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1 Introduction

One of our basic assumptions is that the laws of physics are based on the space
time structure of Rn. The coordinates form a differential manifold on which
gauge theories are built. These gauge theories describe all known physics from
the theory of gravity to the standard model of elementary particle physics.
All known experiments support this assumption, nevertheless we are obliged
to ask if this will still be true at ever higher energies. This is motivated by
the fact that the rules of local quantum field theory that make gauge theories
in particle physics so successful are not successful for the theory of gravity.
Quantum gravity is plagued by too many infinities, which can be traced to the
short distance behaviour of the theory.

The question arises if at very short distances the theory can be changed,
possibly by changing our notion of space-time. We recall that the structure
of a differential manifold implies strong information on the topology of the
space. Points and their neighbourhoods are defined as well as the distance
between points. Is this really the true structure of space-time at very short
distances? Or do we have to replace the concept of a differential manifold by
weaker assumptions? A very weak assumption is that the coordinates form an
algebra1 and that the rules of this algebra, addition and multiplication, are
the only relevant information to start with. Thus in the chain coordinates –
differential manifold – gauge theory we could try to replace differential manifold
by algebra and see how far we can develop such a theory.

This idea is not new.2,3 It was already expressed in a letter by Heisenberg
to Ehrenfest in the year 1930. There noncommutative coordinates that lead
to an uncertainty relation for the coordinates themselves were proposed. But
Heisenberg could not formulate these ideas mathematically. The idea, however,
propagated and led to a publication by Hartland S. Snyder in the year 1947.
In this paper Snyder discussed quantized space time for a model with a Lie
algebra structure for the coordinates. In a preceding letter to Pauli (1946)
Snyder discussed the interpretation of a theory with noncommutative space-
time in a fully satisfactory way. This discussion was based on the rules of
quantum mechanics, treating the selfadjoint operators for space and time as
physical observables. In a letter to Bohr (1947), Pauli mentioned the work
of Snyder as a mathematically ingeneous proposal which, however, seemed to
Pauli a failure for reasons of physics.

In the meantime our mathematical skill, also concerning algebraic proper-
ties, has seen a strong development, the same is true for the art of designing
new experiments at ever higher energies. It seems to be natural to try anew
the noncommutative coordinates approach and to see if it still meets Pauli’s
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objections. Finally, experiment will have to decide, but at any energy reached
at new accellerators the question on the causal structure of space-time has to
be asked again, noncommutative space-time only being a particular version of
a modification.

In this article I try to show that a gauge theory based on an algebra can
be constructed and that definite physical consequences can be derived and
tested experimentally. In this construction, coordinates more or less lose their
meaning as physical observables and only play a role as parameters in the
formulaton of the theory.

2 The algebra

Let me first exhibit the algebraic structure of Rn and then generalise to non-
commutative coordinates. The coordinates x1 . . . xn ∈ Rn are considered as
elements of an associative algebra over C. The algebra, freely generated by
these elements, will be denoted by C

[

[x1, . . . , xn]
]

. The two brackets indicate
that formal power series are allowed in the algebra.

The elements of this algebra are then subject to relations that make them
commutative:

R : xixj − xjxi = 0 . (1)

These relations generate a two-sided ideal IR; it consists of all the elements
of the algebra C

[

[x1, . . . , xn]
]

that can be obtained from the relation (1) by
multiplying (1) from the left and the right by all possible products of the
coordinates. We factor out this ideal and obtain the desired algebra:

Ax =
C
[

[x1, . . . , xn]
]

IR
. (2)

The elements of this algebra are the polynomials and the formal power series
in the commuting variables x1, . . . , xn ∈ R,

f(x1, . . . , xn) ∈ Ax , (3)

f(x1, . . . , xn) =
∞
∑

ri=0

fr1...rn(x
1)r1 · · · · · (xn)rn .

Multiplication in this algebra is the pointwise multiplication of these functions.
This algebraic concept can be easily generalized to noncommutative coor-

dinates. We consider algebras, freely generated by elements x̂1, . . . x̂n, again we
call these elements coordinates, but now they are supposed to satisfy relations
that make them noncommutative:

Rx̂,x̂ : [x̂i, x̂j ] = iθij(x̂) . (4)
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Following L. Landau, noncommutativity carries a hat. Again the relations (4)

generate an ideal and we define our algebra Âx̂ as follows:

Ax̂ =
C[[x̂1, . . . , x̂n]]

IRx̂,x̂

, f̂ ∈ Âx̂ . (5)

We impose one more condition on the algebra. The vectorspace of the
homogeneous polynomials of degree m, V̂ m

x̂ should have the same dimension
as V m

x . Algebras of this type are said to have the Poincare-Birkhoff-Witt
property. In the following we shall consider such algebras only.

3 The ∗ product

The vectorspaces V m
x and V̂ m

x̂ are finite-dimensional, thus they are isomorphic.
To establish an isomorphism we map a given basis of one space into a given
basis of the other space. This then defines a vectorspace isomorphism between
the vectorspaces V̂x̂ and Vx .

We now change the algebra Ax to extend the above vector space isomor-
phism to an algebra isomorphism. For this purpose we have to change the
multiplication law in Ax. When we multiply two elements in Âx̂ we can com-
pute from the multiplication law in Âx̂ the coefficient function of the product
in a given basis. We define the product in the vectorspace Vx to be the element
with the same coefficient function as it was calculated in Âx̂ . This multipli-
cation rule we call ∗ (star) product and this defines the algebra ∗Ax . The

algebras Âx̂ and ∗Ax are isomorphic.
It is natural to use the elements of ∗Ax as objects in physics. The pointwise

product has to be replaced by the ∗ product. In all the cases of interest the ∗
product can be expressed with the help of a differential operator. This makes it
possible to extend the ∗ product to functions without referring to power series
expansion. Thus we treat the elements Ax like ordinary fields but replace
the pointwise product by the ∗ product. This would be the starting point
of deformation quantization. As we have based the concept on associative
algebras, associativity of the ∗ product is guaranteed.

4 Gauge theory

In this context it is possible to formulate a gauge theory.4 We start from a Lie
algebra:

[T a, T b] = ifabc T c . (6)

In a usual gauge theory on commutative spaces the fields will span a repre-
sentation of this Lie algebra and they will transform under the usual gauge
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transformation with Lie algebra valued parameters:

δα0ψ(x) = iα0(x)ψ(x) . (7)

The commutator of two such transformations remains Lie algebra valued.

(δα0δβ0 − δβ0δα0)ψ = −(β0α0 − α0β0)ψ = i(α0 × β0)ψ = δα0×β0ψ , (8)

α0 × β0 ≡ α0
aβ

0
b f

ab
c T c.

For a theory on non-commutative spaces we start with fields that are
elements of ∗Ax. Gauge transformations have to be defined with the ∗ product:

δαψ(x) = iα(x) ∗ ψ(x) (9)

The star product of functions is not commutative. The commutator of two Lie
algebra valued transformations does not reproduce a Lie algebra valued param-
eter. Thus we shall assume that the infinitesimal transformation parameters
are enveloping algebra valued:1

α(x) = α0
a(x)T

a+α1
ab(x) : T

aT b : + · · ·+αn−1
a1...an

(x) : T a1 · · ·T an : + · · · (10)

We have adopted the :: notation for a basis in the enveloping algebra of the
Lie algebra. Completely symmetrized products could serve as a basis:

: T a := T a , : T aT b :=
1

2
(T aT b + T bT a) , etc. (11)

The commutator of two transformations is certainly enveloping algebra
valued.

(δαδβ − δβδα)ψ = [α ∗, β] ∗ ψ . (12)

The disadvantage of this approach is that infinitely many parameters αn(x)
have to be introduced.

It is a surprise that it is possible to define gauge transformations where all
the parameters αn(x) depend on the finite set of parameters α0(x) (Lie algebra
valued) and in addition on the gauge potential a(x) of a usual gauge theory and
on their derivatives. The gauge potential a(x) has the usual transformation
properties:

δai = ∂iα
0 + i[α0, ai] , (13)

δai,a = ∂iα
0
a − α

0
bf

bc
a ai,c .
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We will call the new type of transformation parameters Λα0(x) . The new
transformations are supposed to close under a commutator into a transforma-
tion characterized by (α0 × β0) ,

δα0ψ(x) = iΛα0(x)(x) ∗ ψ(x) ,

(δα0δβ0 − δβ0δα0)ψ = δα0×β0ψ , (14)

(α0 × β0)a = α0
bβ

0
cf

bc
a .

These equations define Λα0(x) . We shall see that all αn(x) in (10) can be
defined in terms of α0(x) and the gauge potential a(x). The transformation
property (14) then holds as a consequence of (13). The solution of this problem,
however, is not unique, this will be seen in the following.

As a consequence of the a dependence of Λ0
α we have to transform Λ0

α

under the second variation in the commutator. This changes equation (12)
and this is the reason why the new approach works.

5 Constant θ

To illustrate this approach we restrict it to the algebra where θµν is a constant.
In this case we obtain in a fully symmetrized basis the following ∗ product:5

(f ∗ g)(x) = e
i
2

∂

∂xi
θij ∂

∂yj f(x)g(y)
∣

∣

∣

y⇒x
(15)

=

∫

dny δn(x− y)e
i
2

∂

∂xi
θij ∂

∂yj f(x)g(y).

We expand in θ,

Λα0 = α0
aT

a + θijΛ1
α0,ij + · · · . (16)

The ∗ product has to be expanded as well. Finally we expand the defining
equation for Λα0 ,

(δα0δβ0 − δβ0δα0)ψ = i(δα0Λβ0 − δβ0Λα0) ∗ ψ + [Λα0
∗, Λβ0

] ∗ ψ , (17)

= δα0×β0ψ = iΛα0×β0 ∗ ψ .

The zeroeth order in the expansion of (17) defines α0 as Lie algebra valued.
In first order we obtain

θij
(

(δα0Λ1
β0,ij − δβ0Λ1

α0,ij)− i([α
0,Λ1

β0,ij ] (18)

− [β0,Λ1
α0,ij ])

)

+
1

2
∂iα

0
a∂jβ

0
b : T aT b := θijΛ1

α0×β0,ij .
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A closer look shows that this is an inhomogeneous linear equation for Λ1.
The inhomogeneous term is known, it contains α0 and β0 only. A particular
solution of (18) is

θijΛ1
α0,ij =

1

2
θij(∂iα

0
a)aj,b : T

aT b : . (19)

Any solution of the homogeneous part of (18) can be added to (19).
We can proceed order by order in θ, the structure of the equations will

always be the same. It will be an inhomogeneous linear equation, the homoge-
neous remains the same, the inhomogeneous part will contain known quantities
only. This way we obtain Λα0 in a θ expansion,

Λα0 = α0
aT

a +
1

2
θij(∂iα

0
a)aj,b : T

aT b : + · · · . (20)

Such a construction of the transformation parameter first occured in the con-
text of the Seiberg-Witten map.6

6 Covariant coordinates

In a usual gauge theory we would procede with the definition of covariant
derivatives. Derivatives, however, are not a natural concept for algebras. It
is more natural to introduce covariant coordinates. Based on such a concept
gauge theories can be developed as well.

It is obvious that coordinates do not commute with gauge transformations,
it is also natural to introduce covariant coordinates in analogy to covariant
derivatives:

Xi = xi +Ai(x) , (21)

δα0Xi ∗ ψ = iΛα0 ∗Xi ∗ ψ .

This leads to the following transformation law for the gauge potential:

δAi = −i[xi ∗, Λα0 ] + i[Λα0
∗, Ai] . (22)

To satisfy such a transformation law we have again to assume that A(x) is
enveloping algebra valued. In general, this would imply infinitely many gauge
fields. For the restricted gauge transformations Λα0 it is possible to construct
a gauge potential that depends on the Lie algebra valued potential a(x) and
its derivatives only. The transformation law (13) for a(x) will imply the trans-
formation law for A(x) . This is the main achievement of the Seiberg-Witten
map, see Eq. (28).
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The construction of gauge fields that transform to tensorial follows the
usual concept as we know it from covariant derivatives. An obvious definition
is

XµXν −XνXµ − iθµν(X) = F̂µν . (23)

It is chosen in such a way that F̃µν vanishes for a vanishing gauge potential
Aµ .

The tensorial transformation law of F̃µν follows directly from (22),

δαF̃
µν = [∆α0 ∗ F̃

µν ] . (24)

It should be noted, however, that the trace in the representation space of the
Lie algebra of a tensor is not an invariant because the star product is not
commutative.

7 The integral

An invariant action can be constructed only if the integral has its trace prop-
erty,

∫

f ∗ g =

∫

g ∗ f . (25)

Integration is not a natural concept in an algebra. It is supposed to be a linear
map from Ax̂ into C,

∫

: Ax̂ → C ,

∫

(c1f̂ + c2ĝ) = c1

∫

f̂ + c2

∫

ĝ . (26)

In addition the trace property is required:
∫

f̂ ĝ =

∫

ĝf̂ . (27)

This is equivalent to (25).

8 Gauge theory for constant θ

For constant θ the usual integral in x-space will have the trace property. This
can be shown by a direct calculation.

Let us have a look at this formalism for constant θµν .
The Seiberg-Witten map:

Ai(x) = θijVj ,

Vj(x) = aj,aT
a −

1

2
θlnal,a(∂naj,b + Fnj,b : T

aT b : + · · · , (28)

Fnj,b = ∂naj,b − ∂jan,b + f cdb an,caj,d .
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The field strength:

F̃ij = Fij,aT
a + θln(Fil,aFjn,l −

1

2
al,a(2∂nFij,b + an,cFij,df

cd
e )) : T aT b : + · · · .

(29)
The Lagrangian:

L =
1

4
TrFij ∗ F

ij . (30)

The invariant action:

W =
1

4

∫

TrFij ∗ F
ij =

1

4

∫

TrFijF
ij .

New coupling terms arise, θµν appears as a coupling constant, it is a
Lorentz tensor and the interaction term breaks Lorentz invariance. This was
to be expected because the defining relation (1) already breaks Lorentz invari-
ance.

These new terms in the Lagrangian will give rise to new interactions. Due
to the breaking of Lorentz invariance interaction terms will occur that are
forbidden in a Lorentz invariant theory. A good example is the Z0 → γγ
decay. From (31) we find the following interaction terms that contribute to
this decay if the gauge theory is based on the standard model:7

LZγγ =
g′

√

(g2 + g′2)3

(

αg2 + β(g′2 − 2g2)
)

θkl (31)

×
(

2(−∂iZk + ∂kZi)∂jAl(∂
iAj − ∂jAi)

+ (∂iAk∂jAl + ∂kAi∂lAj − 2∂kAi∂jAl)(−∂
iZj + ∂jZi)

+ (−2∂kZi∂lAj + 2∂jZl∂kAi + 2∂iZj∂kAl + ∂kZl∂iAj)(∂
iAj − ∂jAi)

)

.

This expression is gauge invariant under the usual Lie algebra valued gauge
transformation. It contributes to the branching ratio of the Z0 decay.

We still have to learn how the gauge potential couples to the matter fields.
This will be done via covariant derivatives,

Di ∗ ψ = (∂i − iVi) ∗ ψ , (32)

δα0Di ∗ ψ = iΛα0 ∗Di ∗ ψ .

9 Derivatives

First we have to define derivatives. In general, the star product will depend
on the coordinates, when we differentiate it the coordinate dependence of the
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∗ product will contribute as well. Nevertheless, we demand a Leibniz rule of
the type

∂µ ∗ (f ∗ g) = (∂µf) ∗ g + O
ν
µ(f) ∗ ∂νg . (33)

From the associativity of the ∗ product follows that Oν
µ(f) has to be an algebra

homomorphism.
It is easier to define derivatives for Âx̂ . A general procedure was outlined

in Ref. 8. We first extend the algebra by algebraic elements ∂̂ and consider

the algebra C
[

[x̂1, . . . , x̂n, . . . , ∂̂1, . . . , ∂̂n]
]

. This algebra has to be divided

by the ideal Ix̂,x̂ as before. Then we have to construct a derivative, based

on a Leibniz rule that is a map in C
[

[x̂1, . . . , x̂n, . . . , ∂̂1, . . . , ∂̂n]
]

/Ix̂,x̂ . This

leads to consistency relations for the Leibniz rule The Leibniz rule can now
be interpreted as a relation and the respective ideals can be constructed and
factored out. Finally this has to be supplemented by ∂̂, ∂̂ relations. We treat
these relations as usual and after dividing by the respective ideal we arrive at
an algebra that we call Â

x̂,∂̂
.

In more detail the generalized Leibniz rule is supposed to have the form:

∂̂i(f̂ ĝ) = (∂̂if̂)ĝ +Ol
i(f̂)∂̂lĝ . (34)

From the law of associativity in Âx̂ follows that the map 0 has to be an algebra
homomorphism

Oi
j(f̂ ĝ) = Oi

l(f̂)O
l
j(ĝ) . (35)

If we define the Leibniz rule on the linear coordinates we can generalize it to
all elements.

In the ∗Ax version of the algebra the Leibniz rule takes the form (34). This

rule can be found as follows: ∂̂ introduces a map on the basis of Âx̂, this map
defines a map in ∗Ax . This map has finally to be expressed with ordinary
x-derivatives. This then leads to (34).

For constant θµν where the ∗ product does not depend on x the ∂∗ deriva-
tives are just the ordinary x-derivatives.

Covariant derivatives are then defined as usual:

Di ∗ ψ = (∂i − iVi) ∗ ψ , (36)

δα0Di ∗ ψ = iΛα0 ∗Di ∗ ψ .

The vector potential has to be enveloping algebra valued. Again, it can be
expressed in terms of aµ by a Seiberg-Witten map. Therefore we expect that
Aµ and Vµ are related.
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For constant θµν we find

Ai(x) = θijVj , . (37)

Covariant derivatives exist for θµν = 0. From (37) follows that Aµ vanishes in
this case, coordinates are already covariant.

10 Gauge couplings to matter fields

The matter field ψ that transforms like

δα0ψ(x) = iΛα0(x)(x) ∗ ψ(x) (38)

can be expressed in terms of a field ψ0 that transforms with a Lie algebra valued
parameter and the Lie algebra valued vector potential a. The transformation
property (38) will be a consequence of (7) and (13).

For constant θ we find

ψ = ψ0 −
1

2
θµνalµT

l∂νψ
0 + . . . . (39)

This now leads to the Lagrangian
∫

ψ̄ ∗ (γµDµ ∗ −m)ψd4x =

∫

ψ̄0 (γµDµ −m)ψ0d4x (40)

−
1

4
θµλ

∫

ψ̄0F 0
µλ (γ

µDµ −m)ψ0d4x−
1

4
θσλ

∫

ψ̄0γµF 0
µσDλψ

0d4x+ · · · .

The fields ψ0 and Fµν0 transform like the usual gauge fields with a Lie algebra
valued parameter, F µν0 is just the usual field strength of a gauge theory.
Accordingly, Dµψ

0 is the usual covariant derivative with the field aµ as a
gauge potential.

11 Conclusion

Such a theory based on noncommutative coordinates should only be relevant
for a region with very high energy density, thus for very short distances, i.e.
well inside the confinement range. For larger distances we know that physics
is described very well with commuting coordinates. θµν(x) will be a compli-
cated function, we treat this function in a power series expansion and start
with constant θµν . This has a chance to be relevant for processes that take
place at very short distances where the constant θµν might be dominant. The
higher order contribution on the expansion become relevant at distances where
the process has already occured. Such a process will not be sensitive to the
functional behaviour of θµν(x) and the constant θµν approximation might be
a good approximation.7 To find such a process demands physical intuition.
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