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We formulate a viscoelastic theory for interconnected microphase separated structures such as a double
gyroid in diblock copolymer melts. We consider the energy increase and the energy dissipation due to the
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1. Introduction

One of the characteristic features of soft matter is that
various mesoscopic phases of different symmetry appear in
thermal equilibrium. For example, the elastic and viscoelas-
tic properties of the smectic phase of liquid crystals have
been investigated both theoretically and experimentally for
many years.1) The latter is essentially one dimensional order
and therefore, the theoretical formulation of dynamics is not
very complicated.

As is well known, however, there are interconnected
bicontinuous periodic structures such as (double) gyroid
structure, (double) diamond structure and primitive surface
structure in block copolymers and water/surfactant mix-
tures.2–6) Rheological measurements have also been per-
formed for these structures, and such experiments provide us
with evidence of the morphological transitions.7,8)

The linear elasticity of a gyroid structure has been studied
theoretically. Tyler and Morse have evaluated numerically
the elastic moduli of a gyroid by means of self-consistent
mean field theory.9) Two of the present authors (KY and TO)
have calculated analytically the same elastic constants in the
weak segregation limit,10) and found simple relations among
the three elastic moduli which are not inconsistent with the
numerical results of Tyler and Morse.9)

There is a fairly large number of computer simulations
of the rheological behavior of microphase separated struc-
tures.11,12) However, most of the studies are limited to the
lamellar or hexagonal structures. To the authors’ knowledge,
there are no theoretical studies of the viscous response of
interconnected structures such as gyroid and diamond phases.

The purpose of the present paper is to formulate a linear
visco-elastic theory of interconnected periodic network
structures under oscillatory shear flow. We focus our atten-
tion on structural rheology, that is, on free energy increase
and dissipation due to domain deformation. We explore the
universal rheological properties of interconnected periodic
networks, independently of the molecular details of the
constituents. We use a coordinate transformation introduced
by Drolet, Chen, and Viñals,13) which makes it possible
to evaluate stress–strain relations by solving a set of the

amplitude equations for the mesoscopic structures. We
employ a mode expansion method and numerically solve the
18 amplitude equations describing a gyroid.14) One of the
advantages of the present theory is that large computer
simulations are unnecessary even though the interconnected
network structure is fairly complicated to represent mathe-
matically. We show analytically that the elastic limit agrees
with previous results.10)

As mentioned above, since our aim is to formulate
the linear visco-elasticity as analytically as possible, we
introduce several idealized conditions. First of all, we do
not consider large deformations that might cause domain
reconnection. We further assume that the interconnected
structure contains neither grain boundaries nor dislocations.
Finally, hydrodynamic interactions are not considered. They
are important in water/surfactant mixtures, but not as rele-
vant in block copolymer melts. As mentioned above, we
only consider the deformation of domains under shear strain,
hence the elasticity or viscosity due to individual polymer
chains are not considered. This simplification is justified if
the characteristic time of domain deformation is much larger
than the characteristic relaxation times of a polymer chain.
We shall return to these issues in the final section.

In the next section (§2) we start with the time-evolution
equation for microphase separation in diblock copolymers
under shear flow, including the expression of the stress
tensor. Numerical results for stress–strain relations are
obtained in §3, whereas analytical results for the visco-
elasticity of a gyroid structure are given in §4. A discussion
is presented in §5, where some of the approximations and
assumptions employed are examined.

2. Free Energy Functional and Kinetic Equation under
Shear Flow

The simplest nontrivial free energy for microphase
separation in A–B type diblock copolymers is given by15)

Ff g ¼
Z

dr
K

2
½r ðrÞ�2 �

�

2
 ðrÞ2 þ

g

4
 ðrÞ4

� �

þ
�

2

Z
dr

Z
dr0Gðr� r0Þ½ ðrÞ � �  �½ ðr0Þ � �  �: ð1Þ

Throughout the present paper, we use kBT ¼ 1. The variable
 is the local concentration difference of A and B monomers.�E-mail: takao@scphys.kyoto-u.ac.jp
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The constants K, �, g, and � are all positive in the microphase
separated state. The spatial average of  enters in the last
term as �  . The Green function G is defined through

�r2Gðr� r0Þ ¼ �ðr� r0Þ: ð2Þ

The linear elasticity of a gyroid has been formulated
starting from the free energy (1). The elastic energy is
given by10)

F uf g ¼
1

2

Z
dr
�
K11 uxx

2 þ uyy
2 þ uzz

2
� �

þ 2K12 uxxuyy þ uyyuzz þ uzzuxx
� �

þ 4K44 uxy
2 þ uyz

2 þ uzx
2

� ��
; ð3Þ

where the strain tensor u�� is defined by

u�� �
1

2
ðr�u� þr�u�Þ: ð4Þ

The elastic moduli are evaluated in the weak segregation
regime as

K11 ¼ 16q0
2 �a

2 þ
2

3
�b

2

� 	
; ð5Þ

and

K12 ¼ K44 ¼ 8q0
2 �a

2 þ
2

3
�b

2

� 	
¼

1

2
K11; ð6Þ

where q0 is the magnitude of the basic reciprocal vector, and
�a and �b are the amplitude of  for a gyroid. These are
determined by eqs. (31) and (22) with �xz ¼ �ðtÞ ¼ 0 below.
Note that there is a particular relation among the elastic
constants, which is a general property of a mesophase with
cubic symmetry in the weak segregation limit.10)

In the present dynamical theory, the fundamental quantity
is the stress tensor. It can be derived from the free energy (1)
as16)

��� ¼ �
K

V

Z
dr
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þ
�
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Z
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@GðrÞ
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2

� 	
 r0 �

r

2

� 	
; ð7Þ

where � 6¼ � and V is the system volume. This formula is
employed as follows. The time-evolution of  is evaluated
under a time-dependent strain. Substituting it into eq. (7)
gives us the stress–strain relation as formulated below.

In the weak segregation regime, the kinetic equation
governing the local concentration  is given by

@ 

@t
þ v � r ¼ Lr2 �F

� 

¼ L½r2ð�Kr2 � � þ g 3Þ
� �ð � �  Þ�; ð8Þ

where the constant L is an Onsager coefficient. We have
added an advection term which incorporates the imposed
external shear flow v. By introducing dimensionless quanti-
ties, t0 ¼ L�t, x0i ¼ ð�=KÞ

1=4xi, and  0 ¼ g1=2=ð�KÞ1=4 ,
eq. (8) becomes

@ 0

@t0
þ v0 � r0 0

¼ r02 �r02 0 �
�

ð�KÞ1=2
 0 þ  03

� 	
� ð 0 � �  0Þ: ð9Þ

Hereafter we shall omit the primes and replace �=ð�KÞ1=2
by �.

Now we suppose that an oscillatory shear flow is applied
given by

v ¼ ð _��ðtÞz; 0; 0Þ; ð10Þ

with

�ðtÞ ¼ �0 sin!t; ð11Þ

where _��ðtÞ ¼ d�=dt, �0 stands for the strain amplitude and !
is the strain frequency. If one introduces the new coordinate
which moves with the flow

x1 ¼ x� �ðtÞz; ð12Þ
x2 ¼ y; ð13Þ
x3 ¼ z; ð14Þ

the evolution equation (9) can be written as13)

@ 

@t
¼ r̂r2ð�� þ  3 � r̂r2 Þ � ð � �  Þ; ð15Þ

where

r̂r2 ¼ ½1þ �2ðtÞ�
@2

@x2
1

� 2�ðtÞ
@2

@x1@x3

þ
@2

@x2
3

þ
@2

@x2
2

: ð16Þ

In terms of dimensionless quantities, the stress tensor (7) can
be represented after Fourier transform as

��� ¼ �
X
q 6¼0

q�q� 1�
1

q4

� 	
j qðtÞj2: ð17Þ

Therefore if one solves the time-evolution equation (9) with
shear flow, the stress–strain response can be obtained from
formula (17). This was carried out by numerical simulations
for macrophase separation17) and microphase separation11) in
two dimensions. In the present paper, we solve eq. (15) to
investigate the viscoelastic properties of microphase sepa-
rated structures.

It should be noted that, although the shear flow in eq. (10)
is in the ð1; 0; 0Þ direction, the above theory can be applied to
arbitrary direction of shear flow. In fact, we have carried out
numerical simulations for the ð1; 0; 0Þ flow and the ð1; 1; 1Þ
flow. However, in the next section, we shall show the results
of the ð1; 0; 0Þ flow since there are no essential difference
between the two cases.

3. Numerical Simulations of Viscoelastic Response

A double gyroid structure is one of the bicontinuous
network structures observed in soft matter. It appears as an
equilibrium state in microphase separation of diblock
copolymers. In the weak segregation regime, we may
represent the double gyroid structure as14)

 ðrÞ ¼ �  þ
X12

j¼1

Aje
iqj�r þ

X6

k¼1

Bke
ipk �r þ c.c.

 !
; ð18Þ

where r ¼ ðx1; x2; x3Þ is a point moving with the flow as
introduced in the previous section. The 18 reciprocal lattice
vectors are given by

q1¼ CQ 2;�1; 1ð Þ; q2¼ CQ �2; 1; 1ð Þ;
q3¼ CQ �2;�1; 1ð Þ; q4¼ CQ 2; 1; 1ð Þ;
q5¼ CQ �1;�2; 1ð Þ; q6¼ CQ 1;�2; 1ð Þ;
q7¼ CQ �1; 2; 1ð Þ; q8¼ CQ 1; 2; 1ð Þ;
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q9¼ CQ 1;�1;�2ð Þ; q10¼ CQ 1; 1;�2ð Þ;
q11¼ CQ �1; 1;�2ð Þ; q12¼ CQ �1;�1;�2ð Þ;
p1¼ CP 2; 2; 0ð Þ; p2¼ CP 2;�2; 0ð Þ;
p3¼ CP 0; 2; 2ð Þ; p4¼ CP 0;�2; 2ð Þ;
p5¼ CP 2; 0; 2ð Þ; p6¼ CP �2; 0; 2ð Þ; ð19Þ

with CQ ¼ Q=
ffiffiffi
6
p

and CP ¼ P=2
ffiffiffi
2
p

where Q and P denote
the absolute value of qj and pk respectively and satisfy
Q2 ¼ ð3=4ÞP2.

The time evolution equations for the amplitudes Aj ( j ¼
1; . . . ; 12) and Bk (k ¼ 1; . . . ; 6) are obtained by substituting
(18) into eq. (15) and neglecting higher harmonics.14) This
is justified in the weak segregation limit. For example, the
amplitude equation for A1 is given under oscillatory shear
flow by

dA1

dt
¼ ½�q1ðtÞ2 � q1ðtÞ4 � 1�A1

� q1ðtÞ2
"
3ð �  2 � A2

1ÞA1 þ 6
X12

j¼1

A2
j þ

X6

k¼1

B2
k

 !
A1

þ 6 �  A3B4 þ 6 �  A7A12 þ 6A1B2B5 þ 6A2A3A4

þ 6A2A5A8 þ 6A2A6A7 þ 6A3B1B2 þ 6A3B1B5

þ 6A3B2B6 þ 6A3B5B6 þ 6A4A9A10 þ 6A4A11A12

þ 6A5A10B2 þ 6A5A10B5 þ 6A5A12B6 þ 6A6A9B3

þ 6A6A9B6 þ 6A6A11B2 þ 6A6A11B4 þ 6A6A11B5

þ 6A7A10B1 þ 6A8A9B4 þ 6A8A11B1 þ 6A8A11B3

#
;

ð20Þ
where q2

1ðtÞ is defined by

q2
1ðtÞ ¼ q2

1x þ q2
1y þ ½q1z � �ðtÞq1x�2: ð21Þ

Equation (20) has to be supplemented by the other 17
equations for the remaining amplitudes.

We find stress–strain relations for the oscillatory shear
(10) by numerically solving the coupled set of amplitude
equations, and by using the expression of the stress tensor
derived from eq. (17)

�xz ¼ �2
X12

j¼1

qjx½qjz � �ðtÞqjx� 1�
1

q4
j ðtÞ

" #
A2
j

� 2
X6

k¼1

pkx½pkz � �ðtÞpkx� 1�
1

p4
kðtÞ

� �
B2
k : ð22Þ

The result is shown in Fig. 1(a) for ! ¼ 0:1. The storage
modulus G0ð!Þ and the loss modulus G00ð!Þ are now defined
by the following equation

�xz ¼ �0½G0ð!Þ sin!t þ G00ð!Þ cos!t�
þ (higher harmonics): ð23Þ

Note that a nonlinear dependence on �0 in G0 and G00 is
allowed in this definition. Because the elastic component
of the response is dominant [see Fig. 1(a)], and almost
independent of ! in the limit !! 0, we also introduce a
storage modulus difference �G0ð!Þ ¼ G0ð!Þ � G0ð0:00001Þ.
Figure 1(b) shows G0ð!Þ, G00ð!Þ, and �G0ð!Þ. It is evident
that the elastic modulus G0 is much larger than the loss
modulus G00. We note that the moduli �G0 and G00 exhibit
a frequency dependence characteristic of Maxwell vis-

coelasticity. This is illustrated by the solid curves in
Fig. 1(b), which we will derive analytically in the next
section.

In Fig. 2 we have plotted the �0 dependence of G0

obtained numerically for ! ¼ 100 and ! ¼ 0:01. It is
interesting to note that the modulus G0 decreases as the
strain amplitude �0 is increased. We have evaluated the
elastic free energy to fourth order in the strain and found that
the elastic coefficient for the shear deformation is negative in
the weak segregation limit as is consistent with the above
observation.
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Fig. 1. (Color online) (a) Stress–strain curves for � ¼ 2:2, �  ¼ 0:1,

�0 ¼ 0:2, and frequency ! ¼ 0:1. (b) G0ð!Þ (dark circles), �G0ð!Þ (open

circles), and G00ð!Þ (triangles) for �0 ¼ 0:2. The solid curves are obtained

from eqs. (47) and (48).
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Fig. 2. (Color online) Nonlinear relation between G0ð!Þ and �0 for

! ¼ 100 (triangles) and ! ¼ 0:01 (circles).
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4. Theory of Viscoelastic Response

In this section, we interpret the results shown in Fig. 1
theoretically. First we write eq. (18) as

 ðr; tÞ ¼ �  þ 2
X18

j¼1

AjðtÞ cosðqj � rÞ; ð24Þ

where we have used the notation Aj ¼ Bj�12 and qj ¼ pj�12

for j ¼ 13; . . . ; 18. The evolution equations for the ampli-
tudes are given from eq. (15) by

dAj

dt
¼ Q½qjðtÞ2�Aj � qjðtÞ2WjðAÞ; ð25Þ

where

Qðq2Þ ¼ ð� � 3 �  2Þq2 � q4 � 1; ð26Þ

and

qðtÞ2 ¼ q2
x þ q2

y þ ½qz � ð�0 sin!tÞqx�2: ð27Þ

The terms WjðAÞ with A � ðA1;A2; . . .Þ arise from nonlinear
couplings among the amplitudes.

We next expand the amplitudes, WjðAÞ and Qðq2Þ as

Aj ¼ Að0Þj þ �0A
ð1Þ
j þ �

2
0A
ð2Þ
j þ Oð�3

0 Þ; ð28Þ

Wj ¼ W ð0Þj ðA
ð0ÞÞ þ �0

X18

k¼1

W ð1Þjk ðA
ð0ÞÞAð1Þk þ Oð�2

0 Þ; ð29Þ

Qðq2Þ ¼ Qð0Þðq2Þ þ �0Q
ð1Þ þ Oð�2

0 Þ: ð30Þ

Substituting this into the amplitude equations, we obtain the
zeroth order solution as

0 ¼ Qð0Þðq2
j ÞA
ð0Þ
j � q2

j W
ð0Þ
j ðA

ð0ÞÞ: ð31Þ

The solutions are obtained numerically and have been found
to separated into two groups as

jAð0Þj j � �a ð j ¼ 1; . . . ; 12Þ; ð32Þ

Að0Þj � �b ð j ¼ 13; . . . ; 18Þ; ð33Þ
where �a ¼ 0:06456 for j ¼ 1; 4; 5; 8; 9; 12 and �a ¼
�0:06456 for j ¼ 2; 3; 6; 7; 10; 11 and �b ¼ 0:02353. An-
other set of ��a is also possible depending on the initial
conditions such as �a ¼ 0:06456 for j ¼ 1; 2; 5; 6; 11; 12 and
�a ¼ �0:06456 for j ¼ 3; 4; 7; 8; 9; 10. These are evaluated
for the parameters � ¼ 2:2; �  ¼ 0:1.

At first order, the governing equation for the first
amplitude is

dAð1Þj

dt
¼ Qð0Þðq2

j ÞA
ð1Þ
j � q2

j

X18

k¼1

W ð1Þjk ðA
ð0ÞÞAð1Þk

� 2qjxqjz sin!t

� ½ð� � 3 �  2 � 2q2
j ÞA
ð0Þ
j �W ð0Þj ðA

ð0ÞÞ�: ð34Þ

By the notation introducing

Dð1Þjk ¼ �jkQ
ð0Þðq2

j Þ � q2
j W
ð1Þ
jk ðA

ð0ÞÞ; ð35Þ

and

hð1Þj ¼ �2qjxqjz½ð� � 3 �  2 � 2q2
j ÞA
ð0Þ
j �W ð0Þj ðA

ð0ÞÞ�

¼ 2qjxqjzq
2
j 1�

1

q4
j

 !
Að0Þj ; ð36Þ

eq. (34) can be written as

dAð1Þj

dt
¼
X18

k¼1

Dð1Þjk A
ð1Þ
k þ hð1Þj sin!t: ð37Þ

Equation (37) can be solved by diagonalizing the coefficient
matrix Dð1Þjk as P�1Dð1ÞP with a regular matrix P. Introducing
ÂA
ð1Þ ¼ P�1Að1Þ and ĥh

ð1Þ
¼ P�1hð1Þ we have from eq. (37)

d

dt
ÂAð1Þi ¼ �	iÂA

ð1Þ
i þ ĥhð1Þi sin!t; ð38Þ

where �	i are the eigenvalues of Dð1Þ. We have found by
numerical diagonalization that there are eight modes with
different eigenvalues. Solving eq. (38), we obtain

Að1Þi ðtÞ ¼
X18

j¼1

�ij

"
ð!=	jÞ2

1þ ð!=	jÞ2
sin!t

þ
!=	j

1þ ð!=	jÞ2
cos!t � sin!t

#

þ
X18

j¼1

PijCje
�	jt; ð39Þ

where

�ij ¼ �Pij

ĥhð1Þj

	j
¼ �

Pij

	j

X18

k¼1

ðP�1Þjkh
ð1Þ
k : ð40Þ

As mentioned at the end of §2, the present theory can be
applied to the shear flow with any directions and hence all
of the complex moduli are evaluated. However, since no
essential difference appears in the various moduli, we here
present only the expression of �xz. Substituting (39) into the
stress tensor (17), we obtain

�xz ¼ �2
X18

i¼1

qix½qiz � �ðtÞqix� 1�
1

q4
i ðtÞ

� �
� ½Að0Þi þ �0A

ð1Þ
i þ Oð�2

0 Þ�
2: ð41Þ

Looking only at terms linear in the strain amplitude �0, we
find

�xz ¼ �phase þ �0xz; ð42Þ

where �phase is the stress arising from a change in wave
number [from the first line of eq. (41) at constant amplitude]

�phase ¼ 8�0q
2
0 �2

a þ
2

3
�2
b

� 	
sin!t: ð43Þ

This stress is in phase with the strain �ðtÞ, and the pro-
portional constant agrees with K44 of eq. (6).10) The other
term �0xz rises from amplitude corrections, and is given by

�0xz ¼ �4�0

X18

i¼1

qixqiz 1�
1

q4
i

� 	
Að0Þi Að1Þi ; ð44Þ

which is given asymptotically from eq. (39) by

�0xz ¼ �0

X18

j¼1

�j

"
ð!=	jÞ2

1þ ð!=	jÞ2
sin!t

þ
!=	j

1þ ð!=	jÞ2
cos!t � sin!t

#
; ð45Þ

where

�j ¼ �4
X18

i¼1

qixqiz 1�
1

q4
i

� 	
Að0Þi �ij: ð46Þ
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In summary, we obtain the following expressions for the
storage modulus G0 and the loss modulus G00

G0 ¼
X8

j¼1

�j

ð!=	jÞ2

1þ ð!=	jÞ2
� 1

� �
þ 8q2

0 �2
a þ

2

3
�2
b

� 	
; ð47Þ

G00 ¼
X8

j¼1

�j

!=	j

1þ ð!=	jÞ2

� �
; ð48Þ

where we have taken into account that there are only eight
independent modes. The coefficients �j have been properly
renumbered. Note that the moduli (47) and (48) do not
contain the strain magnitude �0, and therefore they constitute
the linear response to the oscillatory shear.

The eigenvalues and the eigenvectors have been evaluated
numerically for � ¼ 2:2 and �  ¼ 0:1. There are two
dominant modes

	1 ¼ 0:1627; �1 ¼ 1:454� 10�3; ð49Þ
	2 ¼ 0:4465; �2 ¼ 1:501� 10�3: ð50Þ

Both modes are triply degenerate. The values of �k for other
modes are small and we neglect them. There is one extra
mode that has a small eigenvalue, 	0 ¼ 0:07375. How-
ever the corresponding coefficient is quite small as �0 ¼
�9:12145� 10�6. Therefore this contribution to the stress
tensor is at most 3% of the contribution from those modes
given by (49) and (50), and we have also neglected it.

We have tried to represent the deformations associated
with the two modes (49) and (50). However, we have no
simple and appropriate way of displaying the three-dimen-
sional deformed structure. For the reader’s convenience, the
deformed patterns for several conditions are available on the
web site.18)

Our results for the moduli (47) and (48) with (49) and (50)
are plotted in Fig. 1(b) together with the numerical results
described earlier. The small discrepancy at low frequencies
between the results of eqs. (47) and (48) and those from
eq. (22) can be attributed to the fact that the solid curve is
purely linear response whereas �G0ð!Þ (open circles) and
G00ð!Þ (triangles) contain nonlinear effects. We have verified
that the agreement between the two calculations is better for
smaller �0, e.g., for �0 ¼ 0:1 (results not shown).

5. Discussion

We have formulated the rheology of a gyroid structure,
and evaluated the storage and loss moduli both numerically
and analytically from an amplitude equation expansion. The
elastic part arising from wavelength compression agrees
with previous results.10) Periodic amplitude modulation
under an oscillatory strain give rise to additional contribu-
tions to the moduli. The analytical calculation shows that
both storage and loss moduli can be represented in terms of a
Maxwell model with two relaxation rates in the present case.
Although the loss modulus is small compared with its elastic
counterpart [G00=G0 	 10�2 for ! ¼ 0:2 as in Fig. 1(b)],
our results are new for the gyroid phase with its regular
but complicated network structure. We note that the small
values of G00 can be detected experimentally and that, in fact,
the ratio G00=G0 	 10�2 for a gyroid has been reported for a
shear strain of 1% and a shear frequency of 1 rad/s.7)

As emphasized in the Introduction, we are concerned
here with the universal rheological properties of bi (or tri)-

continuous structures which are basic mesophases in soft
matter, not only in block copolymers but also in water-
surfactant mixtures. The present formulation can be straight-
forwardly extended to other interconnected structures such
as double diamond and primitive surface structures, and
therefore used to investigate the general rheological re-
sponse to domain deformation in complex phases. In reality,
however, there are number of effects specific to each system
that would have to be considered: finite relaxation times of
individual polymer chains, a concentration dependence of
the Onsager coefficient, and possible hydrodynamics effects.
In the following, we qualitatively examine each of these
effects.

First of all, we note that a concentration dependence of the
Onsager coefficient is not important for the linear response
to domain deformations as we have studied here. Second,
we address possible effects arising from the relaxation of
individual polymer chains. It should be kept in mind that
we are considering the weak segregation regime near the
microphase separation temperature, and therefore the mono-
mer concentration variation is almost sinusoidal with no
sharp interfaces. Since the radius of gyration of a chain
Rg is the only characteristic length scale in the weak
segregation limit, the domain period ‘ should be of the
order of Rg. When the chains are short, Rouse dynamics
in melts provides us with a relaxation time tR / N2 with
N the molecular weight.19) The last term of eq. (8) shows
that tTDGL ¼ ðL�Þ�1 has dimensions of time. Since L is
independent of the molecular weight for the Rouse dynam-
ics20) and � / N�2,15) tTDGL has the same N-dependence as
tR. However, we note that the characteristic relaxation time
of deformed domains becomes large near the stability limit
of the gyroid so that the relaxation of the individual chains is
not relevant as long as the molecular weight is not extremely
large (so that Rouse scaling with N holds).

Monomer concentration fluctuations are generally not
relevant in polymer melts, except for very vicinity of the
order–disorder transition point �  ¼ 0 and � ¼ 2:0. The
gyroid structure appears in the weak segregation regime,
but for � 
 2:17 and j �  j 
 0:095.21) Therefore, we expect
that fluctuation effects can be neglected in the dynamics
of a gyroid.

We finally estimate the magnitude of hydrodynamic
interactions on the evolution of monomer concentration  .
In general, we have,

@ 

@t
þr � ðv Þ ¼ Lr2 �F

� 
: ð51Þ

In the limit of zero Reynolds number (overdamped motion),
and assuming that the flow in the melt is Newtonian (see
ref. 22 for a discussion of non Newtonian corrections in
lamellar phases), the local velocity field v is given by

vðr; tÞ ¼
1




Z
dr0 Tðr; r0Þ � ðr0 Þ

�F

� ðr0Þ

� �
; ð52Þ

where T is the Oseen tensor, and 
 the shear viscosity. The
ratio of advection to monomer concentration diffusion in
eq. (51) is determined by the dimensionless group

HY ¼
‘2ð� Þ2


Lð �  Þ
; ð53Þ
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where � is the amplitude of concentration variations in the
microphase separated phase. If HY is sufficiently small,
hydrodynamic effects can be neglected. In order to estimate
the value of this dimensionless group, we note the fact that
the melt viscosity is proportional to R2

g / N,19) and obtain17)


L ’ R2
g ’ N; ð54Þ

and hence

HY ’
‘2ð� Þ2

R2
g

/ ð� Þ2: ð55Þ

Therefore, hydrodynamic effects are not important in the
weak segregation regime in which the scale of spatial
variations � is small. On the other hand, the characteristic
length ‘ should be of the order of the period of the structure
in the strong segregation regime. The period is related to the
molecular weight as ‘ ’ N2=3, and HY would become large
for large N. Therefore hydrodynamic interactions cannot be
ignored in the strong segregation regime.

In the case of reptation dynamics we have


L ’ R2
gN=Ne; ð56Þ

since L ’ R2
gNe=N

2,20) and 
 ’ N3=N2
e ,23) where Ne is the

molecular weight between the entanglement points (if we set
Ne ¼ N the results are identical to those for weak segrega-
tion). Because 1� N=Ne, the condition HY � 1 also holds
in this case. However, one should note that the region of
weak segregation becomes negligibly narrow for the case of
reptation dynamics.

It is worth emphasizing that if one applies the present
theory to other microphase structures such as lamellar,
hexagonal and bcc structures, contributions to G00 linear in
�0 do not appear. The amplitude equations corresponding
to all these structures involve a single wavenumber because
the magnitude of the fundamental reciprocal vectors of the
lattices is determined by the condition q2 ¼ 1 (in dimen-
sionless units). Because of this fact, the lowest contribution
to the stress tensor in �0 vanishes as is readily seen from the
formula (17). It is therefore interesting to see the feature that
a linear stress–strain relation does exist and can be obtained
for gyroid — as described in this paper — because of the
existence of two fundamental modes with amplitudes Aj

and Bj that have different magnitudes of the associated
reciprocal lattice vectors. This is a necessary feature in the
representation of the interconnected bicontinuous structure.

Although the present theory considers only the very
idealized situations discussed above, it can be used as the
starting point of a more elaborate analytical theory.
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