 4 was argued in Ref. 1 to be equivalent to the free field equa-
tions of 4d conformal fields of all spins. The situation here is more interesting
because the generalized space-time is ten-dimensional while the physical space-
time is four-dimensional. Having four twistor integration parameters in (75),
a submanifold of the global Cauchy surface that admits localization of fields
can be at most four-dimensional. Let us show that the local Cauchy bundle
is R3 × S1 where σ = R3 is the usual Cauchy surface of the 4d Minkowski
space-time while the S1 harmonics distinguish between spins of 4d conformal
fields.
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Using the language of two-component complex spinors we set

Xαβ =
(

xab,X aȧ, xȧḃ
)

, (86)

with the convention that the complex conjugation transforms dotted indices

a, b = 1, 2 to the undotted ones ȧ, ḃ = 1, 2 and vice versa so that xȧḃ is com-
plex conjugated to xab while X aȧ is hermitian. We choose the global Cauchy
fibration as follows

Xaȧ = X aȧ = tδaḃ + xiσaḃi , Xab = xab , X
ȧḃ

= xȧḃ , (87)

where σaḃi are hermitian traceless Pauli matrices normalized to have unit
square. Having four integration variables ξα we can try to localize some four
coordinates from among those nine that parametrize the global Cauchy surface.

The coordinates of the local Cauchy surface σ can be identified with the
three space coordinates xi of the usual 4d space-time. Let us use the complex
notation for the space coordinates in the 1 : 2 plane

x = x1 + ix2 , x̄ = x1 − ix2 . (88)

The combinations of svectors ξα dual to the coordinates xi

k3 = ξ1ξ̄1̇ − ξ2ξ̄2̇ , k = 2ξ1ξ̄2̇ , k = 2ξ̄1̇ξ2 , (89)

map R4/Z2 on R3, i.e. k3, k and k can take arbitrary values. The leftover
ambiguity in the integration variables ξα for fixed ki is the overall phase factor
ξα → exp 1

2 iϕ ξα, ϕ ∈ [0, 2π]. (Recall that ξα is identified with −ξα.) We set

exp iφ = 2
ξ1ξ2
k

, exp−iφ = 2
ξ1̇ξ2̇
k

. (90)

For the integration measure we obtain

d(ξ1ξ̄1̇ − ξ2ξ̄2̇) ∧ d(ξ1ξ̄2̇) ∧ d(ξ̄1̇ξ2) ∧ d(ξ1ξ2) (91)

= 2ξ1ξ2(ξ1ξ̄1̇ + ξ2ξ̄2̇)dξ1 ∧ dξ̄1̇ ∧ dξ2 ∧ dξ̄2̇ .

This is equivalent to

dk3 ∧ dk ∧ dk̄ ∧ dφ = −8i(ξ1ξ̄1̇ + ξ2ξ̄2̇)dξ1 ∧ dξ̄1̇ ∧ dξ2 ∧ dξ̄2̇ . (92)

The map (89), (90) from R4/Z2 associated with the integration variables ξα to
R3×S1 described by the variables ki, φ is non-degenerate except the expected
singularity at ξα = 0. Note that

ξ1ξ̄1̇ + ξ2ξ̄2̇ =
√

kk̄ + k23 =
√

k21 + k22 + k23 . (93)
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The integration over three noncompact momentum variables is expected
to localize three space coordinates associated with the local Cauchy surface
σ = R3. Using the ambiguity in the cyclic momentum variable φ one can
distinguish between different angular dependencies on the complex coordinate

z = x12 , z̄ = x1̇2̇ . (94)

Fixing |z| = r, this is equivalent to considering functions on S1.
Setting all other coordinates to zero, consider the following restriction of

the solution of the field equations

b(x3, x, x̄, z, z̄)=
1

π2

∫

d4ξ (95)

×
(

b+(ξ) exp i(x3k3 + xk̄ + x̄k + zk exp iφ+ z̄k̄ exp−iφ)

+ b−(ξ) exp−i(x3k3 + xk̄ + x̄k + zk exp iφ+ z̄k̄ exp−iφ)
)

.

From this expression with the coefficients b±(ξ) of the form

b±(ξ) =
1

8π2
(ξ1ξ̄1̇ + ξ2ξ̄2̇)f(exp−iφ) exp∓i(x30k3 + x0k̄ + x̄0k) , (96)

or

b±(ξ) = ± 1

8π2i
f(exp−iφ) exp∓i(x30k3 + x0k̄ + x̄0k) , (97)

where f(w−1) is some Laurant polynomial, it is clear that, for r 6= 0, the
solution (95) is not localized at xi = xi0 because it contains an infinite power
series in the derivatives of δ(xi − xi0) with higher powers of r2 = zz̄ in front
of the higher derivatives of the delta-functions. It is therefore impossible to
achieve further localization on R3 × S1 ⊂ MM using the ambiguity in the
cyclic momentum variable φ. This problem can be avoided by taking the limit
r → 0 and keeping the leading terms of a given phase. This is equivalent to
neglecting all terms that contain zz̄, i.e., to considering analytic or antianalytic
functions in z. The picture with r = 0 is most appropriate physically because
the whole dynamical information is then localized at some point of the space
R3 equipped with an auxiliary S1 that does not affect the analysis of locality
and causality. This is why the M = 4 local Cauchy bundle E = R3×S1 is not
a submanifold of the global Cauchy surface.

Indeed, from (96) one obtains that

b(x3, x, x̄, z, 0)
∣

∣

∣

t=0
=

1

2πi

∮

dw

w
f(w−1)δ(x3−x30)δ(x−x0)δ(x̄− x̄0+zw) (98)
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b(x3, x, x̄, 0, z̄)
∣

∣

∣

t=0
=

1

2πi

∮

dw

w
f(w−1)δ(x3 − x30)δ(x− x0 + z̄w−1)δ(x̄− x̄0) ,

(99)

∂

∂t
b(x3, x, x̄, z, z̄)

∣

∣

∣

t=0
= 0 . (100)

Analogously, from (97) one obtains that

b(x3, x, x̄, z, z̄)
∣

∣

∣

t=0
= 0 , (101)

∂

∂t
b(x3, x, x̄, z, 0)

∣

∣

∣

t=0
=

1

2πi

∮

dw

w
f(w−1)δ(x3 − x30)δ(x− x0)δ(x̄− x̄0 + zw) ,

(102)

∂

∂t
b(x3, x, x̄, 0, z̄)

∣

∣

∣

t=0
=

1

2πi

∮

dw

w
f(w−1)δ(x3−x30)δ(x−x0+ z̄w−1)δ(x̄− x̄0) .

(103)

A power of a polynomial in z or z̄ equals to the spin of the 4d field asso-
ciated with a particular S1 harmonic. Therefore, the higher spin is the more
derivatives of the space delta-function appear in the equation (98). This prop-
erty manifests the fact that the conformal higher spin fields contained in the
generating function b(X) admit interpretation as order-s derivatives of the dy-
namical potential fields like Maxwell field strength for spin 1, Weyl tensor for
spin 2 etc (for more details see Refs. 14 and 2). The fundamental higher spin
gauge fields (potentials) are expected to allow δ−functional localization with-
out extra derivatives on the 3d local Cauchy surface for any spin. The analysis
of the fermionic equation (22) is analogous.

The analysis of this subsection proves the conjecture of Ref. 1 that the
system of equations (21) and (22) at M = 4 is equivalent to the infinite set
of 4d equations of motion for massless fields of all spins. This fact is not
trivial because the consideration of Ref. 1 was essentially local in the extra
six coordinates of the generalized space-time. To summarize, what happens is
that the independent degrees of freedom of the fields satisfying the equations
(21) and (22) in MM live on a four-dimensional local Cauchy bundle E =
R3 × S1 with the base manifold R3 identified with the usual space and the
fiber S1 giving rise to the infinite tower of spins. The dependence on the extra
five coordinates of the global Cauchy surface is reconstructed uniquely by the
constraints (74). As a result, propagation of the fields b(X) and fα(X) in
the generalized space-time is equivalent to the propagation of local higher spin
fields in the 4d space-time supplemented with one additional coordinate for
spin.
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Let us show how one can see this directly from the equations (21) and
(22) focusing for definiteness on the bosonic case. According to (86) we write

b = b(X aḃ, xab, x̄ȧḃ). Eq. (21) decomposes into the three types of equations

( ∂2

∂xab∂x̄ȧḃ
− ∂2

∂X aȧ∂X bḃ

)

b(X , x, x̄) = 0 , (104)

( ∂2

∂xab∂xcd
− ∂2

∂xac∂xbd

)

b(X , x, x̄) = 0 ,
( ∂2

∂x̄ȧḃ∂x̄ċḋ
− ∂2

∂x̄ȧċ∂x̄ḃḋ

)

b(X , x, x̄) = 0 ,

(105)
( ∂2

∂xab∂X cȧ
− ∂2

∂xac∂X bȧ

)

b(X , x, x̄) = 0,
( ∂2

∂x̄ȧḃ∂X cḋ
− ∂2

∂x̄ȧḋ∂X cḃ

)

b(X , x, x̄) = 0.

(106)
The equation (104) has two consequences. First, it determines the depen-

dence on the complex coordinates xab and their conjugates x̄ȧḃ in terms of
X -derivatives of the analytic and antianalytic functions c(X , x) = b(X , x, 0)
and c̄(X , x̄) = b(X , 0, x̄). Second, its part antisymmetric in a, b (equivalently,
ȧ, ḃ) implies the massless Klein-Gordon equation

εabεȧḃ
∂2

∂X aȧ∂X bḃ
b(X , x, x̄) = 0 , (107)

where εab and εȧḃ are the 2× 2 antisymmetric symbols.
The equations (105) imply that the coefficients of the expansion of

b(X , x, x̄) in powers of x and x̄

b(X , x, x̄) =
∑

b(X )a1b1,a2b2,...;ȧ1ḃ1,ȧ2ḃ2,...
xa1b1xa2b2 . . . ; x̄ȧ1ḃ1 x̄ȧ2ḃ2 . . . (108)

are totally symmetric both in undotted and dotted indices (equivalently, these
equations are recognized as complexified 3d equations (21) to be solved by the
3d twistor ansatz). In particular, the holomorphic and antiholomorphic parts

c(X , x) =
∑

c(X )a1a2a3a4...x
a1a2xa3a4 . . . ;

c̄(X , x̄) =
∑

c̄(X )ȧ1ȧ2,ȧ3ȧ4...x̄
ȧ1ȧ2 x̄ȧ3ȧ4 . . . (109)

expand in powers of x and x̄ with totally symmetric coefficients c(X )a1...a2s
,

c̄(X )ȧ1...ȧ2s
to be identified with the (anti)selfdual 4d components of the higher

spin fields. These satisfy the equations (106) equivalent to

εac
∂2

∂xab∂X cȧ
c(X , x) = 0 , εȧḋ

∂2

∂x̄ȧḃ∂X cḋ
c̄(X , x̄) = 0 , (110)
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which, in turn, reduce to the usual 4d massless equations for massless fields of
all spins c(X )a1...a2s

and c̄(X )ȧ1...ȧ2s
. Let us note that for all spins s 6= 0 the

Klein-Gordon equation is a consequence of (110) by virtue of

εabεȧḃ
∂2

∂X aȧ∂X bḃ

∂

∂xcd
c(X , x) = 0 , εabεȧḃ

∂2

∂X aȧ∂X bḃ

∂

∂x̄ċḋ
c̄(X , x̄) = 0 .

(111)
For the s = 0 field described by c(X ) = c(X , 0) = c̄(X , 0) it cannot be derived
this way because ∂

∂xcd
c(X ) = ∂

∂x̄ċḋ
c̄(X ) = 0.

Clearly, a number of coordinates x and x̄ in the expansions for c(X , x) and
c̄(X , x̄) associated with spin can be equivalently described by a cyclic variable
φ introduced previously. The fermionic case can be analyzed analogously.

The component fields c(X )a1...a2s
and c̄(X )ȧ1...ȧ2s

describe, respectively,
self-dual and antiself-dual components of the generalized Weyl tensors of mass-
less fields of all spins s (both integer contained in b(X) and half-integer con-
tained in fα(X)). In particular, c(X )a1a2

and c̄(X )ȧ1ȧ2
describe (anti) self-dual

Maxwell field strengths, c(X )a1a2a3
and c̄(X )ȧ1ȧ2ȧ3

describe (anti) self-dual
gravitino field strengths, c(X )a1...a4

and c̄(X )ȧ1...ȧ4
describe (anti) self-dual

Weyl tensors, etc. Remarkably, the 4d electro-magnetic duality transforma-
tion and its extension to all higher spins15

c(X )a1...a2s
→ exp[2siϕ]c(X )a1...a2s

, (112)

c̄(X )ȧ1...ȧ2s
→ exp[−2siϕ]c(X )ȧ1...ȧ2s

,

acquires a purely geometric origin in the generalized space-time M4, being a
part of the SL4 generalized Lorentz transformations with the group element
of the form

aab = exp[iϕ]δab , aȧḃ = exp[−iϕ]δȧḃ , aaḃ = aȧb = 0 . (113)

This transformation belongs to the generalized SO(M) space rotation because

it leaves invariant the time-matrix T aḃ = δaḃ. Moreover, the duality trans-
formation leaves invariant all space-time coordinates X aȧ of R × σ. This is
why from the perspective of the local Cauchy surface it acts only on the spin
indices. (All other generalized Lorentz transformations affect the space-time
coordinates and therefore contain derivatives of the 4d dynamical fields in the
transformation lows.) Thus, the approach developed in Ref. 1 and in this pa-
per incorporates dualities in a natural geometric way as particular generalized
space-time symmetry transformations.
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6 Quantization

Although Lagrangian formulation for the dynamical systems described by the
equations (21) and (22) is yet lacking, the form of the general solutions (75)
and (76) suggests a natural quantization prescription. The key property of the
general solutions (75) and (76) is that they admit a well-defined decomposition
into positive and negative frequency parts thus allowing for the definition of
the creation and annihilation operators b+(ξ), f+(ξ) and b−(ξ), f−(ξ), respec-
tively.

Let us now give more precise definitions. To make Gaussian integrals over
svector integration variables well-defined we introduce complex coordinates

Zαβ = Y αβ + iXαβ . (114)

The imaginary part of Zαβ is identified with the coordinates in the generalized
space-time Xαβ . The real part Y αβ is required to be positive definite. It is
treated as a regulator that makes the Gaussian integrals well-defined. Physical
quantities are obtained in the limit Y αβ → 0.

The expressions (75) and (76) are to be understood as

b(Z, Z̄) =
1

π
M
2

∫

dMξ
(

b+(ξ) exp−ξαξβZ
αβ

+ b−(ξ) exp−ξαξβZαβ
)

, (115)

fα(Z, Z̄) =
1

π
M
2

∫

dMξ ξα

(

f+(ξ) exp−ξγξβZ
γβ
+f−(ξ) exp−ξγξβZγβ

)

. (116)

The positive and negative frequency parts identify with the holomorphic and
antiholomorphic parts of the quantum field

b(Z, Z̄) = b+(Z) + b−(Z) , fα(Z, Z̄) = f+α (Z) + f−α (Z) , (117)

b±(Z) =
1

π
M
2

∫

dMξ b±(ξ) exp−ξαξβZαβ , (118)

f±γ (Z) =
1

π
M
2

∫

dMξ ξγf
±(ξ) exp−ξαξβZαβ . (119)

For the fields b(Z, Z̄) and fα(Z, Z̄) to be real, b+(ξ) and f+(ξ) have to be
complex conjugated to b−(ξ) and f−(ξ), respectively. The quantum operators
b±(ξ) and f±(ξ) are required to have definite oddness according to (77).

We now interpret b+(ξ), f+(ξ) and b−(ξ) , f−(ξ) as hermitian conjugated
bosonic and fermionic creation and annihilation operators subject to the com-
mutation relations

[

b±(ξ1), b
±(ξ2)

]

= 0 ,
[

b−(ξ1), b
+(ξ2)

]

=
1

2

[

δ(ξ1 − ξ2) + δ(ξ1 + ξ2)
]

, (120)
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[

f±(ξ1), f
±(ξ2)

]

+
= 0 ,

[

f−(ξ1), f
+(ξ2)

]

+
=

1

2

[

δ(ξ1− ξ2)− δ(ξ1 + ξ2)
]

, (121)

where [ , ]+ denotes anticommutator. The vacuum state is defined to satisfy

b−(ξ)|0〉 = 0 , f−(ξ)|0〉 = 0 , (122)

〈0|b+(ξ) = 0 , 〈0|f+(ξ) = 0 . (123)

〈0|0〉 = 1 . (124)

One-particle states are
∫

dMξB(ξ)b+(ξ) |0〉 ,
∫

dMξF (ξ)f+(ξ) |0〉 , (125)

with arbitrary complex functions B(−ξ) = B(ξ) and F (−ξ) = −F (ξ).
The states are normalizable provided that B(ξ) and F (ξ) belong to L2

∫

dMξB(ξ)B(ξ) <∞ ,

∫

dMξF (ξ)F (ξ) <∞ . (126)

A useful basis is provided by the functions of the form

B(ξ) = P (ξ) exp−Tαβξαξβ , F (ξ) = Q(ξ) exp−Tαβξαξβ , (127)

where P (ξ) and Q(ξ) are polynomials of ξα and Tαβ is the positive definite
matrix associated with the time arrow. This basis is equivalent to the unitary
Fock module over the higher spin conformal symmetries, that was conjectured
in Refs. 3 and 1 to be equivalent to the space of quantum states in the corre-
sponding quantum field theory. The formulas (125) thus prove this conjecture.

The quantization prescription (120) and (121) allows us to write the con-
served charges associated with the generators of the sp(2M) transformations
(23) and (24)

Pαβ =

∫

dξM
(

b+(ξ)ξαξβb
−(ξ) + f+(ξ)ξαξβf

−(ξ)
)

, (128)

Lβ
α = − i

2

∫

dξM (129)

×
(

b+(ξ)(ξβ
∂

∂ξα
+

∂

∂ξα
ξβ)b

−(ξ) + f+(ξ)(ξβ
∂

∂ξα
+

∂

∂ξα
ξβ)f

−(ξ)
)

,

Kαβ = − 1

4

∫

dξM
(

b+(ξ)
∂2

∂ξα∂ξβ
b−(ξ) + f+(ξ)

∂2

∂ξα∂ξβ
f−(ξ)

)

. (130)
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The supergenerators are

Qα =

∫

dξM
(

b+(ξ)ξαf
−(ξ) + f+(ξ)ξαb

−(ξ)
)

, (131)

Sα =
i

2

∫

dξM
(

b+(ξ)
∂

∂ξα
f−(ξ) + f+(ξ)

∂

∂ξα
b−(ξ)

)

, (132)

with the obvious anticommutation relations

{Qα, Qβ} = 2Pαβ , {Sα, Sβ} = 2Kαβ , {Qα, S
β} = −2Lαβ . (133)

Note that from these relationships it follows that averages of the operators
Pαβ and Kαβ form some positive semi-definite matrices as it is also obvious
from (128) and (130). In particular, the energy operator E = (1/M)T αβPαβ is
positive semi-definite for any positive definite matrix T αβ associated with the
chosen time direction. Note also that bosonic and fermionic vacuum energies
in (128)-(130) cancel out as a consequence of supersymmetry.

Let us now define the D functions as

D−(Z) = i

πM

∫

dMξ exp−ξαξβZαβ , (134)

D+(Z) = −D−(Z) = D−(Z) . (135)

We have

[

b−(Z1), b
+(Z2)

]

= −iD−(Z1 + Z2) ,

[

b(Z1, Z1), b(Z2, Z2)
]

= −iD(Z1 + Z2, Z1 + Z2) ,

where
D(Z,Z) = D−(Z) +D+(Z) = D−(Z)−D−(Z) . (136)

By construction, the functions D−(Z), D+(Z) and D(Z,Z) solve the equations
of motion (21). A rotation of the contour of integration over the variables ξα
in the complex plane gives the following result

D−(Z)
∣

∣

∣

Y→0
=

i

π
M
2

exp− iπIX
4

1
√

|det(Z)|

∣

∣

∣

Y→0
. (137)

Here IX is the inertia index of the matrix Xαβ .

IX = n+ − n− , (138)
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where n+ and n− are, respectively, the numbers of positive and negative eigen-
values of Xαβ . The formula (137) is in accordance with the explicit check in

section 2 that |det(X)|−
1
2 provides a solution of the field equations away from

singularities. The integral representation (134) provides the precise definition
of the regularized expression in the complex plane.

From (137) it follows that

D+(Z)
∣

∣

∣

Y→0
=

1

iπ
M
2

exp
iπIX
4

1
√

|det(Z)|

∣

∣

∣

Y→0
, (139)

and, therefore,

D(Z)
∣

∣

∣

Y→0
=

2

π
M
2

sin(
πIX
4

)
1

√

|det(Z)|

∣

∣

∣

Y→0
. (140)

Extension of the suggested quantization scheme to the fermionic case of
svector field fα(X) is straightforward

{f−α (Z1), f
+
β (Z2)} = −iD−αβ(Z1 + Z2) , (141)

{fα(Z1, Z1), fβ(Z2, Z2)} = −iDαβ(Z1 + Z2, Z1 + Z2) , (142)

where

Dαβ(Z,Z) = D−αβ(Z) +D+
αβ(Z) , D+

αβ(Z) = D−αβ(Z) , (143)

D−αβ(Z) = −
∂

∂Zαβ
D−(Z) . (144)

From (140) it follows that bosonic and fermionic D−functions vanish if
IX = 4n, being different from zero otherwise. Since the indices α and β take
even number of values M , IX = n+ − n− =M − 2n− is even. Therefore

D(Z,Z) 6= 0 for IX = 4n+ 2 n ∈ Z . (145)

For the case ofM = 2 corresponding to the usual 3d geometry, this leads to
the standard picture that the D−function is zero for the space-like separation
X with IX = 0 and is different from zero for the future (IX = 2) and past (IX =
−2) cones. For the first sight, the situation for M > 2 looks unsatisfactory
because the D functions can be different from zero for the space-like separations
with IX 6= ±M . The point however is that there is no reason to require the
D−function to vanish on the global Cauchy surface Σ as a whole, where the
fields cannot be localized. The microcausality requires instead the D−function
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to have usual properties upon restriction to the space-time R1 × σ with some
local Cauchy surface σ as a space manifold. In particular, this is the case for

the 4d coordinates X aȧ of (87) at xab = x̄ȧḃ = 0 because the (real) inertia
index of matrices of this form can only take values +4 (future), 0 (space-
like separation) or −4 (past). As a result the corresponding 4d D− function
vanishes inside the future and past cones. It is however different from zero
at the boundaries of the future and past cones which conclusion respects the
microcausality principle and is in accordance with the properties of the usual
D−function for 4d massless fields known to be localized at the boundary of
the cone (see, for instance, Ref. 16). The 4d D−function is a distribution
localized at zeros of the eigenvalues of Xαβ . In section 7 we argue that the
microcausality for higherM is also respected provided the local Cauchy surface
σ is associated with an appropriate Clifford algebra in which case IX can only
take three values associated with the past, future and space-like separations.

Note that choosing the opposite type of the commutation relations,
would replace sin(πIX4 ) in (140) by cos(πIX4 ). As a result, the correspond-
ing D−function would be different from zero for the space-like arguments with
IX = 0 thus violating the microcausality principle. Therefore, analogously to
the case of Minkowski space-time, the locality requirement fixes statistics of
the fields in the usual way requiring the scalar and svector fields to obey the
Bose and Fermi statistics, respectively.

Let Θ(X) be the characteristic function of the future cone, i.e.

Θ(X) = 1 if X is positive semi-definite,

Θ(X) = 0 otherwise . (146)

The advanced, retarded and causal Green functions are defined as

Gret(X) = Θ(X)D(Z,Z)
∣

∣

∣

Y→0
, Gadv(X) = −Θ(−X)D(Z,Z)

∣

∣

∣

Y→0
, (147)

Gc(X) =
(

Θ(X)D−(Z)−Θ(−X)D+(Z)
)∣

∣

∣

Y→0
. (148)

7 Towards any M

In the general case, the local Cauchy bundle E is M -dimensional. Although a
full analysis of the structure of E is beyond the scope of this paper, as a first
step towards the general case we wish to emphasize the role of the Clifford
algebras in the generalized space-time geometry.



856 M.A. Vasiliev

In the examples ofM = 2 andM = 4 the space coordinates were associated
with the set of symmetric matrices σαβn

xαβ = xnσαβn (149)

such that the matrices

γi
α
β = σi

αγTγβ , i = 1 . . . d− 1 , (150)

satisfy the Clifford algebra relationships

γi
α
γγj

γ
β + γj

α
γγi

γ
β = 2ηijδ

α
β , (151)

where ηij is some positive definite symmetric form (for example, one can choose
a basis with ηij = δij). There are several reasons why the base space manifold
σ is likely to be associated with the Clifford algebras for the general case.

An immediate consequence of (151) is that the matrices σαβn are traceless

σαβn Tαβ = 0 , (152)

whenever d ≥ 3, thus belonging to the global Cauchy surface. Another impor-
tant property is that the momenta

kn(ξ) = σαβn ξαξβ (153)

map the cone RM/Z2 on Rd−1, i.e. varying real twistor parameters ξα it is
possible to get arbitrary values of kn(ξ). This results from the invariance of
the construction under the space rotations SO(d− 1) generated by

Mnm =
1

4
[γn, γm] . (154)

By a space rotation one aligns a vector kn(ξ) along any direction and then
normalizes it arbitrarily by a rescaling of ξα. That momenta kn(ξ) span R

d−1

allows for localization of the fields in d − 1 space xn coordinates dual to kn,
i.e., by means of integration over kn, one can reach the delta-functional initial
data δ(xn − xn0 ) localized at any point of the physical space Rd−1.

Because the square of any linear combination of γ matrices is proportional
to the unit matrix, for any vector an there exists such a basis in the space of
ξα that

Tαβ = δαβ , anσαβn =
√
a2Y αβ , a2 = anamηnm , (155)

where

Y =

(

I 0
0 −I

)

, (156)
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with all four blocks being M
2 × M

2 matrices (M is assumed to be even). As a
result, the (non-degenerate) space-time matrix coordinates of the form

Xαβ = tTαβ + xnσαβn (157)

can only have three values of the inertia index (138)

IX = M for t >
√
x2 ,

IX = −M for t < −
√
x2 ,

IX = 0 for t2 < x2 , (158)

where
x2 = xnxmηnm . (159)

This corresponds to the standard space-time picture with the future cone (IX >
0), past cone (IX < 0) and the space-like region (IX = 0). In accordance with
the consideration of section 6 this property of space Clifford coordinates implies
microcausality in the space-time R× σ.

Note that the condition that IX can take in the linear space of matrices
of the form (157) only maximal value M (future), minimal value −M (past)
or some fixed intermediate value IX = Ispace 6= ±M for all values of t and
xn can be taken as an alternative definition leading to the Clifford algebra
relations (151). Actually, it is true if for any xn the matrix xnσαβn Tβγ has just
two different eigenvalues. Since the sign change of xn maps Ispace → −Ispace,
the only consistent choice is Ispace = 0. Assuming that the time t is defined
so that the matrices σαβn associated with the space coordinates are T -traceless
this implies that the matrix xnσαβn Tβγ has M

2 eigenvalues µ and M
2 eigenvalues

−µ. Equivalent statement is that, for any xn, the matrix xnσαβn Tβγ is traceless
and its matrix square is proportional to the unit matrix that is equivalent to
the Clifford algebra definition (151).

These properties indicate that the Clifford algebra realization of space is
closely related to the concept of locality and microcausality. In other words,
the generalized space-timeMM is visualized via Clifford algebras. Let us note
that the space metric ηnm appears in the theory just by identification of an
appropriate Clifford algebra (151).

The Clifford realization of the space-time R×σ guarantees usual conformal
symmetry in d dimensions. The ordinary space rotation symmetry o(d − 1)
is generated in the standard way as the subalgebra of the generalized Lorentz
symmetry slM spanned by the generators (154). Its extension to the Lorentz
subalgebra o(d− 1, 1) ⊂ slM is achieved by boosts realized as

ln = γn . (160)
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The Lorentz algebra extends to the Poincare algebra by the transformations
(23), (24) with the parameters

εαβ = a0Tαβ + akσαβk . (161)

Its further extension to the conformal algebra is achieved via the generalized
special conformal transformations (23), (24) with the parameters

εαβ = b0Tαβ + bkσkαβ . (162)

Recall that the dilatation appears as the central component in the glM exten-
sion of the generalized Lorentz transformations, i.e. it is generated by the unit
element of the Clifford algebra.

The (classical) generalized electro-magnetic duality group identifies with
such a subgroup of the generalized Lorentz transformations SLM that leaves
invariant the time matrix Tαβ and the space coordinates of the local Cauchy
surface. By definition, such defined duality group acts on the fiber of the local
Cauchy bundle E, that is on the indices of the usual space-time fields in R×σ.

ForM = 2p the algebra of real matricesMat2p is isomorphic to a particular
real Clifford algebra. Despite the system was shown to be Lorentz covariant,
this does not necessarily mean that the set of space γn matrices associated
with the local Cauchy surface admits an extension by a matrix γ0

γ0
α
γγ0

γ
β = −δαβ , (163)

that anticommutes to the space-like matrices γi. Leaving details for a future
publication,17 let us just mention that γ0 exists when the Clifford algebra has
antisymmetric charge conjugation matrix (p = 1 or 2 mod 4) but does not
exist otherwise (p = 0 or 3mod 4). This fact has an important interpretation.
Namely, the cases that do not allow Lorentz invariant extension of the Clifford
algebra are chiral, i.e. svector indices correspond to left or right real spinors
(depending on the definition of γ in view of the automorphism γ → −γ).
Indeed, when γ0 exists, the boost generators can be identified as usual with
γkγ0. The operator Γ = γ0γ1 . . . γd−1 then allows to define chirality in the
standard way, thus giving rise to left and right svectors (may be complex
conjugated to each other). If γ0 does not exist one has to use the realization
(160) for boosts implying that the svector representation forms an irreducible
(and, therefore, chiral) representation of the Lorentz algebra. As a result, the
corresponding theory as a whole turns out to be chiral, describing irreducible
(anti)self-dual conformal fields in d dimensions. Recall that conformal fields
are described by scalar, spinor and, for d even, by massless fields associated
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with the representations of the little group o(d − 2) described by rectangular
Young diagrams18,19of maximal height 1

2 (d− 2).
Let us consider the important example of M = 8. The corresponding real

Clifford algebra is defined by the relationships

{ψA , ψB} = −δAB , A,B = 1− 6 . (164)

The charge conjugation matrix Cαβ = Cβα is symmetric and positive definite.
It can therefore be identified with the time-defining matrix Tαβ . The matrices

ψA1...An αβ = ψ[A1
. . . ψAn]αβ (165)

turn out to be symmetric in α, β for n = 0, 3 and 4 and antisymmetric for n =
1, 2, 5, 6 in an irreducible representation. Here the indices α and β are raised
and lowered by the charge conjugation matrix Cαβ identified with ψA1...An αβ

at n = 0. Being antisymmetric, the matrices ψA cannot serve themselves as
a basis for coordinates of a local Cauchy surface in MM . One can however
choose five symmetric matrices

γn = ψn56 for n = 1 . . . 4 , γn = ψ1234 for n = 5 , (166)

that satisfy the Clifford algebra relations

{γn , γm} = 2δnm , n,m = 1 . . . 5 . (167)

These matrices are traceless and can therefore be identified with a particular
basis of space coordinates. Along with the time matrix Cαβ = Tαβ this de-
fines a 6d space-time. The matrices (165) do not contain a matrix γ0 that
anticommutes to γn. Eight-component svector therefore identifies with a chi-
ral 6d spinor. The properties of the M8 model make it reminiscent of the
6d (super)conformal theory proposed by Hull.20 We expect that the M = 8
theory is a higher spin extension of the 6d conformal self-dual gravity theory
studied by Hull.20 For supersymmetrization of the model for any M see Ref. 1
and section 8 of this paper. In Ref. 1 it was also explained for the example of
4d (i.e. M = 4) theory how one can truncate the model to a particular (lower
spin, if desirable) irreducible supermultiplet by virtue of certain auxiliary non-
commutative scalar fields.

Let us note that, excluding the fifth coordinate associated with γ5 from
the set of space coordinates allows one to introduce the 5d time-like matrix
γ0 by identifying it with ψ123456. In fact, one can treat such a model as a
(non-chiral) result of compactification of the original 6d chiral model on S1

upon an appropriate identification in the momentum space.
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The matrices γn provide a basis for the coordinates of the M = 8 lo-
cal Cauchy surface R5. Let us now show that the rest three coordinates of
the local Cauchy bundle are associated with the group manifoldf SO(3), i.e.
E = R5 × SO(3). The point is that the five generalized space momenta

kn(ξ) = γnαβξ
αξβ (168)

are invariant under the SU(2) rotations of ξα generated by ψ5, ψ6 and ψ56. The
coordinates of SU(2) are analogous to the cyclic coordinate φ in the M = 4
case. Because we are only interested in bilinear combinations in the twistor
momenta ξα the SU(2) reduces to SO(3). Analogously to the 4d case, the
modes on SO(3) are expected to be associated with various 6d (generalized)
higher spin massless fields. Moreover, SO(3) is expected to be a (classical)
electro-magnetic duality group of the M = 8 model because, by construction,
it is a subgroup of the generalized Lorentz transformations that leaves invariant
the time coordinate and the coordinates of the local Cauchy surface σ. It would
be interesting to compare its component action with the 6d higher spin duality
transformations discussed by Hull.15

For the M = 16 case with generalized conformal symmetry Sp(32) the sit-
uation is analogous toM = 8. The Clifford basis elements (165) are symmetric
for n = 0, 3, 4, 7, 8 and antisymmetric for n = 1, 2, 5, 6. The maximal number of
9 Clifford space coordinates can be identified with ψA1...An αβ (A = 1 . . . 8) at
n = 7 and n = 8. This implies a nine-dimensional local Cauchy surface σ and,
therefore, ten-dimensional space-time. Again, the corresponding 10d theory is
chiral because the corresponding Clifford algebra associated with the space co-
ordinates does not admit an extension to the 10d Minkowski case. It becomes
a non-chiral relativistic 9d theory upon compactification of one of the space
dimensions. The M = 16 local Cauchy bundle is expected to have a seven-
dimensional fiber. The world line analysis of the twistor dynamics suggests21

that the relevant choice of the M = 16 Cauchy bundle may be E = σ × S7,
σ = R 9.

TheM = 32 model possessing the generalized conformal symmetry Sp(64)
is a relativistic 11d theory and, as such, can be related to M theory. (Note
that the relevance of 64 supercharges to M -theory was discussed in Ref. 5).

A detailed analysis of M > 4 models requires some technicalities on the
Clifford algebra realization ofMM and associated symmetries and will be given
elsewhere.17 One hard issue is to analyze higher M analogues of the changes
of variables (79) and (89), (90).

f Note that the idea that the M = 8 twistor space identifies with R5×S3 was also suggested
in the context of the analysis of the world-particle models by Lukierski.21
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8 Extended supersymmetry

The unfolded form of the superfield extended supersymmetry generalization
of the equations (21) and (22) was discussed in Ref. 1. Here we would like to
discuss a slightly different, although equivalent, formulation of an extended su-
persymmetric system that exhibits the supersymmetry osp(2L, 2M). Namely,
let us introduce the generalized supercoordinates XAB with A = (α, i),
α = 1 . . .M , i = 1 . . . L. Let π(A) = 0 for A = α and π(A) = 1 for A = i. The
coordinates XAB are required to be graded symmetric

XAB = (−)π(A)π(B)XBA. (169)

The coordinates Xαβ = Xβα and Xij = −Xji are even (commuting) while
Xαi = Xiα are odd (i.e., anticommuting elements of Grassmann algebra).
Note that the anticommuting supercoordinates can be identified with a half
of the superspace coordinates θαi of section 7.3 of Ref. 1. The formulation
presented here can be thought of as a sort of a chiral superfield formulation
compared to that of Ref. 1. The coordinates X ij are new.

The straightforward generalization of the equation (21) is

∂2

∂XAB∂XCD
Φ(X) = (−1)π(C)π(B) ∂2

∂XAC∂XBD
Φ(X) . (170)

This equation is invariant under the straightforward extension of the sp(2M)
transformations (1)-(3) to osp(2L, 2M) with appropriate grading-dependent
signs inserted. Generic solution of (170) is analogous to (75)

Φ(X) =
1

π
M
2

∫

dM,Lη
(

Φ+(η) exp iηAηBX
AB+Φ−(η) exp−iηAηBXAB

)

, (171)

where ηA = (ξα, ψi) with ξα and ψi being, respectively, even and odd
(ψiψj = −ψjψi) integration variables. We require

Φ±(−η) = (−1)M+LΦ±(η) , (172)

relaxing the condition that M is even. As a result, the osp (2L, 2M) invariant
system (170) turns out to be equivalent to the set of the fields b(ξ, ψ) and
f(ξ, ψ) in MM satisfying

b(ξ,−ψ) = (−1)L+Mb(ξ, ψ) , f(ξ,−ψ) = −(−1)L+Mf(ξ, ψ) .

In other words, a single field Φ(X) in the generalized superspace contains a set
of bosons and fermions described by all antisymmetric tensors of even (odd)
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and odd (even) ranks, respectively, for M + L even (odd). Note that the
generators of osp(2L, 2M) can be realized as quantum operators analogous to
(128)-(130) associated with various bilinear combinations of ηA and ∂

∂ηA
.

In fact, the relevance of the equations (170) is most obvious from their
unfolded form

(
∂

∂XAB
− ∂2

∂Y A∂Y B
)Φ(Y |X) = 0 , Φ(−Y |X) = Φ(Y |X) , (173)

where Y A = (yα, ωi) are auxiliary supercoordinates. Following to the methods
of unfolded dynamics (see Refs. 1, 2 and references therein) it is elementary
to see that the system (173) is osp(2L, 2M) invariant, is equivalent to (170)
for Φ(X) = Φ(0|X) and reduces to the system of bosons and fermions inMM

associated, respectively, with odd and even elements of the Grassmann algebra,
generated by ωi, dual to the Grassmann algebra generated by ψi.

9 Geometric origin of the generalized space-time

The group Sp (2M) is constituted by the real matrices

A =

(

a b
c d

)

, (174)

with M ×M blocks aα
β , bαβ , c

αβ and dαβ satisfying relations

aα
γbβγ = aβ

γbαγ , (175)

cαγd
βγ = cβγd

αγ , (176)

aα
γdβγ − bαγcβγ = δβα , (177)

equivalent to the invariance condition ACAt = C for the skewsymmetric bi-
linear form

C =

(

0 I
−I 0

)

, (178)

where I is the M ×M unit matrix.
Sp (2M) contains the subgroup T constituted by the elements

t(X) =

(

I X
0 I

)

, (179)

with various real generalized coordinates Xαβ . The group of translations T is
Abelian and has the product law

t(X)t(Y ) = t(X + Y ) . (180)
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The subgroup of generalized Lorentz transformations and dilatations is de-
scribed by the matrices (174) with b = c = 0 and aα

γdβγ = δβα . The subgroup
of special conformal transformations is constituted by the matrices (174) with
a = d = I, b = 0.

Let PM be the parabolic subgroup of Sp (2M) constituted by the matrices
(174)-(177) with bαβ = 0, i.e.

PM 3 p =
(

a 0
c d

)

. (181)

The compactified generalized space-time is the coset space

CMM = Sp (2M)/PM , (182)

constituted by the elements h ∈ Sp (2M) identified modulo the right action
of PM

h ∼ h1 = hp , h ∈ Sp (2M) , p ∈ PM . (183)

CMM consists of the classes represented by elements t(X) of the group of
translations T , which identify with the points of the uncompactified generalized
space-timeMM , along with some additional equivalence classes that represent
conformal infinity.

Any Sp (2M) group element A (174) with a nondegenerate block d is in

the class represented by some t(X) ∈ T . Indeed, once det
∣

∣

∣dαβ

∣

∣

∣ 6= 0, then

A = A′C ′ with some

A′ =

(

a′ b′

0 d′

)

, C ′ =

(

I 0
c′ I

)

, (184)

and then A′ = t(X)Ã where Ã has only diagonal blocks nonzero. As a result,

any element of Sp (2M) with det
∣

∣

∣dαβ

∣

∣

∣ 6= 0 belongs to some equivalence class

associated with the uncompactified generalized space-time MM .
From (177) it follows that d is non-degenerate for any element p (181) of the

parabolic subalgebra PM . As a result, rank|d| of an element A ∈ Sp (2M) (174)
is the same for all Ap, p ∈ PM . In other words, rank|d| characterizes different
types of the equivalence classes, i.e. different subsets of the compactified space-
time CMM . The subset of elements with det|d| = M identifies with MM .
Those with rank|d| = m, m = 0, 1, 2, . . .M − 1 describe the conformal infinity
strata mentioned in section 1.

The inversion R is now a well-defined transformation in CMM . Consider
the following element of Sp (2M)

R̃ =

(

0 I
−I 0

)

, (185)
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i.e. R̃ = A (174) with aα
β = 0, dαβ = 0, bαβ = δαβ , c

αβ = −δαβ (note that
the conditions (175)-(177) are satisfied). It follows that

R̃ t(X) =

(

0 I
−I −X

)

. (186)

Choose p ∈ PM in the form

p(X) =

(

−X 0
I −X−1

)

. (187)

Then

R̃ t(X) p(X) =

(

I −X−1
0 I

)

. (188)

Thus R̃ maps a non-degenerate X to −X−1. Up to a sign, this is the inversion
(13). If X is degenerate, R̃ t(X) is also well-defined in CMM , mapping X to
some element of the conformal infinity classes.

More generally, it is easy to see that according to the definition (182), the
action of a general element (174) inM is described for nondegenerate (cX+d)
by the matrix fraction-linear transformation

A(X) = (aX + b)(cX + d)−1. (189)

This formula for the action of Sp (2M) on the space of symmetric matrices was
used in particular in Refs. 6 and 7. It reproduces (9), (10), (11) and (188) as
particular cases.

Note that the minus sign in the transformation low (188) is not occasional.
The group Sp (2M) does not contain the PT reflection Xαβ → −Xαβ . For
PT reflection to be included, Sp (2M) has to be extended to Sp (2M) × Z2

which can be defined as the group that leaves the form C invariant up to a
sign. This is equivalent to replacing (177) by

aα
γdβγ − bαγcβγ = ±δβα . (190)

Simultaneously, PM has to be extended to PM ×Z2 with aα
γdβγ = ±δβα . The

PT reflection is represented by

PT =

(

I 0
0 −I

)

. (191)

It acts properly on the coordinates Xαβ because PT t(X)PT = t(−X). The
true inversion (13) R ∈ Sp(2M)× Z2 is then represented by

R =

(

0 I
I 0

)

. (192)
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The central element of Sp (2M)

F =

(

−I 0
0 −I

)

(193)

acts trivially in CMM . However, according to (17) it acts nontrivially on the
sections of the corresponding fiber bundles over CMM if fermions are present
carrying odd numbers of the svector indices. In other words, F is the boson-
fermion parity operator.

Let us note that an alternative definition of Sp (2M)−invariant 1
2M(M +

1)−dimensional space was given by Fronsdal7 in terms of isotropic M−forms.
Although we have not check this explicitly, the two constructions are expected
to be equivalent.

The generalization to superspace is straightforward. Sp (2M) is extended
to OSp(L, 2M) constituted by the supergroup elements

A =





a b e
c d f
g h p



 , (194)

that leave invariant the (super)antisymmetric bilinear form

C =





0 I 0
−I 0 0
0 0 I



 . (195)

The first, second and third rows (columns) in these formulas have, respectively,
heights (widths) M , M and L. The superspace with supercoordinates Xαβ ,
θαi , introduced in Ref. 1, corresponds to the coset space OSp(L, 2M)/PL,2M
where the parabolic supergroup PL,2M is formed be the supergroup elements
A ∈ OSp(L, 2M) (194) with b = 0 and e = 0.

The superspace of section 8 of this paper results from the decomposition
of OSp (2L, 2M)

A =









a b e p
c d f q
g h n r
v u m l









, (196)

with the invariant supersymplectic form

C =









0 I 0 0
−I 0 0 0
0 0 0 I
0 0 I 0









, (197)
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and the parabolic supergroup P ′2L,2M formed by the elements A ∈
OSp (2L, 2M) of the form

A =









a 0 e 0
c d f q
g 0 n 0
v u m l









. (198)

10 Outlook

It is shown that the equations of motion (21) and (22) in the generalized space-
time proposed in Ref. protect1 admit consistent interpretation compatible with
causality both at the classical and quantum levels. The coordinates of the
generalized space-time MM are various symmetric M × M matrices Xαβ ,
α, β = 1 . . .M . The future and past cones of the origin of coordinates Xαβ = 0
identify with the positive-definite and negative-definite matrices Xαβ . The
generalized space-time is shown to have only one time coordinate associated
with any positive-definite matrix Tαβ (or positive semi-definite for light-like
directions). Different choices of Tαβ correspond to different coordinate frames
related by generalized Lorentz transformations.

A global Cauchy surface Σ is defined as such a submanifold of MM that
any two its points are separated by a space-like interval and the set of points
that belong to the future and past cones of all points of Σ covers the whole
generalized space-time. A particular realization of Σ is provided by matrices
Xαβ satisfying TαβX

αβ = 0, where Tαβ is the inverse of Tαβ .
A local Cauchy bundle E is a M−dimensional space that provides the full

set of unrestricted initial data for the problem. The base space σ of E, called
local Cauchy surface, is identified with the usual d− 1 dimensional space. The
difference between the concepts of global Cauchy surface and local Cauchy
bundle is due to the fact that the equations (21) and (22) contain constraints
that to some extend fix behavior of the fields on the global Cauchy surface.
Usual space-time is identified with the fibration R1 × σ over the local Cauchy
surfaces parametrized by the time parameter t. The Cauchy problem in the
generalized space-timeMM is defined in terms of a set of functions on E that
allow for localization in terms of distributions on σ. The causality requires
the propagation in the space-time R × σ to be microcausal. Remarkably, the
coordinates of the local Cauchy surface compatible with microcausality turn
out to be associated with the subspace of the symmetric matrices satisfying the
Clifford algebra relations. This is how the ordinary Minkowski coordinates and
the spinor interpretation of the indices α, β (forM = 2p) reappear. Let us note
that the concept of the global Cauchy surface is associated with generalized
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space-time (MM in our case) while the concept of local Cauchy bundle is
dependent on a particular dynamical system inMM . In other words, different
dynamical systems can provide different visualizations of the same generalized
space-time MM via different local Cauchy bundles.

The compactification CMM = Sp (2M)/PM of MM is introduced, with
PM being an appropriate parabolic subgroup of Sp (2M). It is shown how the
compactified generalized space-time CMM contains infinities of MM associ-
ated with the singularities of the generalized inversion in MM . The formu-
lation of dynamics in the generalized space-time provides geometric interpre-
tation of the classical electro-magnetic duality group as the subgroup of the
generalized Lorentz transformations SLM ∈ Sp (2M) that leaves invariant the
space-time R× σ.

For the lower values ofM , namelyM = 2 andM = 4, the Lorentz content
of the equations (21) and (22) is completely clear. M2 identifies with the
usual 3d space-time Σ = E = σ = R2. For M4, E = σ × S1 where σ = R3 is
the usual three-dimensional space while functions on S1 parametrize various
fields of all spins in the usual 4d space-time. The duality group U(1) is the
extension of the electro-magnetic duality to all 4d higher spins. The M = 8
and M = 16 models describe some d = 6 and d = 10 dynamical systems with
σ = R5 and σ = R 9, respectively. Their Lorentz field content will be given
elsewhere.17 Presumably, the M = 8 theory provides a higher spin extension of
the 6d superconformal gravity theory by Hull.20 The M = 8 classical duality
group inherited from MM is SO(3).

The case of M = 32 with the generalized conformal symmetry Sp(64) cor-
responds to some d = 11 relativistic theory. To study its possible relationship
with M theory is one of the most exciting directions for the future investiga-
tion. A related question is to analyze whether for some M there may exist
different sets of local Cauchy surfaces in the same model that look like differ-
ent space-times. Presumably, this could explain duality of different theories as
(non-locally equivalent) different local realizations of the same model in MM .

The approach proposed in Ref. 1 and further developed in this paper op-
erates in terms of a straightforward generalization of twistors. As a result,
solutions of the field equations decompose into positive and negative frequency
parts associated with the decomposition of the solution into the holomorphic
and antiholomorphic parts in the complex coordinates as in (115) and (116).
This allows for a natural quantization prescription in terms of creation and
annihilation operators that depend on the twistor variables ξα as in (120) and
(121). The svector indices α = 1 . . .M appear in a quite uniform way for
all even M . Since the svector indices turn out to be identified with some
sets of space-time spinor indices via the Clifford realization of the Minkowski
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space-time, this may have a number of important improvements in the sit-
uations in which the difference between spinor and tensor representations in
the Minkowski track plays a role, like in dimensional regularization and su-
persymmetry. The dynamics in the generalized space admits an extension to
generalized supersymmetric models exhibiting OSp (L, 2M) supersymmetries
realized in the appropriate superspaces. Let us emphasize that only very spe-
cial Minkowski relativistic models, like, e.g., the model of all massless 4d fields,
allow for the realization in the generalized space-timeMM with unbroken gen-
eralized symmetries.

One of the lessons of our analysis is that invariant local field equations
formulated in a space S can effectively describe propagation in smaller spaces
s associated with S. By local observations one can only observe s. However,
the full space S manifests itself via symmetries and specific particle spectra
of the theory. In the model under consideration S = MM and s is some
Minkowski space-time. One can say that the usual Minkowski space-time is a
visualization of the generalized space-time MM . It is tempting to speculate
that we live in a generalized space-time MM which cannot be seen by local
observations, but manifests itself via dualities.

An important question is what is a Lagrangian form of the dynamics in
the generalized space-time. An interesting option somewhat reminiscent of
the group manifold approach22 is that the Lagrangian is a functional on the
submanifold R1 × σ associated with the usual space-time. To proceed in this
direction it is at any rate necessary to develop the formulation of the dynami-
cal equations in terms of potentials rather than in terms of the fields b(X) and
fα(X) which, from the perspective of the usual space-time, are interpreted as
generating functions to the field strengths (like Maxwell field strength, Weyl
tensor and their further higher spin generalizations). Introducing the general-
ized gauge field (to contain spin one potential, spin 2 metric tensor etc) will
presumably break down the generalized conformal symmetry transformations
Sp (2M) of the equations (21) and (22) to a smaller Poincare or AdS-type
symmetry.

The generalized AdS-like space-time with 1
2M(M + 1) coordinates was

identified in Ref. protect1 with the group manifold Sp (M). The AdS-
type symmetry algebra associated with the left and right actions of Sp (M)
on itself is sp(M) ⊕ sp(M). Its Lorentz subalgebra spl(M) identifies
with the diagonal sp(M) while AdS translations belong to the coset space
sp(M)⊕ sp(M)/spl(M). The conformal symmetries extend sp(M)⊕sp(M) to
sp(2M). For M = 2 one recovers the usual 3d embedding

o(2, 2) ∼ sp(2)⊕ sp(2) ⊂ sp(4) ∼ o(3, 2) .
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The commutation relations of the generalized AdS space-time symmetries
are 1

i
[Lαβ , Lγδ] = VβγLαδ + VαγLβδ + VβδLαγ + VαδLβγ , (199)

1

i
[Lαβ , Pγδ] = VβγPαδ + VαγPβδ + VβδPαγ + VαδPβγ , (200)

1

i
[Pαβ , Pγδ] = λ2

(

VβγLαδ + VαγLβδ + VβδLαγ + VαδLβγ

)

, (201)

where Vαβ = −Vβα is a Sp (M) invariant symplectic form and λ2 is a gener-
alized cosmological constant parameter. Note that, in the generalized space-
times, the Lorentz-type subalgebra slM of the conformal algebra is larger than
the Lorentz subalgebra sp(M) of the generalized AdS or Poincare algebras.

The generalized Poincare symmetry results from the limit λ → 0 and
consists of translations that shift the coordinates as

Xαβ → X ′αβ = Xαβ + aαβ , (202)

and Sp (M) “Lorentz rotations” that leave invariant the antisymmetric invari-
ant form V αβ . The full list of 1

2M independent invariants under the generalized
Poincare transformations consists of

χn = tr X2n , n = 1 . . .
1

2
M , (203)

where the matrix Xα
β is defined with the aid of the symplectic form Vαβ

Xα
β = VγαX

γβ . (204)

(Note that traces of odd powers of Xα
β vanish by antisymmetry of the sym-

plectic form Vαβ .) In particular, χ1 is bilinear in the coordinates X and can
be identified with the Lorentz-like interval of the generalized space-time.

A new point compared to the usual Minkowski geometry is that the metric
tensor in the generalized space-time is not an independent object being built
from the symplectic form Vαβ

ηαβ,γδ =
1

2

(

V αγV βδ + V αδV βγ
)

. (205)

This metric tensor allows one to single out generalized Poincare invariant Klein-
Gordon and Dirac equations from (21) and (22)

ηαβ,γδ
∂2

∂Xαβ∂Xγδ
b(X) = 0 , (206)

ηαβ,γδ
∂

∂Xαβ
fγ(X) = 0 . (207)
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The special form of the metric (205) may affect the concepts of general rel-
ativity in the generalized space-time: the corresponding Riemannian geometry
is expected to be very restricted. Perhaps, this fact may be important for the
search of the M−interactions in the conformal theories in higher dimensions.20

Note that although being based on a symplectic form V αβ , a generalized curved
geometry is expected to have little to do with the usual symplectic geometry
because the space-time coordinates are symmetric tensors rather than vectors.
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