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Parity is ubiquitous, but not always identified as a simplifying tool for computa-
tions. Using parity, having in mind the example of the bosonic/fermionic Fock
space, and the framework of Z2-graded (super) algebra, we clarify relationships
between the different definitions of supermanifolds proposed by various people. In
addition, we work with four complexes allowing an invariant definition of diver-
gence:

• an ascending complex of forms, and a descending complex of densities on
real variables

• an ascending complex of forms, and descending complex of densities on
Graßmann variables.

This study is a step towards an invariant definition of integrals of superfunctions
defined on supermanifolds leading to an extension to infinite dimensions. An ap-
plication is given to a construction of supersymmetric Fock spaces.
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1 Dedication

Three quotes from M.S. Marinov.

1. Particle spin dynamics as the Graßmann variant of classical mechanics,
F.A. Berezin and M.S. Marinov, Annals of Physics 104, 336–362 (1977).

During the past few years a not so familiar concept has emerged
in high-energy physics, that of “anticommuting c-numbers.” a The
formalism of the Graßmann algebra is well known to mathemati-
cians and has been used for a long time. The analysis on the Graß-
mann algebra was developed and exploited in a systematic way in
applying the generating functional method to the theory of second
quantization.11. . . Seemingly,b the first physical work dealing with
the anticommuting numbers in connection with fermions was that
by Matthews and Salam.12

The authors mention also the works of Gervais and Sakita,13 and Iwasaki and
Kikkawa.14

2. Classical spin and Graßmann algebra, F.A. Berezin and M.S. Marinov,
JETP Lett., 21, 320–321 (1975).

In view of the introduction of transformation groups with anti-
commuting parameters into the theory of elementary particles,15

and the intensive discussion of “supersymmetry” (see, for exam-
ple, Zumino’s review16), universal interest has been advanced in
classical anticommuting quantities, i.e., in the Graßmann-algebra
formalism.

3. Path integrals in quantum theory, M.S. Marinov, Physics Reports, 60, 1–57
(1980).

As it was suggested by Schwinger17 (for further discussion see
the book18), the matrix determining the Poisson brackets and the
canonical commutation relations, must be skew Hermitian; then
the consistent classical and quantum dynamics may be constructed
on the basis of the variation principle. Remarkably, not only a real
and skew-symmetrical matrix (as in subsection 5.1), but also an
imaginary symmetrical one is possible. However, in the second case

a Nowadays the expression “c-numbers” is used for the even elements of the Graßmann
algebra, forming a commutative algebra.
b See quote #3 from Physics Reports.
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the canonical variables should be anticommuting. Seemingly, this
suggestion did not attract attention in that time, though it is very
essential for understanding Schwinger’s approach to quantum elec-
trodynamics. The analysis in a space of anticommuting variables
(in the Graßmann algebra) as exhaustively developed by,19 and used
for a consistent and unified functional approach to the quantum
theory with Fermi fields (see also the book by Rzewusky19). The
importance of using Graßmann algebras was essential for the dis-
covery of supersymmetries and the recent introduction of the su-
perspace formalism.

Acknowledgments

During my previous collaboration with Drs. F. Berezin and M. Ter-
entyev, I have benefited much, discussing with them some problems
considered in this report.
Note added in proof: Having left ITEP forever with the intention to
settle in the Promised Land of my Fathers, I should like to use this
opportunity and to acknowledge gratefully the possibility to work
for many years at the Theoretical Divison, founded and organised
by the late Prof. Isaac Pomeranchuk. I am much obliged to my
former colleagues, who have taught me many things; first of all, to
love the Science.

2 Preliminary remarks

2.1 What is Parity?

Parity describes the behaviour of a product under exchange of its two factors.
The so called Koszul’s parity rule states:
“Whenever you interchange two factors of parity 1, you get a minus sign.”

Formally, this can be written as:

AB = (−1)ÃB̃BA. (2.1)

where Ã ∈ {0, 1} denotes the parity of A.
We want this rule to be true for all kinds of commutative products,

i.e. products of Graßmann variables, supernumbers, forms and tensor densities,
in particular

A ∧B = (−1)ÃB̃B ∧A. (2.2)

Objects with parity 0 are called even, objects with parity 1 odd.
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For graded vectors and graded matrices, there exists no commutative prod-
uct. The parity of a graded vector X is given by its behaviour under multipli-
cation with a graded scalar z:

zX = (−1)z̃X̃Xz . (2.3)

A graded matrix is assigned even parity, if it preserves the parity of any graded
vector under multiplication and odd, if it inverts the parity.

Graded vectors and graded matrices do not necessarily have a parity, but
they can always be decomposed in a sum of a purely even and a purely odd
part.

2.2 Why Graßmann variables?

The quotes from Marinov above aptly describe the birth of Graßmann calculus
in quantum field theory. We add a few comments. It is usually stated that the
transition from a quantum mechanical system to a classical one is obtained by
considering the limit ~→ 0. Hence the quantum mechanical relation

[q, p] = i~ (2.4)

gives the commutativity qp = pq in the limit.
In quantum field theory, the canonical quantization rules are c

(bosonic case) [Φ(x),Π(y)] = i~δ(x− y), (2.5)

(fermionic case) {ψ(x), π(y)} = i~δ(x− y). (2.6)

In the (bosonic) case of the electromagnetic field, the Planck constant ~ enters
in the commutation rule, but not in the Lagrangian or the field equations.
Hence the classical electromagnetism, with commuting field observables, ob-
tains in the limit ~→ 0.

However, the (fermionic) case of Dirac electron field d ψ(x) is more subtle.
The normalization of the field is achieved by the requirement jµ = eψ̄γµψ
for the electronic current (which solved the long-standing difficulties of the
classical electron theory of Lorentz). Here we use the metric tensor (ηµν) =
diag(−1, 1, 1, 1) with

γµγν + γνγµ = −2ηµν . (2.7)

In the Dirac representation, the γµ are 4 × 4 matrices with γ0 hermitian and
γ1, γ2, γ3 antihermitian. Finally ψ̄ = ψ†γ0 is the charge conjugate spinor to
ψ.
c As usual, [A,B] is the commutator AB−BA while {A,B} is the anticommutator AB+BA.
d We drop spinor indices.
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The Dirac equation is derived from the Lagrangian

L = ψ̄(−pµγµ −mc)ψ . (2.8)

In the quantization, we use Schrödinger’s Ansatz pa = −i~∂a for the 3-
momentum, hence pµ = −i~∂µ for the relativistic 4-momentum.e The La-
grangian becomes:

L = i~ψ̄γµ∂µψ −mcψ̄ψ , (2.9)

hence, the canonical conjugate momentum

π(x) =
δL
δψ̇

= i~ψ∗(x) . (2.10)

The canonical anticommutation relations are now

{ψ(x), ψ∗(y)} = δ(x− y) (2.11)

and remain identical in the limit ~ → 0, and don’t give rise to Graßmann
quantities.f

The reason for using Graßmann variables is not so much the development
of a pseudo-classical mechanics but rather the need of representing the algebra
of fermionic position and momentum observables as operators on a space of
functions. This is easily achieved using functions of Graßmann variables:

{ξ, ξ} = 0, {−i~ ∂

∂ξ
, i~

∂

∂ξ
} = 0, {ξ, i~ ∂

∂ξ
} = i~ . (2.12)

Note that in the bosonic case, the commutation relation [q, q] = qq−qq = 0 does
not contain any information. The only nontrivial rule is [q, p] = i~ contrary to
the fermionic case, where already the rule {q, q} = qq + qq = 0 is nontrivial
and demands the use of anticommuting objects.

To us, the most convincing reason for using Graßmann variables is that
we need them to use the path integral method in the case of fermionic fields.
This is clearly stated in the quotations above.

e Notice that E/c = p0 = −p0 for the energy E, hence E is quantized by +i~∂t as it is done
in the Schrödinger equation.
f This result is not a fermionic artefact, as for example the full Lagrangian for the Klein-
Gordon field gives rise to the commutation relation [Φ(x), Φ̇(y)] = 1

~ δ(x− y), which has no

classical limit for ~ → 0 as well.
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Part I

Foundations

3 Definitions and notations

• Basic graded algebra Ã := parity of A ∈ {0 , 1}
Parity of a product: ÃB = Ã+ B̃ mod 2.

Graded commutator g [A ,B] := AB − (−1)ÃB̃BA
Graded anticommutator {A ,B} := AB + (−1)ÃB̃BA
Graded Leibnitz rule

D(A ·B) = DA ·B + (−1)ÃD̃A ·DB

previously called “antiLeibnitz” when D̃ = 1

Graded symmetry A···αβ··· = (−1)α̃β̃A···βα···
Graded antisymmetry A···αβ··· = −(−1)α̃β̃A···βα···
Graded Lie derivative LX = [iX ,d]+ ,LΞ = [iΞ ,d]−

• Supernumbers
Graßmann generators {ξµ} ∈ Λν ,Λ∞ ,Λ
ξµξσ = −ξσξµ ; Λ = Λeven ⊕ Λodd

Supernumber z = u+ v, u is even, v is odd
z = zB + zS , zB ∈ R is the body, zS is the soul

Complex conjugation of supernumber: (zz′)∗ = z∗z′∗ (see appendix).

• Superpoints
Real coordinates x , y ∈ Rn, x = (x1 , · · · , xn)(
x1 , . . . , xn , ξ1 , . . . , ξν

)
∈ Rn|ν , condensed notation xA = (xa , ξα)(

u1 , . . . , un , v1 , . . . , vν
)
∈ Rnc × Rνa

• Supervectorspace: (graded) module over the ring of supernumbers
X = U + V , U even, V odd
X = e(A)

AX

XA = (−1)X̃Ã AX
The even elements of the basis (e(A))A are listed first. A supervector is
even if each of its coordinates AX has the same parity as the correspond-
ing basis element e(A). It is odd if the parity of AX is opposite to the
parity of e(A). Parity cannot be assigned in other cases.

g Another notation is [A,B]∓ = AB ∓BA.
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• Graded Matrices
Four different uses of graded matrices
given V = e(A)

AV = ē(B)
BV̄ with A = (a , α) and e(A) = ē(B)

BMA

then BV̄ = BMA
AV

given 〈ω , V 〉 = ωA
AV = ω̄B

BV̄ where ω = ωA
(A)θ = ω̄B

(B)θ̄

then 〈ω , V 〉 = ωA〈(A)θ , e(B)〉BV implies 〈(A)θ , e(B)〉 = AδB ,

ωA = ω̄B
BMA,

and (B)θ̄ = BMA
(A)θ

Matrix parity

M̃ = 0, if ∀A and B, B̃MA + ˜columnB + r̃owA = 0 mod 2.

M̃ = 1, if ∀A and B, B̃MA + ˜columnB + r̃owA = 1 mod 2.
By multiplication, an even matrix preserves the parity of the vector com-
ponents, an odd matrix inverts the parity of the vector components.

• Parity assignments

d̃ = 1 (d̃x) = d̃ + x̃ = 1 (d̃ξ) = d̃+ ξ̃ = 0
(x ordinary variable, ξ Graßmann variable)

(∂̃/∂x) = x̃ = 0 (∂̃/∂ξ) = ξ̃ = 1

ĩ = 1 ĩX = ĩ + X̃ = 1 ĩΞ = ĩ + Ξ̃ = 0
Parity of real p-forms: even for p = 0 mod 2, odd for p = 1 mod 2
Parity of Graßmann p-forms: always even.
Graded exterior product ω ∧ η = (−1)ω̃η̃η ∧ ω

3.1 Supernumbers

We shall work with a Graßmann algebra with generators ξµ; we can assume
that their collection is finite ξ1, ..., ξN for some integer N ≥ 1, or infinite
ξ1, ξ2, ... The Graßmann algebra is denoted by ΛN in the first case and Λ∞ in
the second. If we want to remain ambiguous, we use the notation Λ to mean
either ΛN or Λ∞.

The generators ξµ anticommute ξµξν = −ξνξµ and in particular (ξµ)2 = 0.
Hence an arbitrary supernumber z can be written uniquely in the form

∑
p≥0 zp

where each zp is of the form

zp =
1

p!
zα1...αpξ

α1 ...ξαp ; (3.1)

the coefficients zα1...αp are antisymmetrical in the indices α1, ..., αp and may
be real or complex (see appendix).
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We can split z as

z = u+ v with u = z0 + z2 + ...

v = z1 + z3 + ...

z = zB + zS with zB = z0

zS = z1 + z2 + ...

Hence u(v) is called even (odd) since it involves products of even (odd) number
of generators. Furthermore, the real number zB is called the body and zS the
soul of z; in the case of ΛN , zS is nilpotent, i.e. (zS)

N+1 = 0.

3.2 Superspaces

Throughout our work with supermanifolds we encounter three different graded
spaces:

Rn|ν Λn+ν Rnc × Rνa
All these spaces have n+ ν coordinates, but of different origin:

Rn|ν : (x1, ..., xn, ξ1, ..., ξν), xi ∈ R, ξi Graßmann variables;

Λn+ν : (z1, ..., zn+ν), zi ∈ Λ;

Rnc × Rνa : ; (u1, ..., un, v1, ..., vν), ui ∈ Λeven, vi ∈ Λodd .

We want to compare these spaces to vectorspaces and thus associate a basis
to each one:

Rn|ν : n+ ν non-graded elements: (e1, ..., en+ν),

Λn+ν : pure basis: n even and ν odd elements: (e1, ..., en, ε1, ..., εν),

Rnc × Rνa : pure basis: n even and ν odd elements: (e1, ..., en, ε1, ..., εν) .

The first space is obviously isomorphic to a real graded vectorspace. The
second one is a supervectorspace as defined e.g. by B.S. DeWitt. The last
space is the subset of the even elements of the supervectorspace. Thus it is
not a supervectorspace, since this set is not closed under multiplication with
an odd supernumber.

3.3 Superfunctions

A superfunction is a function depending on even and odd variables. Since the
square of an odd object vanishes, the Taylor expansion in the odd variables
has only finitely many terms:

f(x1, ..., xn, ξ1, ..., ξν) = f0 + f1ξ
1 + ...+ f12ξ

1ξ2 + ...+ f1...νξ
1...ξν ,
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where the coefficients are functions of the even variables: fI = fI(x
1, ..., xn).

We will now have a closer look at superfunctions f : Λ → Λ. In analogy
to the complex case, we call a superfunction analytic, if it has an expansion as
follows:

f(z) =
∑

n

αnz
n , (3.3)

where αn ∈ Λ. Given an analytic complex function fC : C → C, we want to
examine how to continue it to a superanalytic function on Λ. Having in mind
the expression for the inverse of a supernumber

z−1 = z−1B
∑

n

(
− zS
zB

)n
=
∑

n

(−1)n
zn+1
B

znS (3.4)

we rewrite the expansion (3.3) to a similar form:

f(z) =
∑

n

αnz
n =

∑

n

αn(zB + zS)
n =

∑

n

α′nz
n
S . (3.5)

Comparing the coefficients, we note that the formula for the continuation of a
complex analytic function to a superanalytic function should be given by

f(z) =
∞∑

n=0

1

n!
f
(n)
C (zB)z

n
S , (3.6)

where f
(n)
C is the n-th derivative of fC. A general superanalytic function then

obviously has the form

f(z) =

∞∑

n=0

fα1...αn(z)ξ
α1 ...ξαn , (3.7)

where the fα1...αn(z) are functions of the form (3.6) and the ξi are Graßmann
generators.

With some trivial algebra, we can consider f(z) as a function of an even
and an odd supernumber: f(z) = f(u, v) and rewrite (3.6):

f(u, v) = f(u) + g(u)v =

(
∞∑

n=0

1

n!
f
(n)
C (uB)u

n
S

)
+

(
∞∑

n=0

1

n!
g
(n)
C (uB)u

n
S

)
v ,

(3.8)
where fC and gC are complex functions. A general superanalytic function is
again

f(u+ v) =
∞∑

n=0

fα1...αn(u+ v)ξα1 ...ξαn (3.9)
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now with fα1...αn(u+ v) functions of the form (3.8).
These concepts can easily be generalized to functions f : Cn

c × Cνa → Λ
which take the form:

f(u1, ..., un, v1, ..., vν) =

ν∑

r=0

∞∑

s=0

c
∂sFmµ1...µr (uB)

∂un1

B ...∂u
ns
B

un1

S ...x
ns
S v

µr ...vµ1 (3.10)

with a complex constant c. For Fmµ1...µr , we allow functions C → Λ instead of
C→ C which implies the generalizing step, for example, from (3.8) to (3.9).

If we now put constrains on the Fmµ1...µr , we can construct arbitrary super-

analytic functions f : Rnc × Rνa → Λeven or f : Rnc × Rνa → Λodd which we will
use for coordinate transformations on supermanifolds.

4 Supermanifolds and Sliced Manifolds

4.1 Definition

Ordinary manifolds are topological spaces which are locally diffeomorphic to
Rn. To generalize manifolds to B.S. DeWitt’s construction of supermathe-
matics, it seems obvious to choose Λn for replacing Rn, but this choice has
several shortcomings: we lose the notion of even and odd components of the
supermanifold and thus the Z2-grading. Furthermore, even if we split Λn in
(Λeven)n × (Λodd)n, the number of even and odd dimensions is always equal.

Contrary to Λn, Rnc ×Rνa has none of the disadvantages above. Before we
can use this space, we first have to introduce a topology. We can use the one
induced from ordinary Rn:

Definition 4.1 Let π : Rnc × Rνa → Rn be the projection

π(x1, ..., xn, η1, ..., ην) := (x1B , ..., x
n
B). (4.1)

A set X ⊂ Rnc × Rνa is called open, if there is a set Y ⊂ R with X = π−1(Y ).

Obviously, this space is no longer hausdorff, but only projectively hausdorff h.
Furthermore, one should keep in mind that Rn

c ×Rνa is not a supervector space
as it is not closed under multiplication with an odd supernumber.

Now the definition of a supermanifold is straightforward:

Definition 4.2 A supermanifold M is a topological space which is locally
diffeomorphic to Rnc × Rνa. The dimension of M will be denoted by (n, ν).

h Two points can only be contained in two open set with empty intersection and each in
one, if their coordinate tuples have different bodies.
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4.2 Body, Aura and Equivalence Classes

We defined the body of a supernumber as its purely real or complex component.
A similar structure can be introduced on supermanifolds. Such a structure has
to be invariant under the general coordinate transformation (CT1):

x̄m =
ν∑

r=0

∞∑

s=0

c1
∂sXm

µ1...µr (xB)

∂xn1

B ...∂x
ns
B

xn1

S ...x
ns
S η

µr ...ηµ1 , (4.2)

η̄µ =

ν∑

r=0

∞∑

s=0

c2
∂sXµ

µ1...µr (xB)

∂xn1

B ...∂x
ns
B

xn1

S ...x
ns
S η

µr ...ηµ1 (4.3)

as developed in section 3.3, c1, c2 ∈ C. This forbids the following naive defini-
tion of a body:
“Let M a supermanifold M with a chart φ mapping M on Rn

c × Rνa and the
map b(x1, ..., xn, η1, ..., ην) := (x1B , ..., x

n
B , 0, ..., 0). Then for a point p in M its

body is given by φ−1 ◦ b ◦ φ(p).”

M
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Figure 1: Auræ, as the one shown here (shaded area), are invariant under coordinate trans-
formation: φ−1

i ◦ π−1 ◦ π ◦ φi = φ−1
j ◦ π−1 ◦ π ◦ φj . This enables us to define the body of a

supermanifold.

Instead, we have to introduce the term “aura of a point”:
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Definition 4.3 Given a supermanifold M with chart φ mapping M on Rn
c×Rνa,

then the set A(x) := φ−1 ◦ π−1 ◦ π ◦ φ(x) for any x ∈M is called the aura i of
x.

The aura of a point is invariant under coordinate transformation, i.e. x̄(A(x)) =
A(x̄(x)) which is short for

∀p ∈ A(x) : x̄(p) ∈ A(x̄(x)). (4.4)

Considering auræ as points of a real manifold, we find the invariant definition
for the body of a supermanifold:

Definition 4.4 The real manifold MB = {A(x)|x ∈ M} with chart π ◦ φ
mapping M on Rn is called the body of M.

In this definition, points of a supermanifold which belong to the same aura are
not distinguished. So it is natural to introduce an equivalence class of points:

Definition 4.5 Two points on a supermanifold are called equivalent, if and
only if they have the same aura: x ∼ y ⇔ A(x) = A(y).

4.3 Sliced Manifolds

Given a supermanifold M together with the equivalence relation above, we can
choose a representative for each equivalence class. Together with the chart
φS = π ◦ φ, the set of representatives can be considered as a real manifold
M ′. Attaching at each point p ∈ M′ all equivalent points {p′ ∼ p|p ∈ M}
as a fiber leads to the picture of a sliced manifold Mo. Note that given a
sliced manifold Mo constructed from M, each other sliced manifold M′

o also
constructed from M is just a section of Mo, as it corresponds to a different
choice of representatives of the equivalence classes or of elements of the auræ.

A sliced supermanifold is locally described by n real coordinates referring
to the body of the supermanifold and n even and ν odd coordinates, con-
taining Graßmann generators: (x1, ..., xn, y1, ..., yn, η1, ..., ην). The intrinsic
coordinate transformation for such a sliced supermanifold is (CT2):

x̄m = Xm(x) , (4.5)

ȳm =

ν∑

r=0

∞∑

s=0

c1
∂sY mµ1...µr (x)

∂xn1 ...∂xns
yn1 ...ynsS ηµr ...ηµ1 , (4.6)

η̄µ =
ν∑

r=0

∞∑

s=0

c2
∂sY µµ1...µr (x)

∂xn1 ...∂xns
yn1 ...ynsηµr ...ηµ1 . (4.7)

i This set is also called “soul subspace”.
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x
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2

x3

R

  Aurae

Figure 2: A sliced supermanifold consists of a real manifold M ′, which is the set of chosen
representatives for the auræ. The fiber at a point x is the set of equivalent points to the
representative x: Fx = {p|p ∼ x} and can thus be regarded as the auræ attached to each
representative.

The constants are the same as in (CT1), Xm(x) is an arbitrary bijective
function, mapping real numbers to real numbers and Y m, Y µ are functions j

Rn → Rc\R or Rn → Ra so that the parity of the equations is matched.
In a further step, we can linearize the slices. It is clear, that varying (yi)i

and (ηι)ι for one x by bodiless values, we obtain the whole slice at x. Since the
coordinates are bodiless themselves, multiplication with a supernumber does
not change this and we can consider this space as a supervector space over the
ring of supernumbers. The intrinsic coordinate transformations here (CT3)
are linear maps:

x̄m = Xm(x) , (4.8)

ȳm = Y (x)mn y
n + Y (x)mν η

ν , (4.9)

η̄µ = Υ(x)µny
n +Υ(x)µνη

ν , (4.10)

where Y (x)mn and Υ(x)µν are maps Rn → Rc and Y (x)mν and Υ(x)µn are maps
Rn → Ra.

4.4 Some sliced manifolds are Kostant manifolds

We use the definition of a Kostant manifold given in Y. Choquet-Bruhat and
C. DeWitt-Morette,7

A Kostant bundle K over M is a fiber bundle K over a manifold M where the

j Excluding R makes sure, that the range consists only of supernumbers without body.
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bundle coordinates take their values in a graded algebra A and the transition
map from one chart to another commutes with the product of the algebra.
Now we can define:

Definition 4.6 A Kostant manifold is a pair (M,K) where M is an ordinary
C∞ manifold and K a Kostant bundle over M. A graded function is a section
of the bundle.

Let us consider a sliced manifold constructed as above from a supermanifold
with dimension (n, n). Locally, we can describe this object by n real variables
xi, n bodiless even variables yi taking their values in Λeven and n odd variables
ηi with values in Λodd. Since the decomposition of a supernumber in its even
and odd parts is unique, we can combine the bodiless coordinates, i.e. the
coordinates of the aura, to a new coordinate zi = yi + ηi without losing any
information.

We obtain a real manifold with a bundle, which is a Graßmann algebra
without bodiless elements, i.e. generated by the Graßmann generators ξi, but
the polynomial of degree zero is not included.

This description of a sliced manifold is obviously also a Kostant manifold.
In this sense, B.S. DeWitt’s supermanifolds with equally many odd and even
dimensions can always be reduced to Kostant manifolds.

5 Graded manifolds

5.1 Basic definitions

Graded manifolds are the most trivial ones discussed in literature. Their defi-
nition is the obvious generalization of real manifolds, using Rn|ν instead of R.
We follow basically the definition given by Voronov.2

The space Rn|ν can be defined by the functions on this space which take
their values in the Graßmann algebra Λν :

C∞(Rn|ν) = {f0+f1ξ1+ ...+f12ξ1ξ2+ ...+f1...νξ1...ξν |fI ∈ C∞(Rn)} . (5.1)

It is obvious that Rn|ν can be described by coordinates

xA = (xa, ξα) = (x1, ..., xn, ξ1, ..., ξν) , (5.2)

where the xa and the ξα are real and Graßmann variables respectively. A
possible topology of this space is induced by the real component as in the case
of supermanifolds. Given the projection π by

π(x1, ..., xn, ξ1, ..., ξν) := (x1, ..., xn), (5.3)
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a subset X ⊂ Rn|ν is called open, if and only if X = π−1(Y ) where Y is an
open set in Rn. As in the case of supermanifolds, with this topology Rn|ν is
only projectively hausdorff.

Now we are ready to define:

Definition 5.1 A graded manifold is a topological space which is locally dif-
feomorphic to Rn|ν .

Simple examples for graded manifolds are ΠTM and ΠT ∗M, the tangent and
cotangent bundle with changed parity of the bundle coordinates.

In the case of graded manifolds, the definition of the body is much easier
than for supermanifolds. Here we can use the projection

b(x1, ..., xn, ξ1, ..., ξν) = (x1, ..., xn, 0, ..., 0) (5.4)

and the ”naive” definition:

Definition 5.2 Given a graded manifold M then its body MB is given by

MB = {b(x)|x ∈M} (5.5)

and its soul is MS = M\MB.

Since (ξi)2 = 0, we can look at the soul MS of a graded manifold M as infinitely
many copies of MB infinitely close to MB .

5.2 From supermanifolds to graded manifolds via superfunctions

Though supermanifolds seem to be much richer in their properties than graded
manifolds, we are basically interested in the space of functions on both.

On supermanifolds, an arbitrary function can be expanded in polynomials
of the odd variables:

f(Y,Υ) = f0(Y ) + f1(Y )Υ1 + ...+ f12(Y )Υ1Υ2 + ...+ f1...ν(Y )Υ1...Υν . (5.6)

Here the fI are functions Rnc → Λ∞.
The functions on graded manifolds are, as discussed above:

f(x, ξ) = f0(x) + f1(x)ξ
1 + ...+ f12(x)ξ

1ξ2 + ...+ f1...ν(x)ξ
1...ξν , (5.7)

where the fI are functions Rn → R.
With these expansions, it is obvious that functions on supermanifolds and

those on graded manifolds differ only in the possible values of the fI . As
real — or complex — degrees of freedom are sufficient for our purposes, we
can constrain our considerations to graded manifolds without fearing to lose
properties from supermanifolds.
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Part II

Integration

6 Definitions and notations

• Forms and densities of weight one on MD (without metric tensor)
(A• ,d) Ascending complex of forms d : Ap → Ap+1

(D• ,∇ · or b) Descending complex of densities ∇· : Dp → Dp−1
Dp ≡ D−p used for ascending complex in negative degrees

• Operators on A•(MD)
M(f) : Ap → Ap, multiplication by a scalar function f : MD → R
e(f) : Ap → Ap+1 by ω 7→ df ∧ ω
i(X) : Ap → Ap−1 by contraction with the vectorfield X
LX ≡ L(X) = i(X)d + di(X) : Ap → Ap by the Lie derivative w.r.t. X

• Representation of
fermionic creation operators: e(xm)
fermionic annihilation operators: i(∂/∂xm)

• Operators on D•(MD)
M(f) : Dp → Dp, multiplication by scalar function f : MD → R
e(f) : Dp → Dp−1 by F 7→ df.F (contraction with the form df)
i(X) : Dp → Dp+1 by multiplication and partial antisymmetrization
LX ≡ L(X) = i(X)∇+∇i(X) : Dp → Dp by Lie derivative w.r.t. X

• Forms and densities of weight one on (MD , g)
Cg : Ap → Dp (see eq. 21)
∗ : Ap → AD−p s.t T (ω|η) = ω ∧ ∗η
δ : Ap+1 → Ap is the metric transpose defined by

[dω|η] =: [ω|δη] s.t. [ω|η] :=
∫
T (ω|η)

δ = C−1g bCg (see eq. 28)
β : Dp+1 → Dp is defined by CgdC

−1
g

• Graßmann calculus on ξλ ∈ Λν or Λ∞ or unspecified Λ
dd = 0 remains true, therefore

∂
∂ξλ

∂
∂ξµ = − ∂

∂ξµ
∂
∂ξλ

dξλ ∧ dξµ = dξµ ∧ dξλ

• Forms and densities of weight −1 on R0|ν

Forms are graded totally symmetric covariant tensors. Densities are
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graded totally symmetric contravariant tensors of weight -1.(
A•(R0|ν) ,d

)
Ascending complex of forms not limited above(

D•(R0|ν) ,∇ · or b
)
Descending complex of densities not limited above

• Operators on A•(R0|ν)
M(ϕ) : Ap(R0|ν)→ Ap(R0|ν) multiplication by a scalar function ϕ
e(ϕ) : Ap(R0|ν)→ Ap+1(R0|ν) by e(ϕ) = dϕ∧
i(Ξ) : Ap(R0|ν)→ Ap−1(R0|ν) by contraction with the vectorfield Ξ
LΞ ≡ L(Ξ) := i(Ξ)d− di(Ξ) maps Ap(R0|ν)→ Ap(R0|ν)

• Representation of
bosonic creation operators: e(ξµ)
bosonic annihilation operators: i(∂/∂ξµ)

• Operators on D•(R0|ν)
M(ϕ) : Dp(R0|ν)→ Dp(R0|ν), multiplication by scalar function ϕ
e(ϕ) : Dp(R0|ν)→ Dp−1(R0|ν) by F 7→ d(ϕ) · F
i(Ξ) : Dp(R0|ν)→ Dp+1(R0|ν) by multiplication and partial symmetriza-
tion
LΞ ≡ L(Ξ) = i(Ξ)∇ − ∇i(Ξ) : Dp(R0|ν) → Dp(R0|ν) by Lie derivative
w.r.t. Ξ

7 Recalling classical results

7.1 Forms and densities on a D-dimensional manifold

We single out the statements which are independent of the dimension D of
the manifold because our ultimate goal is integration on infinite dimensional
spaces.

We begin with properties of forms and densities which can be established
in the absence of a metric tensor because they are readily useful in Graß-
mann calculus; we then consider forms and densities on riemannian manifolds
(MD , g).

By “forms” we mean exterior differential forms, i.e. totally antisymmetric
covariant tensors.

By “densities” we mean tensor-densities of weight one, i.e. totally antisym-
metric contravariant tensors of weight one. A density F is said to be of weight
w if, under the change of coordinate x̄(x), the new density F̄ is proportional
to (det ∂x̄/∂x)w.
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7.2 Forms

The exterior differentiation d on the graded algebraA• of forms is a derivation k

of degree 1. Let Ap be the space of p-forms on MD,

d : Ap −→ Ap+1 . (7.1)

In coordinates, using the convention that capitalized indices are ordered,

dω =
∂ωI1...Ip
∂xm

dxm ∧ dxI1 ∧ . . . ∧ dxIp

= ε
mI1 . . . Ip
J1 . . . Jp+1

∂ωI1...Ip
∂xm

dxJ1 ∧ . . . ∧ dxJp+1

=
1

(p+ 1)!
θj1...jp+1

dxj1 ∧ . . . ∧ dxjp+1

which defines the components of θ = dω. We recall the following operators on
A• and some of their properties

M(f) : Aj −→ Aj by multiplication with f : MD → R
e(f) : Aj −→ Aj+1 by ω 7→ df ∧ ω
i(X) : Aj −→ Aj−1 by contraction with the vector X
LX ≡ L(X) : Aj −→ Aj by the Lie derivative w.r.t. X

(7.2)

Their graded commutators are

[e(f) , e(g)]+ = 0 , (7.3)

[i(X) , i(Y )]+ = 0 , (7.4)

[i(X) , e(f)]+ =M(LXf) . (7.5)

With respect to the exterior differential d we have the following graded com-
mutators

[d , e(f)]+ = 0 , (7.6)

[d , i(X)]+ = LX , (7.7)

[d ,LX ]− = 0 (7.8)

which may be obtained from the explicit representation

d = e(xm)L(∂/∂xm) . (7.9)

Interpreting the degree p of a form as a particle number, we note that e(xm) is a
fermionic creation operator and i(∂/∂xm) is a fermionic annihilation operator.
k The distinction between derivation and anti-derivation according to the operator parity is
not necessary if one uses the graded Leibnitz rule.
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7.3 Densities

A p-density is a density whose contraction with a p-form is a scalar-density. In
the coordinate basis (∂/∂xj)j dual to (dxj)j and using capitalized (ordered)
indices

F =
√

det g
∂

∂xI1
∧ ... ∧ ∂

∂xIp
FI1...Ip . (7.10)

A scalar density is simply F.
Let Dp be the space of p-densities,l the divergence operator is

∇· : Dp −→ Dp−1 . (7.11)

In coordinates

(∇ · F)ν... = ∂

∂xµ
Fµν... . (7.12)

To conform with standard practice for descending complexes, we shall write
the divergence operation ∇· on densities also as b (for boundary) typically
using b in the context of complexes and ∇ in the context of computation.6 We
introduce the following operators on D•

M(f) : Dp −→ Dp by multiplication with f : MD → R
e(f) : Dp −→ Dp−1 by contraction with d(f)
i(X) : Dp −→ Dp+1 by multiplication and

partial antisymmetrization
LX ≡ L(X) : Dp −→ Dp by the Lie derivative w.r.t. X

(7.13)

Example: Let F be a 2-density, then

(i(X)F)
αβγ

= XαFβγ +XβFγα +XγFαβ . (7.14)

As in the case of forms, we obtain the commutator relations:

[e(f) , e(g)]+ = 0 , (7.15)

[i(X) , i(Y )]+ = 0 , (7.16)

[e(f) , i(X)]+ =M(LXf) , (7.17)

and

[∇ , e(f)]+ = 0 , (7.18)

[∇ , i(X)]+ =
∂

∂xµ
Xµ , (7.19)

[∇ ,LX ]− = 0. (7.20)
l Densities cannot be multiplied, therefore D• is not a graded algebra, because the antisym-
metrized product of two densities of weight one is a density of weight two.
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which may be obtained from the explicit representationm

∇ = e(xm)L(∂/∂xm). (7.21)

Interpreting the degree p of a density as a particle number (i.e. the sum of all
occupation numbers), we note that e(xm) is a fermionic annihilation operator
and i(∂/∂xm) is a fermionic creation operator.

7.4 Ascending and descending complexes on MD

Since dd = 0, the graded algebra A• is an ascending complex w.r.t. to the
operator d

A0 d−→ A1 −→ · · · −→ AD . (7.22)

Since bb = 0, the following sequence is a descending complex.

D0
b←− D1

b←− · · · ←− DD−1 b←− DD . (7.23)

Writing D−p instead of Dp is standard practise in homological algebra, and
the descending complex can be written as an ascending complex in negative
degrees

D−D b−→ D−D+1 b−→ · · · −→ D−1 b−→ D0 . (7.24)

Remark: The operator i(X) moves downwards on the ascending complex A•,
and upwards on the descending complex D•.

7.5 Forms and densities on a riemannian manifold (MD , g)

The metric tensor g provides a correspondence Cg between a p-form and a
p-density. For instance, let F by a 2 form, then

Fαβ =
√

det gµνFγδg
αγgβδ (7.25)

are components of a 2-density. The metric g is used twice: a) raising indices,
b) introducing weight 1 by multiplication with

√
det g. This correspondence

does not depend on the dimension D.
On an orientable manifold, the dimension D can be used for transforming

a p-density into a (D − p)-form. For example let D = 4 and p = 1

tαβγ := ε1234αβγδF
δ , (7.26)

m Given L(X) = i(X)∇ + ∇i(X) and using the definition (7.12) and the example (7.14),
L( ∂

∂xm
) = ∂

∂xm
. The final result follows by contracting with ∇(xm).
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where the alternating symbol ε defines an orientation.
The star operator (Hodge-de Rham operator, see Ref. 7, p. 295) com-

bines the metric-dependent and the dimension-dependent transformations; it
transforms a p-form into a (D − p)-form by

T (ω|η) = ω ∧ ∗η , (7.27)

where, as usual, the scalar product of 2 p-form ω and η is

(ω|η) = 1

p!
ωi1...ipη

i1...ip , (7.28)

and T is the volume element, given in example 1 below.
We shall exploit the correspondence mentioned in the first paragraph

Cg : Ap −→ Dp (7.29)

for constructing a descending complex on A• w.r.t. to the metric transpose δ
of d (Ref. 7, p. 296)

δ : Ap+1 −→ Ap , (7.30)

and an ascending complex on D•

β : Dp −→ Dp+1 , (7.31)

where β is defined by the following diagram

Ap
δ←−−→
d

Ap+1

Cg ↓ ↓ Cg

Dp
β−→←−
b

Dp+1




⇐⇒

{
δ = C−1g bCg

β = CgdC
−1
g

. (7.32)

Example 1 : Volume element on an oriented D-dimensional riemannian mani-
fold. The volume element is

T := dx1 ∧ . . . ∧ dxD T = dx1 ∧ . . . ∧ dxD
√

det g with T ∈ D0 , (7.33)

where T is a scalar density corresponding to the top form

dx1 ∧ . . . ∧ dxD ∈ AD . (7.34)

T is indeed a scalar density since, under the change of coordinates x′j = Ajix
i

T′ = (detA)T . (7.35)
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Example 2: In the thirties, the use of densities was often justified by the fact
that in a number of useful examples it reduces the number of indices. For
example, a vector-density in M4 can replace a 3-form

Tl =
√

det g εijkl1234tijk . (7.36)

An axial vector in R3 can replace a 2-form.

7.6 Other definitions of the metric transpose δ .

• The name “metric transpose of the differential d” comes from the inte-
grated version of T (ω|η) = ω ∧ ∗η; namely let

[ω|η] =
∫
T (ω|η) , (7.37)

then for ω a p-form and η a (p+1)-form on a manifold without boundary
δ is defined by

[dω|η] =: [ω|δη] . (7.38)

• On a p-form ω,
δω := (−1)p ∗−1 d ∗ ω , (7.39)

where ∗ is the star operator defined above.

• δ is a derivation on A• of degree -1.

We have given a new presentation of these well known results, but we have sep-
arated metric-dependent and dimension-dependent transformations. It brings
forth the ascending complex on densities w.r.t. to the operator β = CgdC

−1
g .

8 Berezin integration

8.1 A Berezin integral is a derivation

The fundamental requirement on a definite integral is expressed in terms of
an integral operator I and a derivative operator D on a space of functions,
namely

DI = ID = 0 . (8.1)

The requirement DI = 0 for functions of real variables f : RD −→ R says
that the integral does not depend on the variable of integration

d

dx

∫
f(x)dx = 0 , x ∈ R . (8.2)
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The requirement ID = 0 on the space of functions defined on domains
with vanishing boundaries says

∫
d

dx
f(x)dx = 0 . (8.3)

This is the foundation of integration by parts

0 =

∫
d (f(x)g(x)) =

∫
df(x) · g(x) +

∫
f(x)dg(x) , (8.4)

and of the Stokes’ theorem on a form ω,
∫

M
dω =

∫

∂M
ω = 0 , since ∂M is an empty set. (8.5)

We shall use the requirement ID = 0 in section II.5 for imposing a condition
on volume elements.

We now use the fundamental requirements on Berezin integrals defined on
functions f of the Grassman algebra Λν . The condition DI = 0 says

∂

∂ξi
I(f) = 0 for i ∈ {1 , . . . , ν} . (8.6)

Any operator on Λν can be set in normal ordering n

ΣCK
JξK

∂

∂ξJ
(8.7)

with J ,K , multi-ordered indices. Therefore the condition DI = 0 implies that
I is a polynomial in ∂/∂ξi,

I = Q

(
∂

∂ξ1
, . . .

∂

∂ξν

)
. (8.8)

The condition ID = 0, namely

Q

(
∂

∂ξ1
, . . . ,

∂

ξν

)
∂

∂ξµ
= 0 for every i ∈ {1 , . . . , ν} , (8.9)

implies

I = constant
∂

∂ξν
· · · ∂

∂ξ1
. (8.10)

A Berezin integral is a derivation. The constant is a normalisation constant
chosen for convenience in the given context. Usual choices include 1, (2πi)1/2,
(2πi)−1/2.
n This ordering is also the operator normal ordering, creation operator followed by anni-
hilation operator, since e(ξµ) and i(∂/∂ξµ) can be interpreted as creation and annihilation
operators (see (9.11) to (9.13)).
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8.2 Change of variable of integration

Since integrating f(ξ1 , . . . , ξν) is taking its derivatives w.r.t. ξ1 , . . . , ξν , a
change of variable of integration is most easily performed on the derivatives.
Given a change of coordinates f , we recall the induced transformations on the
tangent and cotangent spaces. Let y = f(x) and θ = f(ζ);

T*x M T*y M
f*(y)

x y

M MFof F

f

T ζ M T θ M
f’(ζ)

ζ θ

M MFof F

f

dy1 ∧ . . . ∧ dyD = dx1 ∧ . . . ∧ dxD
(
det

∂yi

∂xj

)
, (8.11)

and
∫

dx1 ∧ . . . ∧ dxD (F ◦ f)(x)
(
det

∂f i

∂xj

)
=

∫
dy1 ∧ . . . ∧ dyD F (y) . (8.12)

On the other hand, for an intregral over Graßmann variables, the antisymmetry
leading to a determinant is the antisymmetry of the product ∂1 . . . ∂D. And

(
∂

∂ζ1
. . .

∂

∂ζD

)
(F ◦ f)(ζ) =

(
det

∂θλ

∂ζµ

)
∂

∂θ1
· · · ∂

∂θD
F (θ) . (8.13)

The determinant is now on the right hand side, it will become an inverse
determinant when brought to the same side as in (8.12).

9 Ascending and descending complexes in Graßmann calculus

In section 7.5 we have presented d-ascending and δ-descending complexes
A•(M) of forms and b-descending and β-ascending complexes D•(M) of den-
sities. We shall now study complexes A•(R0|ν) of Graßmann forms, and com-
plexes D•(R0|ν) of Graßmann densities.
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9.1 Graßmann forms

Two properties of forms on real variables remain true for forms on Graßmann
variables, namely

ddω = 0 , (9.1)

d(ω ∧ θ) = dω ∧ θ + (−1)ω̃d̃ω ∧ dθ ; (9.2)

a form on Graßmann variables is a graded totally antisymmetric covariant
tensor. Indeed

ξλξµ = −ξµξλ (9.3)

implies

∂λ∂µ = −∂µ∂λ , where ∂λ := ∂/∂ξλ (9.4)

which, in turn implies

dξλ ∧ dξµ = dξµ ∧ dξλ. (9.5)

The counterparts on A•(R0|ν) of the operators M(f), e(f), i(X), L(X) on
A•(M) are as follows; we omit the reference to R0|ν for visual clarity.

M(ϕ) : Aj −→ Aj by multiplication by ϕ : R0|ν → Λν
e(ϕ) : Aj −→ Aj+1 by e(ϕ) := dϕ∧
i(Ξ) : Aj −→ Aj−1 by contraction with Ξ

LΞ ≡ L(Ξ) : Aj −→ Aj by Lie derivative with respect to Ξ
(9.6)

We note the following properties o

i(Ξ)(ωk ∧ η) =
(
i(Ξ)ωk

)
∧ η + ωk ∧ i(Ξ)η , ωk ∈ Ak , (9.9)

i.e. the parity of i(Ξ) is zero. It follows that

L(Ξ) = i(Ξ)d− di(Ξ) . (9.10)

o The difference to ordinary forms is due to the symmetrization in the case of Graßmann
forms

(ω ∧ π)(Ξ1, ...,Ξr+s) =
1

r!s!

∑

P (1..r+s)

ω(ΞP (1), ...ΞP (r))π(ΞP (r+1), ...ΞP (r+s))

contrary to the antisymmetrization in the case of ordinary forms

(ω ∧ π)(X1, ..., Xr+s) =
1

r!s!

∑

P (1..r+s)

sgn(P )ω(XP (1), ...XP (r))π(XP (r+1), ...XP (r+s)).



Supermanifolds – application to supersymmetry 439

For ϕ, ξ, Ξ, Ψ odd, the corresponding graded commutators are

[e(ϕ) , e(ζ)]− = 0 , (9.11)

[i(Ξ) , i(Ψ)]− = 0 , (9.12)

[i(Ξ) , e(ϕ)]− = M(LΞϕ) , (9.13)

[d , e(ϕ)]− = 0 (9.14)

[d , i(Ξ)]− = LΞ , (9.15)

[d ,L(Ξ)]+ = 0 (9.16)

which may be obtained from the explicit representation

d = e(ξµ)L (∂/∂ξµ) . (9.17)

Interpreting the degree p of a Graßmann form as a particle number, we note
that e(ξµ) is a bosonic creation operator and i(∂/∂ξµ) is a bosonic annihilation
operator.

Since the differential of a Graßmann variable has even parity (9.5), there
is at first no reason to restrict our forms to polynomials in dξ i. (The space of
polynomials is a proper subset of the space of smooth functions.) This leads to
arbitrary smooth functions ω = ω(ξi,dξi), which Voronov2 calls pseudodiffer-
ential forms. Those forms can obviously no longer be decomposed in even and
odd parts. Since we consider this necessary for the description of the quantum
Fock space, we restrict our considerations to polynomial forms.

9.2 Graßmann densities

In order to define Graßmann densities we recall the definitions of densities
in the works of H. Weyl8 (1920) W. Pauli9 (1921) and L. Brillouin10 (1938).
From Pauli’s Theory of Relativity (p. 32): “If the integral

∫
Fdx is an invariant

(in a change of coordinate system), then F is called a scalar density, following
Weyl’s terminology” (in Space-Time-Matter pp 109 ff). Here dx stands for
dx1 ∧ . . . ∧ dxD. Under the change of variable y(x), F is a scalar density if it
is a scalar multiplied by det(∂yj/∂xi).

What we call here “tensor-densities” is called “linear tensor densities” by
Weyl. For him the term “tensor densities” are arbitrary tensors of weight one.
He singles out among them the contravariant antisymmetric p ones and calls

p The word “skew” is missing in the English translation. The original reads “Die gleiche
ausgezeichnete Rolle, welche unter den Tensoren die kovarianten schiefsymmetrischen spielen,
kommt unter den Tensordichten den kontravarianten schiefsymmetrischen zu, die wir darum
kurz als lineare Tensordichten bezeichnen wollen.”
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them “linear” because, like the “covariant skew-symmetrical tensors” (i.e. the
forms), they play a “unique part.” Their unique properties, algebraic and
geometrical are beautifully presented in Brillouin’s book. Brillouin defines
“capacity” as an object which multiplied by a density is a scalar. Together
densities and capacities have become known as “pseudo-tensors” and are some-
times treated as “second rate” tensors!

If the Berezin integral
∫
dξν ...dξ1 f(ξ1, . . . , ξν) = ∂

∂ξν · · · ∂
∂ξ1 f(ξ

1, . . . , ξν)

is invariant under the change of coordinates θ(ξ) then f is a Graßmann scalar
density. It follows from the formula for change of variable of integration (8.13)
that a Graßmann scalar density is a scalar divided by det

(
∂θλ/∂ξµ

)
. The

expression ∂
∂ξν · · · ∂

∂ξ1 is a Graßmann capacity in R0|ν .
Two properties of densities on real variables remain true for Graßmann

densities F, namely
(∇·)(∇·)F = 0 , (9.18)

(∇·)(XF) = (∇ ·X) · F + (−1)X̃∇̃X∇ · F , (9.19)

where X is a vector field. The first property follows from the fact that the
Graßmann divergence is odd and the density is a graded antisymmetric con-
traviant tensor, i.e. symmetric in the interchange of two Graßmann indices.

The second property is the “Leibnitz” property of divergence over prod-
ucts. A density is a tensor of weight 1; multiplication by a tensor of weight
zero is the only possible product which maps a density into a density.

Together these two properties make possible the construction of a density
complex.

Multiplying a Graßmann scalar density F by a graded totally antisymmet-
ric contravariant tensor gives a Graßmann tensor density of components

Fµνρ... . (9.20)

The counterparts on D•(R0|ν) of the operators M(f), e(f), i(X), L(X) on
D•(M) are as follows. We omit the reference to R0|ν for visual clarity.

M(ϕ) : Dp −→ Dp by multiplication by ϕ : R0|ν −→ R
e(ϕ) : Dp −→ Dp−1 by contraction with d(ϕ)
i(Ξ) : Dp −→ Dp+1 by multiplication and

partial antisymmetrization
LΞ ≡ L(Ξ) : Dp −→ Dp by the Lie derivative w.r.t. Ξ

(9.21)

9.3 Ascending and descending Graßmann complexes

The ascending complex A•(R0|ν) of Graßmann forms with respect to d does
not terminate at the ν-form. The descending complex D•(R0|ν) of densities
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with respect to ∇ does not terminate at the ν-density. Indeed, whereas forms
and densities on ordinary variables are antisymmetric tensors, on Graßmann
variables they are symmetric tensors, therefore their degrees are not limited to
the Graßmann dimension ν.

9.4 Summary of complexes on ordinary and Graßmann variables

On MD:

DD −→ ... −→ D0 ; (9.22)

A0 d−→ A1 d−→ ...
d−→ AD ; (9.23)

D0
b←− D1

b←− ...
b←− DD , (9.24)

D0 → AD by a dimension-dependent equation (a scalar density is the strict
component of a top form);
A0 → D0 by a metric-dependent equation;

• on A•(MD),
e(xk) represents a fermionic creation operator;
i(∂/∂xk) represents a fermionic annihilation operator.

• on D•(MD),
e(xk) represents a fermionic annihilation operator;
i(∂/∂xk) represents a fermionic creation operator.

On R0|ν :

...Dν −→ ... −→ D0 , (9.25)

A0 d−→ A1 d−→ ...
d−→ Aν ... , (9.26)

D0
b←− D1

b←− ...
b←− Dν ... . (9.27)

• on A•(R0|ν),
e(ξµ) represents a bosonic creation operator;
i(∂/∂ξµ) represents a bosonic annihilation operator.

• on D•(R0|ν),
e(ξµ) represents a bosonic annihilation operator;
i(∂/∂ξµ) represents a bosonic creation operator.

10 The mixed case

10.1 Integration over Rn|ν

We consider superfunctions on Rn|ν , that is functions of n real variables xa

and ν Graßmann variables ξα. Such a superfunction is of the form

F (x, ξ) =

ν∑

p=0

1

p!
fα1...αp(x)ξ

α1 ...ξαp , (10.1)
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where the functions fα1...αp are smooth functions on Rn, antisymmetrical in
the indices α1, ..., αp.

By definition, the integral of F (x, ξ) is obtained by integrating w.r.t. the
real variables, and performing a Berezin integral over the Graßmann variables:

∫

Rn|ν

d(x, ξ)F (x, ξ) :=

∫

Rn

dx

(∫

R0|n

dξ F (x, ξ)

)
. (10.2)

More explicitly
∫

Rn|ν

d(x, ξ)F (x, ξ) =

∫

Rn

dnx f12...ν(x) , (10.3)

dnx = dx1...dxn as usual. A theorem of Fubini type holds:
∫

d(x,y)F (x,y) =

∫
dx

(∫
dyF (x,y)

)
, (10.4)

where x = (xa, ξα) runs over Rn|ν and y = (yb, ηβ) over Rm|µ, hence (x,y) =
(xa, yb, ξα, ηβ) over Rn+m|ν+µ. In particular

∫
d(x, ξ)F (x, ξ) =

∫

R0|ν

dξ

∫

Rn

dnxF (x, ξ). (10.5)

10.2 Scalar densities over Rn|ν

A scalar density over Rn|ν is simply a superfunctionD(x, ξ) used for integration
purposes ∫

Rn|ν

dT · F =

∫

Rn|ν

d(x, ξ)D(x, ξ)F (x, ξ) . (10.6)

Explicitly, we expand D(x, ξ) as

D(x, ξ) =
ν∑

p=0

1

p!
Dα1...αp(x)ξ

α1 ...ξαp (10.7)

with antisymmetric coefficients Dα1...αp . Hence

∫

Rn|ν

dT · F =

∫

Rn

dnxG1...ν(x) , (10.8)

where

Gα1...αν =

ν∑

p=0

(
ν
p

)
D[α1...αpFαp+1...αν ] . (10.9)



Supermanifolds – application to supersymmetry 443

Using the totally antisymmetric symbol εα1...αν normalized by ε1...ν = 1, we
raise indices as follows

Dα1...αp =
1

(ν − p)! ε
α1...αpαp+1...ανDαp+1...αν . (10.10)

Then we obtain ∫

Rn|ν

dT · F =

∫

Rn

dnxG(x) (10.11)

where

G(x) =

ν∑

p=0

1

p!
Dα1...αp(x)Fα1...αp(x) . (10.12)

Introducing a differential operator Λ acting on the Graßmann variables

Λ =

ν∑

p=0

1

p!
Dα1...αp

∂

∂ξα1
...

∂

∂ξαp
(10.13)

(recall that the ∂
∂ξα mutually anticommute), then we get

G(x) = (ΛF )(x, 0) (10.14)

(putting the ξα = 0). Finally
∫

dT · F =

∫

Rn

dnxΛF (x, ξ) |ξ=0; (10.15)

hence the mixed integration is really an integrodifferential operator, differenti-
ating w.r.t. the Graßmann variables, integrating w.r.t. the ordinary variables.

10.3 An analogy

Let us consider a real space Rn+m of n+m dimensions and embed the n-space
Rn in Rn+m as the set of vectors (x1, ..., xn, 0, ..., 0). A well-known result by
Laurent Schwartz asserts that a distribution on Rn+m carried by the subspace
Rn is a sum of transversal derivatives of distributions q on Rn:

T (x, y) =
∑

p≥0

1

p!
T i1...ip(x)

∂

∂yi1
...

∂

∂yip
δ(y) , (10.16)

where δ is an m-dimensional Dirac function

δ(y) := δ(y1)...δ(ym). (10.17)
q We use coordinates x1, ..., xn, y1, ..., ym in Rn+m.
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Since the derivatives ∂
∂yj mutually commute, T i1...ip is symmetrical in its in-

dices, and the summation in (10.16) is finite (from p = 0 to N , for some
N ≥ 0.)

By integration one obtains
∫

Rn+m

dnx dmy F (x, y)T (x, y) =

∫

Rn

dnxLF (x, y) |y=0 (10.18)

with the differential operator

L =
∑

p≥0

1

p!
T i1...ip(x)

∂

∂yi1
...

∂

∂yip
. (10.19)

The analogy with the Graßmann case (10.15) is obvious.
In physical terms, (10.16) means that T is a sum of multiple sheets along

Rn, hence is localized in an infinitesimal neighborhood of Rn in Rn+m. By
analogy we can assert that the whole superspace Rn|ν is an infinitesimal neigh-
borhood of its body Rn.

10.4 Exterior forms on a graded manifold

We consider now forms and densities on a graded manifold M. Tensor calculus
can be developed on a graded manifold in a more or less obvious way, taking
into account the sign rules. For instance, corresponding to a local chart with
coordinates (xA) = (xa, ξα), we introduce the differentials dxA and the vector
fields ∂A. The Lie derivative associated to ∂A acts on a superfunction F (x, ξ)
as the partial derivative ∂F

∂xA
. By comparing the parities of F and ∂F

∂xA
, we

conclude that the operator ∂
∂xA

increases the parity of F by that of xA, hence
∂A has the same parity as xA. On the other hand, in the case of exterior
differential forms, we require

dxa ∧ dxb = −dxb ∧ dxa (10.20)

for ordinary variables xa and a consistent extension is

dxA ∧ dxB = (−1)(Ã+1)(B̃+1)dxB ∧ dxA. (10.21)

Therefore xA and dxA have opposite parities.
We conclude

∂̃

∂xa
= 0 ,

∂̃

∂ξα
= 1 , (10.22)

d̃xa = 1 , d̃ξα = 0. (10.23)



Supermanifolds – application to supersymmetry 445

Starting from (10.21), we generate the p-forms by products of p forms of the
type dxA, that is

ω =
1

p!
ωA1...Ap

dxA1 ∧ ... ∧ dxAp . (10.24)

It can also be written as

ω =
∑

q+r=p

1

q!r!
ωa1...aqα1...αrdx

a1 ∧ ... ∧ dxaq ∧ dξα1 ∧ ... ∧ dξαr (10.25)

with components antisymmetrical in the bosonic indices a1, ..., aq and symmet-
rical in the fermionic indices α1, ..., αr. The parity of ω is that of q, that is
count the number of bosonic differentials dxa.

To change from the coordinate system (xA) to another one (x̄A) introduce
the Jacobian matrix by

dxA = dx̄P · PJA , (10.26)

where PJ
A = ∂xA/∂x̄P (this gives the correct sign for the partial derivative

w.r.t. a fermionic variable ξα). We calculate for instance

dxA ∧ dxB = (−1)Q̃(Ã+P̃ )dx̄P ∧ dx̄Q PJ
A
QJ

B . (10.27)

The (total) differential dF of a superfunction F is defined invariantly by

dF = dxA · ∂F
∂xA

. (10.28)

For the parity, we get d̃F = F̃+1, and this rule assigns parity 1 to the operator
d. We then extend the differential d to an exterior differential of forms by

dω =
1

p!
dωA1...Ap

∧ dxA1 ∧ ... ∧ dxAp (10.29)

for ω given by (10.24). The exterior differentiation is an operator of parity 1.
Let X be a supervector field with components AX. The contraction iXω

of a p-form ω is a (p− 1)-form defined in components by

(iXω)A2...Ap
= XA1

A1
ωA2...Ap

. (10.30)

According to the rules of superalgebra the various components of ω and X are
related by

XA = (−1)ÃX̃ AX, A1
ωA2...Ap

= (−1)ω̃·Ã1ωA1A2...Ap
. (10.31)



446 P. Cartier, C. DeWitt-Morette, M. Ihl and C. Sämann

With this definition the parity is given by

ĩXω = ω̃ + X̃ + 1 (10.32)

and this assigns ĩX = X̃+1 as the parity of the operator iX , hence the symbol
i has to be considered as odd.

Finally, the Lie derivative acting on forms is the graded commutator

LX = [iX ,d] (10.33)

a graded operator of the same parity as X. We denote as before by A(M) the
vectorspace of p-forms on M. We collect the definition of the various operators
acting on forms:

M(F ) : Ap(M)→ Ap(M) multiplication by F (10.34)

e(F ) : Ap(M)→ Ap+1(M) multiplication by dF (10.35)

iX : Ap(M)→ Ap−1(M) contraction by X (10.36)

d : Ap(M)→ Ap+1(M) exterior derivative (10.37)

LX : Ap(M)→ Ap(M) Lie derivative (10.38)

(where F is a superfunction on M, and X a supervectorfield). The graded
commutators are 0 except the following ones:

[iX , e(F )] = M(LXF ) = [LX ,M(F )] (10.39)

[iX ,d] = LX (10.40)

[d,M(f)] = e(F ) (10.41)

[LX ,LY ] = L[X,Y ] (10.42)

[LX , e(F )] = e(LXF ) (10.43)

[LX , iY ] = i[X,Y ]. (10.44)

Since dd = 0, we get an ascending complex of forms

A0(M)
d−→ A1(M)

d−→ A2(M)
d−→ ... (10.45)

which is unbounded above if M is not an ordinary manifold (that is ν > 0).

10.5 Densities on a graded manifold

We combine what we said above in the pure bosonic and the pure fermionic
cases. We shall be sketchy and leave the technical details to a forthcoming
publication.
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A scalar density (of weight one) is given in coordinates by one component
F(x, ξ) but it can be viewed as an ordinary tensor

Fi1...in
α1...αν (10.46)

totally antisymmetric in i1, ..., in and α1, ..., αν separately, with F = F1...n
1...ν .

In more intrinsic terms r

F = dx1 ∧ ... ∧ dxn ⊗ δ1...δνF(X, ξ) . (10.47)

It behaves in such a tensorial way under a coordinate transformation where
the fermionic variables transform linearly, but not under a general coordinate
transformation.

To integrate such a density, we take our advice from subsection 10.1:

∫

M
F =

∫

MB

ω , (10.48)

where MB is the body of M and the n-form ω is given by

ω = dx1 ∧ ... ∧ dxn (δ1...δνF(x, ξ)) (10.49)

this last expression being independent of ξ. Since we can multiply a density F
by a superfunction F , we get an integration process

F 7→
∫

M
F · F (10.50)

on M. It is really an integro-differential process, and it can be split as follows:

1. a differential operator P mapping superfunctions F on M to top-forms
P (F ) on the body MB ;

2. integrating P (F ) on MB .

This splitting has an invariant meaning for manifolds split in their body and
soul, and provides an alternative definition for the so-called Berezinian.

From the scalar densities, we construct a descending complex of densities

D0
∇·←− D1

∇·←− ... (10.51)

with its cohort of operators e(F ), iX , M(F ), LX .

r We use the abbreviation δα = ∂/∂ξα.
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Part III

Applications

11 ΠTM and ΠT ∗M

A special case of supermanifolds is obtained by changing the parity of the fiber
coordinates of a vector bundle. We introduce the parity operator Π:

Definition 11.1 The parity operator Π acts on a fiber bundle by changing the
parity of the fiber coordinates.

Given the tangent bundle TM over an n-dimensional manifold which is locally
described by 2n real coordinates x1, ..., xn, ẋ1, ..., ẋn, ΠTM is a graded manifold
of dimensions (n, n) and has coordinates x1, ..., xn, ξ1, ..., ξn where ξi are Graß-
mann variables. Similarly, the cotangent bundle T ∗M has local coordinates
x1, ..., xn, p1, ..., pn so that ΠT ∗M is locally described by x1, ..., xn, π1, ..., πn
where again the πi are Graßmann variables.

The graded manifolds ΠTM and ΠT ∗M have equally many even and odd
dimensions, which is required for a linear description of supersymmetric sys-
tems.

12 Supersymmetric Fock space

12.1 Definition of a Fock space

A Fock space is a Hilbert space H with a realization of the algebra:

âi|0〉 := 0 , (12.1)[
âi, â

†
j

]
∓
= âiâ

†
j ∓ â

†
j âi := δij . (12.2)

The upper sign defines a bosonic Fock space, the lower sign a fermionic Fock
space. We set b̂i = âi in the bosonic and f̂i = âi in the fermionic case.

If both algebras together with the additional rules

[
b̂i, f̂j

]
=

[
b̂i, f̂j

]
−
:= 0 ,

[
b̂i, f̂

†
j

]
=

[
b̂i, f̂

†
j

]
−
:= 0

are simultaneously realized on a Hilbert space H, we call H a supersymmetric
Fock space.
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12.2 Holomorphic representation

In the following section, z and ζ denote ordinary complex and Graßmann
variables respectively

A representation of the bosonic algebra s on C[z1, ..., zN ] is found by using
the following definitions:

b̂i :=
∂

∂zi
and b̂†i := zi · . (12.3)

The vacuum state |0〉 is represented by the function f0(z
1, ..., zN ) = 1.

The Hilbert space C[z1, ..., zN ] is self-dual so that scalar product and dual
product are identical:

〈f |g〉 = (f |g) :=
∫

dz1dz̄1...dzNdz̄Nexp−z
1z̄1...−zN z̄N f(z)g(z) . (12.4)

The analogous representation of the fermionic algebra is found on the space of
polynomials of N complex Graßmann variables C[ζ1, ..., ζN ]:

f̂i :=
∂

∂ζi
and f̂†i := ζi · . (12.5)

The vacuum state |0〉 is again the function f0(ζ
1, ..., ζN ) = 1 The scalar product

in C[ζ1, ..., ζN ] is analogously:

(f |g) :=
∫

dζ1dζ̄1...dζNdζ̄Nexp−z
1ζ̄1...−zN ζ̄N f(ζ)g(ζ) . (12.6)

Using a superfunction on a space described by N real and N Graßmann vari-
ables, we find a representation of the supersymmetric Fock space. Particularly,
we can use the space of functions on ΠTM: C[z1, ..., zN , ζ1, ..., ζn].

12.3 Representation by forms and densities

There is an obvious one-to-one correspondence from C[z1, ..., zN , ζ1, ..., ζn] to
the space of (complexified) forms on a graded manifold Ω•(ΠTM): One can
substitute powers of zi by powers t of dξi and powers of ζi by dxi. We thus
replace commuting and odd variables by one-forms of the same parity.

s We allow N different degrees of freedom, i.e. in physical terms e.g. N different momenta
or positions on a lattice.
t The product of forms being the wedge product.
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The operators in this representation become:

b̂i := i(∂ξi) and b̂†i := e(ξi) , (12.7)

f̂i := i(∂xi) and f̂†i := e(xi) . (12.8)

It is easily verified, that the algebra is correct. Particularly.

[i(∂ξi), e(ξ
j)]− = [i(∂xi), e(x

j)]+ = δij (12.9)

This representation is obviously not self-dual. The dual representation is found
on the space of densities on ΠTM: D•(ΠTM). If we write tensor densities
formally as

F =
√

det g
∂

∂xA1
∧ ... ∧ ∂

∂xAm
FA1...Am (12.10)

then the representation by densities is obtained from the holomorphic repre-
sentation by substituting powers of zi by powers of (∂/∂ξi) and powers of
ζi by powers of (∂/∂xi) with, what is somewhat unusual, the wedge product
between the partial derivatives.

The operators are again

b̂i := i(∂ξi) and b̂†i := e(ξi) (12.11)

f̂i := i(∂xi) and f̂†i := e(xi) (12.12)

which act in the coordinate expansion on FA1...Am as described above.
The dual product is now obtained by contracting the tensor density with

the form, which yields a scalar density, and integrating over the configuration
space:

〈ψ1|ψ2〉 :=
∫

M
〈F(ψ1), ω(ψ2)〉ωtop =

∫

M

(
FA1...Ai(ψ1)ωα1...αj (ψ2)

)
ωtop.

(12.13)
This expression vanishes, unless the degree of the tensor density and the form
are identical, i.e. i = j.

13 Dirac matrices

Many authors have remarked the connection between the Dirac operators and
the operators d and δ acting on differential forms. Here are some supplemen-
tary remarks.

Consider a D-dimensional real vector space V with a scalar product. In-
troducing a basis e1, ..., eD we represent a vector by its components v = vaea
and the scalar product reads

g(v, w) = gabv
awb . (13.1)
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Let C(V ) be the corresponding Clifford algebra generated by γ1, ..., γD sub-
jected to the relations

γaγb + γbγa = 2gab . (13.2)

The dual generators are given by γa = gabγb and

γaγb + γbγa = 2gab , (13.3)

where gabgbc = δac as usual.
We define now a representation of the Clifford algebra C(V ) by operators

acting on a Graßmann algebra. Introduce Graßmann variables ξ1, ..., ξD and
put

γa = ξa + gab
∂

∂ξb
. (13.4)

Then the relations (13.3) hold. In more intrinsic terms we consider the exterior
algebra ΛV ∗ built on the dual V ∗ of V with a basis (ξ1, ..., ξD) dual to the
basis (e1, ..., en) of V . The scalar product g defines an isomorphism v 7→ Igv
of V with V ∗ characterized by

〈Igv, w〉 = g(v, w) . (13.5)

Then we define the operator γ(v) acting on ΛV ∗ as follows

γ(v) · ω = Igv ∧ ω + i(v)ω , (13.6)

where the contraction operator i(v) satisfies

i(v)(ω1 ∧ ... ∧ ωp) =
p∑

j=1

(−1)j−1〈ωj , v〉ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωp . (13.7)

(The hat ˆmeans omitting the corresponding factor). An easy calculation gives

γ(v)γ(w) + γ(w)γ(v) = 2g(v, w) . (13.8)

We recover γa = γ(ea), hence γ
a = gabγb.

The representation thus constructed is not the spinor representation since
it is of dimension 2D. Assume D is even, D = 2n, for simplicity. Hence ΛV ∗

is of dimension 2D = (2n)2 and the spinor representation should be a “square
root” of ΛV ∗.

Indeed, on ΛV ∗ consider the operator J given by

J(ω1 ∧ ... ∧ ωp) = ωp ∧ ... ∧ ω1 = (−1)p(p−1)/2ω1 ∧ ... ∧ ωp , (13.9)
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and introduce the operators

γ0(v) = Jγ(v)J . (13.10)

Since J2 = 1, they satisfy the Clifford relations

γ0(v)γ0(w) + γ0(w)γ0(v) = 2g(v, w) . (13.11)

In components γ0(v) = vaγ0a where γ0a = JγaJ . The interesting point is the
commutation property u

γ(v) and γ0(w) commute for all v, w .

According to the standard wisdom of quantum theory, the degrees of freedom
associated with the γa decouple with the ones for the γ0a. Assume that the
scalar are complex numbers, hence the Clifford algebra is isomorphic to the
algebra of matrices of type 2n× 2n. Then ΛV ∗ can be decomposed as a tensor
square

ΛV ∗ = S ⊗ S (13.12)

with the γ(v) acting on the first factor only, and the γ0(v) acting on the second
factor in the same way:

γ(v)(ψ ⊗ ψ′) = Γ(v)ψ ⊗ ψ′ , (13.13)

γ0(v)(ψ ⊗ ψ′) = v ⊗ Γ(v)ψ′ . (13.14)

The operator J is then the exchange

J(ψ ⊗ ψ′) = ψ′ ⊗ ψ . (13.15)

The decomposition S ⊗ S = ΛV ∗ corresponds to the formula

ci1...ip = ψ̄γ[i1 ...γip]ψ (0 ≤ p ≤ D) (13.16)

for the currents v ci1...ip (by [...] we denote antisymmetrization).

In differential geometric terms, let (MD, g) be a (pseudo-)Riemannian
manifold. The Graßmann algebra ΛV ∗ is replaced by the graded algebra A(M)
of differential forms. The Clifford operators are given by

γ(f)ω = df ∧ ω + i(∇f)ω (13.17)

u This construction is reminiscent of Connes’ description of the standard model in A.Connes,
Géométrie noncommutative, ch. 5, InterEditions, Paris, 1990.
v For n = 4, this gives a scalar, a vector, a bivector, a pseudo-vector and a pseudo-scalar.
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(∇f is the gradient of f w.r.t. the metric g, a vector field). In components
γ(f) = ∂µf · γµ with

γµ = e(xµ) + gµν i

(
∂

∂xν

)
. (13.18)

The operator J satisfies

J(ω) = (−1)p(p−1)/2ω . (13.19)

for a p-form ω. To give a spinor structure on the riemannian manifold (MD, g)
(in the case D even) is to give a splitting w

ΛT ∗CMD ' S ⊗ S (13.20)

satisfying the analogous of relations (13.13) and (13.15). The Dirac operator
∂/ is then characterized by the fact that ∂/×1 acting on bispinor fields (sections
of S ⊗ S on MD) corresponds to d + δ acting on (complex) differential forms,
that is on (complex) superfunctions on ΠTMD.
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Note added in proof

After finishing this manuscript, we looked for a couple of references to the work
of D. Leites, aware of his work, but not familiar with it. We discovered 103
references, and the monumental ”Seminar on Supermanifolds” (SOS) over 2000
pages written by D. Leites, colleagues, students and collaborators from 1977 to
2000. It includes in particular a contribution by V. Shander “Integration theory
on supermanifolds” Chapter 5, pp. 45-131. Needless to express our regret for
discovering this gold mine only now. For those who also have missed it, we give
one access to this large body of information: mleites@matematik.su.se. The
first definition of supervarieties (due to Leites) appeared in 1974 in Russian

w T ∗
C MD is the complexification of the cotangent bundle. We perform this complexification

to avoid irrelevant discussions on the signature of the metric.
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“Spectra of graded commutative rings”, Uspehi Matem. Nauk., 30 n3, 209-
210. Early references to supersymmetry can be found in Julius Wess and Jan
Bagger ”Supersymmetry and Supergravity” Princeton University Press 1973
and The Many Faces of the Superworld Yuri Golfand Memorial Volume, ed. by
M. Shifman, World Scientific, Singapore, 1999. See also Deligne P. et al (eds.)
Quantum fields and strings: a course for mathematicians. Vol. 1, 2. Material
from the Special Year on Quantum Field Theory held at the Institute for
Advanced Study, Princeton, NJ, 1996–1997. AMS, Providence, RI; Institute
for Advanced Study (IAS), Princeton, NJ, 1999. Vol. 1: xxii+723 pp.; Vol. 2:
pp. i–xxiv and 727–1501.

A Appendix: Complex Conjugation of Graßmann Quantities

Maria E. Bell
University of Texas,

Department of Physics and Center for Relativity

Austin, TX 78712, USA

A.1 Supernumbers

B.S. DeWitt considers the basic Graßmann variables ξi used to generate super-
numbers as real. Nevertheless, by allowing in the expansion of a supernumber,
namely

ψ = c0 + ciξ
i +

1

2!
cijξ

iξj + ... (A.1)

the coefficients c0, ci, cij(= −cji) to be complex numbers, we define complex
supernumbers. By separating in each coefficient real and imaginary part, we
can write

ψ = ρ+ iσ , (A.2)

where both ρ and σ have real coefficients. In our conventions, a supernumber
ψ is real iff all its coefficients ci1...ip are real numbers. In the decomposition
(A.2) ρ is the real part of ψ and σ its imaginary part. We define complex
conjugation by

(ρ+ iσ)∗ = ρ− iσ (A.3)

for ρ, σ real.
According to these rules, the generators ξi are real, and sum and product

of real supernumbers are real. Furthermore

(ψ + ψ′)∗ = ψ∗ + ψ′∗ (A.4)

(ψψ′)∗ = ψ∗ψ′∗ = (−1)ψ̃ψ̃′ψ′∗ψ∗ , (A.5)

ψ is real iff ψ∗ = ψ (A.6)
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According to B.S. DeWitt’s conventions, the rules (A.4) and (A.6) still hold,
but (A.5) is replaced by

(ψψ′)∗ = (−1)ψ̃ψ̃′ψ∗ψ′∗ = ψ′∗ψ∗ . (A.7)

As a consequence, the product of two real supernumbers is purely imaginary.

A.2 The supertranspose

We denote by AT the transpose of a matrix A. If A and B are matrices with
supernumbers as entries, all of parity a (b) for A (B), then the product rule
reads as

(AB)T = (−1)abBTAT . (A.8)

We define now the supertranspose KsT of a graded matrix K (our conventions
agree with those of B.S. DeWitt). In terms of components, we have

i(K
sT )j := (−1)(K̃+ĩ)(j̃+ĩ) jKi. (A.9)

In block form, we get

K =

(
A C
D B

)
, (A.10)

where all elements of A and B are of parity K̃, while those of C and D are of
parity K̃ + 1. Then

K =

(
AT (−1)K̃+1DT

(−1)K̃CT BT

)
. (A.11)

From the definition (A.9) (or from the definition (A.11) using the rule (A.8),
one derives

(KL)sT = (−1)K̃L̃LsTKsT . (A.12)

A.3 The superhermitian conjugate

The superhermitian conjugate of a graded matrix K is defined by

KsH := (KsT )∗ = (K∗)sT . (A.13)

In this formula, we use the complex conjugate matrix K∗, obtained by taking
the complex conjugate of every entry of K. From the rule (A.5), one derives
immediately

(KL)∗ = K∗L∗ (A.14)
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for graded matrices K and L. Combining the rules (A.12) and (A.14), we
immediately get

(KL)sH = (−1)K̃L̃LsH .KsH (A.15)

in complete agreement with Koszul’s parity rule.

Conversely, if formula (A.15) is universally valid, it applies to 1× 1 matri-
ces, that is to supernumbers; hence we are back to (A.5).

A.4 Graded operators

The rule (A.5) together with its implication for hermitian conjugation applies
to Graßmann operators on a Hilbert space.

Example: Graded operators on Hilbert spaces.

Let |Ω〉 be a simultaneous eigenstate of Z and Z ′ with eigenvalues z and z′.

ZZ ′|Ω〉 = Zz′|Ω〉 = (−1)Z̃z̃′z′Z|Ω〉 = (−1)Z̃z̃′z′z|Ω〉 = zz′|Ω〉 , (A.16)

since, it is clear from the eigenvalue equation Z|Ω〉 = z|Ω〉 that an operator
and its eigenvalue have the same parity.

The hermitian conjugate of the eigenvalue equation (A.16) is

(−1)Z̃′ |̃Ω〉+Z̃ |̃Ω〉+Z̃Z̃′〈Ω|Z ′sHZsH = (−1)z̃′ |̃Ω〉+z̃|̃Ω〉+z̃z̃′〈Ω|z′∗z∗ . (A.17)

On the other hand, using the argument leading to (A.16)

〈Ω|Z ′sHZsH = 〈Ω|z′∗ZsH = 〈Ω|ZsHz′∗(−1)z̃′∗Z̃

= 〈Ω|z∗z′∗(−1)z̃′∗Z̃ = 〈Ω|z′∗z∗ . (A.18)
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