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We overview the issue of the monopole condensation in non-Abelian theories. We
emphasize the simplicity of the (lattice) experimental picture and some difficulties
of its interpretation in theoretical terms. Some features of the polymer picture of
the monopole cluster and of the corresponding field theory are discussed.
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1 Well understood monopoles

There are actually quite a few types of monopoles discussed: say, Dirac
monopoles, non-Abelian monopoles, lattice monopoles. Their theoretical sta-
tus is in fact very different. Let us begin with the cases well understood
theoretically (and we confine ourselves to pure gauge theories, without Higgs
fields). Emphasizing, of course, the points relevant to the later discussion of
the “realistic case” of the non-Abelian monopoles.

1.1 Compact U(1)

The show case of the monopole condensation is the compact U(1). As is
noted first by Polyakov1 the Dirac string does not cost any energy because of
the compactness of the lattice QED. The action is defined as a sum over the
plaquette actions and for the latter, roughly speaking one has,

Splaq = − 1

2e2
Re
(

ei
∮

Aµdxµ − 1
)

, (1)

where the contour integral is over the plaquette boundary. For the soft fields
(on the lattice spacing scale) the action is proportional to F 2

µν and reduces to
the standard one. While for the Dirac string the action vanishes provided that
the Dirac quantization condition, e gm = 2πn is satisfied.

As for the self energy due to the magnetic field, it is linearly divergent at
small distances:

Mmon =
1

8π

∫

B2d3r ∼ 1

8e2
1

a
, (2)

where a is the lattice spacing, e is the electric charge and the magnetic charge
is a gm = 2π/e . Thus, the monopoles are still infinitely heavy and, at first
sight, this precludes any condensation since the probability to find a monopole
trajectory of the length L is suppressed as

exp(−S) = exp

(

− c

e2
· L
a

)

. (3)

Note that the constant c depends on the details of the lattice regularization
but can be found explicitly for any concrete case.

However there is an exponentially large enhancement factor due to the
entropy. Namely, the trajectory of the length L can be realized on a cubic
lattice in NL = 7

L/a various ways. Here 7 stands for the number of directions

a The notation g is reserved for the non-Abelian coupling, the magnetic coupling is denoted
as gm.
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in 4D in which the monopole can go at each step. The eight direction looks
exactly backward with respect to the trajectory and if this eight direction
is chosen the trajectory would be cancelled against the previous step. The
entropy factor,

NL = exp

(

ln 7 · L
a

)

, (4)

cancels the suppression due to the action (3) if the coupling e2 satisfies the
condition

e2crit = c/ ln 7 ≈ 1 , (5)

where we quote the numerical value of e2crit for the Wilson action and cubic
lattice. At e2crit any monopole trajectory length L is allowed and the monopoles
condense.

This simple theory works within about one percent as far as the value
of e2crit is concerned.

2 Note that the energy-entropy balance above does not
account for interaction with the neighbors.

1.2 Non-Abelian monopoles in the classical limit

Consider now the non-Abelian theory with the Lagrangian

L = − 1

4g2
(F a

µν)
2 ,

where for simplicity we confine ourselves to the SU(2) case. Also, we will not
include quarks.

On the classical level, theory of non-Abelian monopoles turns to be ex-
tremely simple as well (for review and further references see, e.g. Refs. 3, 4).
First, there are no specific non-Abelian classical solutions and all the monopoles
are gauge rotations of the Dirac monopoles with the corresponding magnetic
charge. Moreover, presence of the massless particles of spin 1, gluons, affects
the monopoles drastically. Indeed, the U(1) charge of the gluons is egl = g.
Thus the minimal magnetic charge allowed by the Dirac quantization condition
for the gluons is

(gm)min =
2π

g
. (6)

The Wilson action however is formulated in terms of the adjoint representation.
For the quarks the U(1) charge is eq = g/2 and the minimal magnetic charge is
twice as big as (6). Thus, the action (1) is not vanishing but, to the contrary, is
equal to its maximal possible value, Sstring

plaq = 1/2g2. In the continuum limit,
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the string energy per unit length is quadratically divergent in the ultraviolet,
Estring ∼ (L/a2).

As a result, the monopoles with the charge Qm = 1 are infinitely heavy.
Not only because of the energy of the radial field (see Eq. (2)), but even more
so because of the energy of the Dirac string attached. Therefore the Qm = 1
monopoles can be introduced only as external probes of the vacuum of the
non-Abelian theory (here Qm is the magnetic charge in units of the minimal
magnetic charge (6)) Moreover, there is no space for dynamical quarks since
the Dirac string would be visible to the quarks.

All other monopoles with other magnetic charges, |Qm| 6= 1, are unstable:
charged gluons fall onto the center.

There is a remarkably (conceptionally) simple way to introduce the ex-
ternal Qm = 1 monopoles on the lattice through the ’t Hooft loop.

5 Namely,
the monopoles are visualized as end-points of the corresponding Dirac strings
which in turn are defined as piercing negative plaquettes. The trick to intro-
duce the negative plaquettes on the lattice is to formally change the sign of the
square of the coupling g2 on a manifold of plaquettes. Then these plaquettes
become negative in the limit |g2| → 0.

Proceeding to more detailed definitions, the ’t Hooft loop is formulated6

in terms of the action

S(β,−β) = β
∑

p/∈M

Tr Up − β
∑

p∈M

Tr Up , (7)

where M is a manifold which is dual to the surface spanned on the monopole
world-line j. Introducing the corresponding partition function, Z(β,−β) and
considering a planar rectangular T ×R, T À R contour j one can define

Vmm̄(R) ≡ − 1
T
ln
Z(β,−β)
Z(β, β)

. (8)

By the analogy with expectation value of the Wilson loop the quantity Vmm̄(R)
is referred to as monopole-antimonopole, or heavy monopole potential.

1.3 Heavy monopole potential at short distances

There is no difficulty to predict the heavy monopole potential at short dis-
tances. Indeed, as is mentioned above, all the non-Abelian monopoles clas-
sically are in fact the same Abelian monopoles. Therefore, classically the
potential is:

Vmm̄(r) = − π

g2
1

r
. (9)
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The classical expression is a reliable zero-order approximation at short dis-
tances, rΛQCD ¿ 1. Moreover, the effect of the quantum correction is also
fixed on general grounds: the coupling g2 is to be replaced by its running
counterpart g2(r). Thus:

lim
r→0

Vmm̄(r) = − π

g2(r)

1

r
. (10)

The result seems absolutely safe theoretically. Its actual derivation is still full
of paradoxes, for a review see Ref. 4.

Equation (10) reveals a double-face nature of the heavy, gm = 1 monopoles.
On one hand, they are Abelian objects as is testified to by the overall coefficient
in front of 1/r. On the other hand, the full non-Abelian gluon interactions is
responsible for the renormalization.

In other words, Eq. (10) poses a paradox which theory should resolve since
it concerns short distances in QCD.8 Namely, the 1/r behavior implies one-
gluon exchange at short distances. Indeed, Eq. (10) holds down to academically
small distances so that no language of “effective infrared QCD” can apply. On
the other hand, one-gluon exchange implies change of the monopole color.
Which is not possible since the monopoles are in fact Abelian-like and there
are no monopoles belonging to a representation of SU(2).

2 Symmetries in the presence of magnetic charges

2.1 Short distances: U(1)el × U(1)magn, SU(2)color × U(1)magn

The paradox would look absolutely unresolvable if it were not so that there
existed experience of dealing with somewhat similar paradoxes in case of QED.
Indeed, already in the QED case once we introduce both electric and magnetic
charges there are in fact two kinds of charges which cannot annihilate each
other. Which means that we do not have simply a U(1) symmetry but a
product of two U(1)

′

s:

U(1) → U(1)el × U(1)magn (11)

instead. Moreover, both types of charges are clearly separated only as far
as they are at rest. Once there is relative motion, the magnetic and electric
charges interact according to the laws of the classical electrodynamics. In the
quantum field theory language, the interaction is due to an exchange of one
and the same gauge boson, that is photon.

Generically, a dual gauge boson is understood as a field interacting with
the magnetic current jm:

Lint = QmB · jm . (12)
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One of our basic points is that the field B should be treated as fundamental
in gluodynamics since the external monopoles introduced via the ’t Hooft loop
are point like in the continuum limit, see above. A well known example of
a theoretical framework to introduce a dual gauge boson is the Zwanziger
Lagrangian describing the U(1)e × U(1)magn electrodynamics.

7 Formally one
introduces two vector fields, the “standard” photon Aµ and the dual photon
Bµ, so that Lint = QeA · je +QmB · jm. However, the number of the degrees
of freedom is not changed since there is a constraint that the field strength
tensor constructed on the potential A coincides with the dual field strength
tensor constructed on the potential Bµ. More precisely:

mµFµν(B) = mµ
∗Fµν(A) (13)

where mµ is an arbitrary space-like vector. The choice of the vector mµ is a
kind of new gauge freedom. Physically, mµ is the vector directed along the
Dirac strings. Explicitly:

LZw(A,B) =
1

2
(m · [∂ ∧A])2 + 1

2
(m · [∂ ∧B])2

+
i

2
(m · [∂ ∧A])(m · ∗[∂ ∧B]) (14)

− i
2
(m · [∂ ∧B])(m · ∗[∂ ∧A]) + i je ·A+ i jm ·B ,

where je, jm are electric and magnetic currents, respectively, mµ is a constant
vector, m2 = 1 and

[A ∧B]µν = AµBν −AνBµ , (m · [A ∧B])µ = mν [A ∧B]µν ,

∗[A ∧B]µν =
1

2
εµνλρ [A ∧B]λρ.

Similarly, upon introduction of the (heavy) monopoles the symmetry of
the gluodynamics becomes:8

SU(2) → SU(2)color × U(1)magn (15)

where the corresponding groups are used for classification of the charges, non-
Abelian and magnetic, respectively. The number of gauge fields (gluons) is of
course not increased. The way out of this apparent paradox is a generalization
of the constraint (13):

mµFµν(B) = mµ
∗(naF a

µν(A)) (16)
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where F a
µν is the non-Abelian field strength tensor and n

a is an arbitrary vector
in the color space. Again, the choice of na is a matter of gauge fixing and the
physical results do not depend on this choice. The vector na fixes the direction
in the color space of the magnetic fields transported along the Dirac strings
attached to the monopoles.

One can derive a Zwanziger-type Lagrangian which ensures the validity of
the constraint (16).8 This formulation allows then to make predictions for the
heavy monopole potential (10). In particular, at short distances the poten-
tial can be derived now from the first principles. However, there is a specific
problem that standard Feynman rules do not respect the Dirac veto for vir-
tual particles and they interact with the string. Thus, special rules of UV
regularization are to be introduce to remove these effects.8

To summarize, introduction of the monopoles extends the classification
group to SU(2)color×U(1)magn. The choice of a particular gauge boson which
is shared between the groups is a matter of gauge fixing which in a way violates
the SU(2).

2.2 Spontaneous breaking of the magnetic U(1)

At larger distances, there are further points related to the symmetry of problem
which should be discussed. Let us begin with the fundamental (point-like)
monopoles introduced via the ’t Hooft loop. The monopoles are in fact Z2

monopoles, so that two monopoles of “the same charge” can annihilate each
other. Classically, the Z2 monopoles interact still as U(1) monopoles.

8 If one
starts from short distances then the first sign of the Z2 nature of the monopoles
is a possible linear correction to the monopole potential due to a quantum
transition between the states with magnetic charge QM = 0 (the ground state)
and QM = 2 (an excited state):11

δVm̄m ∼M0,2
1

E0 − E2
M2,0 ∼ g2r . (17)

Unfortunately, little can be said about the corresponding matrix elementsM0,2.
At larger distances, the differences between Z2 and U(1) monopoles is even
more open question. We will ignore this problem and stick to the U(1) de-
scription of the monopoles.

At large distances it is also natural to expect that the monopoles condense
and the magnetic U(1) is spontaneously broken. Note that no breaking of
the (global) SU(2) is introduced at this point as far as the group is indeed
SU(2)color × U(1)magn. Moreover since the U(1) boson is actually one of the
same SU(2) gluons which interact with quarks, acquiring the mass for the U(1)
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boson implies confinement of the quarks. In the sense, that forming a tube-like
structure for the quarks field is the only way to satisfy the Gauss law.

On the theoretical side, the symmetries of the Lagrangian are becoming
difficult to implement in practical calculations once the spontaneous breaking
of the magnetic U(1) is introduced. The problems can be illustrated on the
example of the Zwanziger Lagrangian (13) for ordinary QED. Indeed, let us
assume that a charged scalar field acquires a nonvanishing vacuum expectation

value or, even simpler, a mass term
m2

V

2 A2
µ is added to the Lagrangian. Then a

straightforward diagonalization of the bilinear terms in the Lagrangian results
in the following propagators of A- and B-fields (see, e.g., Ref. 12):

〈BµBν〉(k) =
1

k2 +m2
V

(

δµν +
m2

V

(km)2
(δµν −mµmν) + · · ·

)

, (18)

〈AµAν〉(k) =
1

k2 +m2
V

(δµν + · · ·) (19)

where the dots stand for terms proportional to kµ and which can eventually
be omitted because of the current conservation. If we evaluate the interaction
energy of a monopole pair due to the (massive) photon exchange then the mµ

dependence does not drop off. Also, the double pole in (km) causes infrared
problems.

These inconsistencies are not a consequences of a trivial mistake but deeply
rooted in the formalism. The point is that the independence on the Dirac
strings assumes that the Dirac veto is observed. However, if the charges are
condensed, then the strings are “everywhere” and this results in the inconsis-
tencies of the propagator (18). The difficulty was resolved only recently13 and
only in case of static sources (or k0 = 0).

3 Monopoles, as they are seen

3.1 Monopole condensation in non-Abelian case: expectations

If we try to adjust the lessons from the compact U(1) to the non-Abelian case
we run into painful questions. The only good news, to begin with, is that all
the U(1) subgroups of SU(2) are indeed compact, this is no problem.

Let us therefore try to work out a simple dynamical picture for monopole
condensation. Dynamics of any subgroup of the SU(2) is governed by the same
running coupling g2(r). Then – we would conclude – starting from small size
lattices we would not see monopoles because g2(a) falls below e2crit. However,
we could hope that going to a coarser lattice a la Wilson we could come to the
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point where g2(a2) ≈ e2crit. Then one could hope to apply the entropy-energy
balance which works so well in case of the compact U(1).

The first shock comes if we try to estimate, what the “small a”means
numerically, in the present context. Now, the U(1) critical coupling is well
known, e2crit ∼ 1. In the QCD case we can rewrite the condition (5) as a
condition on the critical scale. In the realistic case we have at the LEP energies
E2 ∼ (100 GeV)2, α ≈ 0.1, g ≈ 1. Then

Mcrit ∼ 100 GeV (20)

and, remarkably enough, we are getting rather weak interactions scale than
∼ ΛQCD. On the other hand the lattice data give another estimation of Mcrit.
It is well known that in SU(3) gluodynamics β = 6 corresponds to the lattice
spacing a ≈ 0.1 fm and the scale is:

Mcrit ∼ 2 GeV . (21)

In other words, according to the first estimate, for any presently available
lattice we are deep in the “strong-coupling” region despite of the asymptotic
freedom. Then, naively, we could expect that approximating the total energy
by self-energy does not work, the monopole population is very dense so that
the interaction energy is comparable to the self energy. Moreover, the scale
100 GeV looks rather as a headache than an enlightenment since there is no
independent evidence for relevance of such a mass scale to QCD.

This formidable perspective is balanced only by the doubts that the
monopoles are at all relevant. The point is that intrinsically the monopoles are
a U(1) object and there is no unique way to choose the U(1) subgroup from
the SU(2).

Mostly, monopoles are defined in the non-Abelian case as pure topological
objects,10 with no direct relation to the full non-Abelian action. Moreover, it
appears obvious that, no matter which U(1) we choose, the minimal action for
such a configuration should collapse to zero. At least, on the classical level so.

There is no general proof of this conjecture but as a support for this let us
quote the solution for an open Dirac string which costs no non-Abelian action
at all.8 One can show8 such a configuration is generated from the vacuum by
the following gauge rotation matrix:

Ω =





eiϕ
√
AD

√
1−AD

−
√
1−AD e−iϕ

√
AD



 , (22)

where ϕ is the angle of rotation around the axis connecting the monopoles and
AD is the U(1) potential representing pure Abelian monopole – antimonopole
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pair:

Aµdxµ =
1

2

(

z+
r+
− z−
r−

)

dϕ ≡ AD(z, ρ)dϕ , (23)

where z± = z ± R/2, ρ2 = x2 + y2, r2± = z2± + ρ2. Note that the action
associated with the Dirac string is considered in this case zero, in accordance
with the lattice version of the theory (for details see Ref. 8).

To summarize, we are failing to work out a simple dynamical picture
mainly because we cannot specify reasonable monopole-like configurations.
Our problem is that, first, the action is too low to match ln 7. To fight this,
we would rather argue that there is no such object as point-like monopole at
all so that the entropy is counted also wrong. But then nothing is left of the
idea of the monopole condensation in the non-Abelian case.

3.2 Monopole dominance

On the background of the theoretical turmoil, the data on the monopoles
indicate a very simple and solid picture. We will constrain ourselves to the
monopoles in the so called Maximal Abelian gauge and the related projection
(MAP). We just mention some facts, a review and further references can be
found, e.g., in Ref. 14.

Since the monopoles of the non-Abelian theory are expected to actually be
U(1) objects one first uses the gauge freedom to bring the non-Abelian fields
as close to the Abelian ones as possible. The gauge is defined by maximization
of a functional which in the continuum limit corresponds to R(Â) where

R(Â) = −
∫

d4x
[

(A1
µ)

2 + (A2
µ)

2
]

(24)

where 1, 2 are color indices.
As the next step, one projects the non-Abelian fields generated on the

lattice into their Abelian part, essentially, by putting A1,2 ≡ 0. In this Abelian
projection one defines the monopole currents kµ for each field configuration.

The relation of the monopoles to the confinement is revealed through eval-
uation of the Wilson loop for the quarks in the fundamental representation.
Namely it turns out, first, that the string tension in the Abelian projection is
close to the string tension in the original SU(2) theory:9

σU(1) ≈ σSU(2) . (25)

Moreover, one can define also the string tension which arises due to the
monopoles alone. To this end, one calculates the field created by a monopole
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current:

Amon
µ (x) =

1

2
εµναβ

∑

y

∆−1(x− y) ∂νmαβ [y; k] , (26)

where ∆−1 is the inverse Laplacian, and sums up (numerically) over the Dirac
surface,m[k], spanned on the monopole currents k. The resulting string tension
is again close to that of the un-projected theory:

σmon ≈ σSU(2) . (27)

It might worth mentioning that these basic features remain also true upon
inclusion of the dynamical fermions in SU(3) case (full lattice QCD).15

3.3 Invariant properties of the monopoles.

Despite of the apparent gauge-dependence of the monopoles introduced within
the MAP, they encode gauge-invariant information. In particular,we would
mention two points: scaling of the monopole density and full non-Abelian
action associated with the monopoles.

According to the measurements (see Ref. 16 and references therein) the
monopole density ρmon in three-dimensional volume (that is, at any given
time) is expressible in the physical units. In other words, the density scales
according to the renormgroup as a quantity of dimension 3. Numerically:

ρmon = 0.65(2) (σSU(2))
3/2 . (28)

One important remark is in order here. While discussing the monopole density
one should distinguish between what is sometimes called ultraviolet (UV) and
infrared (IR) clusters.17 The infrared, or percolating cluster fills in the whole
lattice while the UV clusters are short. There is a spectrum of the UV clusters,
as a function of their length, while the percolating cluster is in a single copy.
The statement on the scaling (28) refer only to the IR cluster. The UV clusters
are seemingly a lattice artifact.

Also, upon identification of the monopoles in the Abelian projection, one
can measure the non-Abelian action associated with these monopoles. For
practical reasons, the measurements refer to the plaquettes closest to the center
of the cube containing the monopole. Since the self energy is UV divergent, it
might be a reasonable approximation. The importance of such measurements
is that we expect that it is the non-Abelian action which enters the energy-
entropy balance for the monopoles.

The results of one of the latest measurements of this type are reproduced
in Fig. 1 (see Ref. 18). What is plotted here is the average excess of the action
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on the plaquettes closest to the monopole (monopoles are positioned at the
centers of the cubes). The action is the lattice units. In other words, the
straightforward continuum would imply divergent mass of the monopole of
order 1/a if the action of order unit.
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Figure 1: The dependence of the average excess of the action on the plaquettes closest to
the monopole, as a function of β.

The conclusions which can be drawn18 from the measurements are appar-
ently as follows:

i) The IR and UVmonopoles are distinguishable through their non-Abelian
actions. For the UV monopoles the action is larger, in accordance with the
fact that they do not percolate (condense).

ii) The excess of the action for the monopoles falls close to ln 7,

Smon ∼ ln 7 · L
a
, (29)

quite dramatically confirming in this way the reality of the (Abelian-like)
energy-entropy balance. Actually evidence to this effect, less direct, was ob-
tained already much earlier, see.19

iii) We are talking actually about small distances, by all the standards of
QCD. Thus, the action for the IR and UV monopoles are definitely different
only at the monopole sizes (radii) about

Rmon ≈ 0.06 fm , (30)

And even at smallest available distances the monopoles are still very “hot”.
The corresponding monopole mass (see Fig. 1) is, roughly, proportional to
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1/a ∼ 2 GeV. We cannot exclude the case Mmon ∼ 1/a when we approach
the continuum limit. The inside region of the monopoles where the asymptotic
freedom sets in has not been reached yet even at a = 0.04fm. Which indicates
that the surprising estimate (20) might indeed be relevant.

4 Interpretation and phenomenology

4.1 Monopole cluster as a polymer

After learning that the reality of the monopole condensation looks much sim-
pler than our confused expectations we can try to adjust our views. Let us
therefore try to summarize, what we have actually learned.

First, our fears that the monopole action would fall too much below the
entropy-related ln7 are not realized. To the contrary, at least the first look at
Fig. 1 rather suggests that the action is too high. Moreover it has been known
from analysis of the monopoles in the Abelian projection that the entropy-
energy balance is similar in the non-Abelian and Abelian cases.19 Which, re-
inforced now with the data in Fig. 1, means that in the zero approximation
Sphen
mon ≈ ln 7 · La . Which means, in turn, that the SU(2) monopole action is
higher than its Abelian counterpart. Indeed, phenomenological fits suggest:19

Mmon ≈ MCoul
mon + const , (31)

where by Mmon we understand the action associated with the monopole tra-
jectory of length L divided by a. Note also that the Coulombic part of the
mass, MCoul

mon is of order 1/a.

As it follows from the discussion in section 1, the mass (31) is not so much
meaningful and one is to consider the difference between the mass and ln 7/a.
The existing data are not precise enough to provide this difference directly.
However, it seems natural to speculate that

−µ =
ln 7

a
−Mmon ∼ ΛQCD . (32)

It is a pure assumption but otherwise it would be difficult to understand the
scaling of the monopole density. Indeed, if we view the monopole trajectory as
a polymer, then there are essentially two entries to describe monopoles, that is
the chemical potential and the interaction which is presumably Coulomb-like:

S = Lµ+ g2m
∑

a,b

′ a2

(ra − rb)2
, (33)
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where the primed sum, Σ
′

a,b, does not include the self-energy. Thus, if 1/a
survives in µ it would be very difficult to understand the scaling of the ρmon.

The central point about the polymer action (33) is that it is written in
SU(2) invariant terms alone and, if we can indeed go ahead with such a formu-
lation, we are getting closer to the ideal of describing the magnetic monopoles
within SU(2)color × U(1)magn (see Section 2.2).

4.2 Monopole cluster in the field-theoretical language

The appearance of large masses in the polymer language, Mcrit ∼ 1/a might
look quite scary. Moreover, there is no indication to the relevance of such mass
to other observables in QCD. Thus, let us address this issue in more detail. To
this end, it is desirable to develop a field theoretic language within which the
masses can be interpreted more directly. As is well known, the condensation of
the monopoles can be described in terms of a (dual) Abelian Higgs model (for
review and references see Ref. 14). However, usually this model is formulated
within an Abelian-projected action. Now, we would like to continue with the
SU(2) invariant description (33).

The transition from the polymer to the field theoretical language is com-
mon in the statistical physics (see, e.g., Ref. 20). The first applications to the
monopole physics are due to the authors in Ref. 21. Here we, again, emphasize
only a few points.

The monopole trajectory represented as a random walk and the corre-
sponding partition function is:

Z =

∫

d4 x

∞
∑

N=1

1

N
e−µN ZN (x, x) , (34)

where µ is the chemical potential and ZN (x0, xf ) is the partition function of
a polymer broken into N segments:

ZN (x0, xf ) =
[

N−1
∏

i=1

∫

d4xi

]

N
∏

i=1

[

δ(|xi − xi−1| − a)

2π2a3

]

exp
{

−
N
∑

i=1

gV (xi)
}

.

(35)
This partition function represent a summation over all atoms of the polymer
weighted by the Boltzmann factors. The δ–functions in (35) ensure that each
bond in the polymer has length a. The starting point of the polymer (35)is x0
and the ending point is xf ≡ xN .

In the limit a → 0 the partition function (35) can be treated analogously
to a Feynman integral. The crucial step is the a coarse–graining: the N–
sized polymer is divided into m units by n atoms (N = mn), and the limit is
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considered when both m and n are large while a and
√
na are small. We get,

(ν+1)n−1
∏

i=νn

1

2π2a3
δ(|xi − xi+1| − a)→

( 2

πna2

)2

exp
{

− 2

na2
(x(ν+1)n − xνn)

2
}

,

(36)
where the index i, i = νn · · · (ν + 1)n − 1, labels the atoms in νth unit. The
polymer partition function becomes:21

ZN (x0, xf ) = const ·
[

m−1
∏

ν=1

d4x

][

( 2

πna2

)2m

exp
{

m
∑

ν=1

(xν − xν−1)
2

na2

}

]

· exp
{

−
m
∑

ν=1

n(µ+ V (xν))
}

. (37)

The xi’s have been re-labeled so that xν is the average value of x in at the
coarser cell. Using the variables:

s =
1

8
na2ν , τ =

1

8
a2N , m2

0 =
8µ

a2
, (38)

one can rewrite the partition function (34) as

Z = const ·
∞
∫

0

dτ

τ

∫

x(0)=x(τ)=x

Dx exp

{

−
τ
∫

0

[1

4
ẋ2µ(s) +m2

0 + g0V (x(s))
]

ds

}

. (39)

The next step is to rewrite the integral over trajectories x(τ) as the standard
path integral representation for a free scalar field. For us it is important only
that the m2

0 term in the Eq. (39) is becoming the standard mass term in the
field theoretical language:

Z =
∞
∑

M=0

ZM

M !
= const·

∫

Dφ exp

{

−
∫

d4x
[

(∂µφ)
2+m2

0 φ
2+g0V (x)φ

2
]

}

. (40)

The whole machinery can be easily generalized to the case of charged particles
(monopoles) with Coulomb-like interactions. Below we assume that we are in
the Higgs phase, or that the chemical potential is negative, µ < 0 , and the
vacuum is stabilized through a repulsive λφ4 interaction.21

Here, it is the relation between ρmon and 〈φ2〉 which is most important
for us. To derive the relation differentiate first the partition function in the
polymer representation:

〈L〉 = ∂

∂µ
lnZ . (41)
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Since the density ρmon scales:

〈L〉 = ρmon · V4 , (42)

where V4 is the 4-volume occupied by the lattice. On the other hand, differen-
tiating the same partition function but in the field theoretical representation
(39) with respect to m2

0 we get the vacuum condensate:

〈φ2〉 = ∂

∂m2
0

lnZ . (43)

It is worth emphasizing that in the both cases (41) and (43) we keep only the
contribution of the IR monopole cluster corresponding to the condensing Higgs
field in the field-theoretic language.

Finally, since the parameters µ and m2
0 are directly related, see Eq. (38),

we get:

〈φ2〉 = 1

8
ρmon · a , (44)

which is one of our main results b. Note that, up to an overall numerical factor,
Eq. (44) is quite obvious on the dimensional grounds.

4.3 Naive limit a→ 0
Thus, let us assume that the scaling of the monopole density ρmon continues
to be true for smaller lattice spacings as well, at least until we reach the mass
scale sensitive to the non-local structure of the monopoles, see discussion above.
Then we have the following simple picture:

lim
a→0

m2
0 ∼

µ

a
→∞ , lim

a→0
〈φ2〉 ∼ ρmon a → 0 , lim

a→0
m2

V ∼ g−2ρmon a→ 0 .
(45)

It is worth emphasizing that the masses we are discussing here are gauge in-
variant since we started from the non-Abelian action per unit length. And
we see that existence of the huge mass scale (20) might in fact be in no con-
tradiction with the asymptotic freedom. Indeed, only the chemical potential
has physical meaning and the scaling of the ρmag indicates that it is of order
ΛQCD. Moreover, the effect of the condensate on the gluon mass goes away as
a power of a.

b Let us remind the reader that by ρmon and 〈φ2〉 we understand in fact the contributions
of the IR cluster to these quantities. The v.e.v. 〈φ2〉 contains the quadratic divergent piece,
a−2, due to a perturbative contribution. On the other hand the contribution to the total
monopole density from the UV–clusters which should diverge as a−3 according to dimen-
sionality arguments. These divergences match each other in Eq. (44).
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It is worth emphasizing that Eq. (45) implies that

lim
a→0

m2
0 · 〈φ2〉 ∼ const . (46)

In other words, the potential energy behaves smoothly as a → 0. And this
is, in fact, the most adequate formulation of the emerging picture. It was
possible to find the a-dependence for m2

0 and 〈φ2〉 separately only because of
normalizing the kinetic energy to unit, as usual.

Note that the scaling laws (45) are still consistent with ρmon = const.
Moreover, this seems to be sufficient to ensure the monopole dominance and

lim
a→0

σmon ∼ const , (47)

where the monopole string tension is calculated with the use of Eq. (26). Which
means in turn that the parameters used to describe the structure of the string
within the Abelian projection can be stable in the limit a → 0. Moreover,
say,

lim
a→0

(m2
V )Ab.proj. ∼ const , (48)

is in no direct contradiction with (45) since the masses determined in terms
of the Abelian-projected action are not directly related to the masses (45)
determined in terms of the non-Abelian action.

Thus, the picture which emerges if we start with assumption (32) has
some attractive features. However the connection of the string tension with
the classical solutions is lost. Moreover, the data in Fig. 1 suggest that the
assumption (32) is not valid at a larger than, say, acrit ∼ 0.15 fm. One might
hope for a matching at these distances of the polymer picture with a negative
chemical potential µ and of a more phenomenological approach of Refs. 19.

Although little can be said at this time about the λφ4–type theory corre-
sponding to the monopole “polymer”, the whole issue seems to be very inter-
esting. Indeed, it is well known that it is very difficulty, if not impossible, to
construct a non-trivial λφ4 theory and the polymer regularization is commonly
discussed in this connection.27 The scaling law (28) implies that the QCD, when
projected onto the properties of the monopole polymer, corresponds to a non-
trivial λφ4–type theory.

4.4 Phenomenology

It is quite clear that the theory of the monopole condensation is far from
being complete and numerical predictions are difficult to make. Indeed, we
discussed mostly symmetry properties. Nevertheless, let us try to formulate
some consequences grouping them into three categories:
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(i) We speculated that the polymer formulation (32) encodes the gauge
invariant information on the monopoles in the most direct way. Therefore,
studies of the monopole trajectories (IR cluster) might be most important.
One expects:

a) The monopole trajectories are random walk for any a in the sense that
there is no correlation between the vectors tangent to the monopole trajectory;

b) monopole density scales, ρmon = const and is independent of ε at least
as far as the monopole action exceeds the average in the lattice units (and not
in Λ4QCD);

c) as is known (see, e.g., Ref. 23) the monopole trajectories intersect. It is
natural to speculate that the distance between the self-intersections also scales,
reflecting the scaling of the potential energy;

d) the intersections correspond in the field theoretical language to the λφ4

interaction:
V (φ) = −m2

0φ
2 + λφ4 (49)

As we argued, one expects that the potential energy is a-independent. This
would imply that the effective scalar mass defined in terms of the second deriva-
tive of the potential at the minimum is also a-independent. Which could be
checked through measurements.

(ii) We argued that the actual symmetry, in the presence of the magnetic
charges, is SU(2)color × U(1)magn. However, direct use of the Zwanziger-
type Lagrangian (see Eq. (16)) is not possible already in the U(1) case, see
subsection 2.2. Thus, we can rely on the symmetry considerations alone. Then:

a) effective Higgs-like theories introduce dimension d=2 condensate. The
resulting leading “effective” correction to the original Lagrangian which is con-
sistent with the symmetry, is the gluon mass. Moreover, generation of the
effective mass is a prerequisite of the confinement. There exist independent
evidence supporting introduction of the corresponding power correction.24

b) Explanation of the Casimir scaling is a challenge to any phenomeno-
logical model of the confinement.25 Within our approach, we cannot directly
evaluate the string tension. Indeed, even for the fundamental monopoles at
short distances one should account for the full non-Abelian interaction to ac-
count for the running of the coupling. Generally speaking, the non-Abelian
nature should be even more manifest in large-distance interaction. However,
there is a phenomenological observation that the string tension for quarks in
the fundamental representation one can use pure Abelian interaction (26). It is
quite natural to assume that the same will be true for quarks with the highest
value of T3.

26 Because of the intrinsic SU(2) invariance it should be then true
for the invariant string tension σSU(2). Phenomenologically one can explain
existing data on the Casimir scaling along these lines.26
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(iii) The picture of the monopoles dominated vacuum suggests the so called
two-step QCD (see the last paper24 and references therein). Namely, even for
non-perturbative fluctuations we may have rather hard fields which, however,
are not related directly to the confinement and/or resonance properties. In
particular, the condensate 〈G2〉non-pert receives the following contribution from
the monopoles:

〈G2〉mon ∼
ρmon

a
(50)

where a is the lattice spacing and one can use the estimate (50) as long as the
inside region of the monopole is not reached.
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