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Abstract

Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear

stochastic differential delay equation with feedback. Our results assume that the delay time τ is

small compared to other characteristic time scales, not a significant limitation close to the bifur-

cation line. A pitchfork bifurcation line is found, the location of which depends on the conditional

average 〈x(t)|x(t − τ)〉, where x(t) is the dynamical variable. This conditional probability incor-

porates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf

bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near

threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes,

and use it to determine the threshold location. In both cases, the predicted bifurcation lines are

in excellent agreement with a direct numerical integration of the governing equations. Contrary

to the known case involving no delayed feedback, we show that the stochastic bifurcation lines

are shifted relative to the deterministic limit, and hence that the interaction between fluctuation

correlations and delay affect the stability of the solutions of the model equation studied.

PACS numbers: 02.30.Ks, 05.10.Gg, 05.70.Ln, 87.16.Yc, 87.18.Cf
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I. INTRODUCTION

We present an approximate analytic determination of the bifurcation threshold of a model

stochastic differential equation with delayed feedback, in the limit in which the delay time τ

is small compared with the characteristic time scale of evolution of the dynamical variable

x(t). This condition is expected to be generally valid near the bifurcation. The bifurcation

diagram is determined from the stationary probability distribution function p(x), and the

results obtained agree well with an earlier numerical estimate, both for pitchfork and Hopf

bifurcations.

Differential delay equations naturally appear in many contexts that range from applied

mathematics to economy [1]. More recently, stochastic extensions have been introduced in

the study of both natural and synthetic gene regulation networks [2, 3]. A discrete model

for protein degradation with delayed feedback has also been introduced [4], and its system

size dependence studied in [5]. However, these models are rarely tractable analytically due

to their non-Markovian nature. Exceptions include the derivation of a two-time Fokker-

Planck equation in [6], and results on the bifurcation of the first and second moments of

a linear equation with delayed feedback [7, 8]. We extended the results of [7, 8] to a full

nonlinear model in [9] through numerical integration of the governing equation. As is the case

for models without feedback, explicit consideration of nonlinearities removes an apparent

dependence of the stochastic bifurcation threshold on the order of the statistical moment

under consideration. We develop here an approximate treatment that allows the analytic

determination of the bifurcation diagram given in [9].

We consider a minimal model that incorporates delay, stochasticity, and nonlinearity, and

that leads to a bifurcation diagram that displays both direct and oscillatory instabilities.

Given a dynamical variable x(t) the model is defined as

ẋ(t) = ax(t) + bx(t− τ)− x3(t) + x(t)ξ(t) , (1)

where the constant a plays the role of control parameter, the constant b is the intensity of a

feedback loop of delay τ > 0, and ξ(t) is a Gaussian white noise with mean 〈ξ(t)〉 = 0 and

correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), where D is the intensity of the noise. Equation (1) is

interpreted in the Stratonovich sense of stochastic calculus. We consider parametric noise

in a here due to external sources of fluctuations, although it is possible to include noise also

in b or τ .
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The bifurcation diagram of the deterministic limit of Eq. (1) (ξ = 0) is known [7]. A

pitchfork bifurcation separates exponentially decaying and growing solutions when bτ > −1,

whereas a Hopf bifurcation is found when bτ < −1. The two bifurcation lines intersect

at (a, b) = (1/τ,−1/τ). The bifurcation threshold of Eq. (1) without delay (b = 0) is

also known [10–12]. Direct linearization of the stochastic equation leads to the conclusion

that the statistical moment 〈xn(t)〉 bifurcates at a value of the control parameter that

depend on the order of the moment n. When a saturating nonlinearity is introduced, the

stationary probability distribution function of the process can be determined, and with it

the threshold for instability [10]. In this case, the bifurcation point is unique for all moments

of x. The conclusion of this analysis is that despite the existence of parametric fluctuations,

the bifurcation threshold of the stochastic equation is at ac = 0, the same value as in the

deterministic case. The question therefore arises as to whether parametric fluctuations do

induce a change in the bifurcation line when delay is introduced (b 6= 0).

A numerical determination of the bifurcation diagram of Eq. (1) has been given in [9]. It

is shown that the bifurcation threshold in the presence of parametric fluctuations is shifted

relative to that of the deterministic limit. An analytical approximation for the pitchfork

bifurcation line in the limit of short delay was also given by using a method first introduced

by Risken [13], and later used in [14–16]. The results agree well with the numerical estimate.

Nevertheless, the method fails for the Hopf branch. We derive new analytical expressions

valid for both pitchfork and Hopf bifurcation thresholds by direct expansion of the Langevin

equation in small τ . In the case of the pitchfork bifurcation, Eq. (1) is formally integrated

in powers of τ , and an approximate expression for the conditional probability 〈x(t− τ)|x(t)〉
is obtained to first order in τ . This allows a closed expression for the governing equation for

p(x, t), and its stationary solution. Close to the Hopf branch, we introduce the stochastic

counterpart of a multiple scale expansion. We decompose x(t) in fast and slowly varying

components by assuming that the envelopes of the oscillations evolve on a time scale that is

slower than the oscillations themselves. The fast components are then eliminated by using

the method of stochastic averaging. The resulting Fokker-Planck equation for the slowly

varying envelopes yields an analytical expression for the bifurcation threshold. We note

that the boundary thus determined coincides with the threshold for the first moment of the

linearized equation given in [7].
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II. RESULTS

A. Pitchfork bifurcation

We begin by defining the probability distribution of x in Eq. (1) as p(x, t) = 〈δ(x(t)− x)〉,
where 〈.〉 stands for the ensemble average over realizations of the stochastic process ξ. We

summarize the steps leading to the determination of the Fokker-Planck equation of Eq. (1).

A more detailed derivation is shown in [9]. Take the time derivative of p(x, t),

∂

∂t
p(x, t) = − ∂

∂x

[

〈δ[x(t)− x][ax(t) + bx(t− τ)− x3(t)]〉+ 〈δ[x(t)− x]x(t)ξ(t)〉
]

, (2)

and introduce dummy variables x(t) → x and x(t − τ) → xτ . By the Furutsu-Novilov

theorem, one has

〈δ[x(t)− x]x(t)ξ(t)〉 = x〈δ[x(t)− x]ξ(t)〉 = −Dx

〈

δ{δ[x(t)− x]}
δξ(t)

〉

. (3)

The second term of the right-hand side of Eq. (2) is then,

− ∂

∂x
〈δ[x(t)−x]x(t)ξ(t)〉 = D

∂

∂x

[

x
∂

∂x
xp(x, t)

]

= −D
∂

∂x
[xp(x, t)]+D

∂2

∂x2

[

x2p(x, t)
]

. (4)

Consider now the first term of the right-hand side of Eq. (2),

〈δ[x(t)− x][ax(t) + bx(t− τ)− x3(t)]〉 =
∫ ∫

δ[x(t)− x](ax+ bxτ − x3)p(xτ |x)p(x)dxdxτ

= p(x, t)

[

ax− x3 + b

∫

xτp(xτ |x)dxτ

]

,

(5)

where we have used p(x, xτ ) = p(xτ |x)p(x). The last term of Eq. (5) is the conditional value

of x at t− τ given its value at t,

〈xτ |x〉 =
∫

xτp(xτ |x)dxτ . (6)

Combining Eqs. (4), (5), and (6), and substituting into Eq. (2) leads to the following

Fokker-Planck equation

∂

∂t
p(x, t) =− ∂

∂x

{[

(a+D)x− x3 + b〈xτ |x〉
]

p(x, t)
}

+D
∂2

∂x2

[

x2p(x, t)
]

.

(7)

This equation is not closed because of the presence of the conditional probability 〈xτ |x〉.
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In order to compute this conditional probability, we formally integrate Eq. (1) in [t−τ, t],

x(t) =x(t− τ) +

∫ t

t−τ

[

ax(t′) + bx(t′ − τ)− x3(t′)
]

dt′

+

∫ t

t−τ

x(t′)ξ(t′)dt′ ,

(8)

where the integrand is approximated by its integral representation in [t− τ, t′],

x(t′) =x(t− τ) +

∫ t′

t−τ

[

ax(t′′) + bx(t′′ − τ)− x3(t′′)
]

dt′′

+

∫ t′

t−τ

x(t′′)ξ(t′′)dt′′ .

(9)

Approximate now the integrands in Eq. (9) by their values at the lower bound, i.e. x(t′′) ≈
x(t− τ), x(t′′ − τ) ≈ x(t− 2τ), and x3(t′′) ≈ x3(t− τ) to write,

x(t′) =x(t− τ) +
[

ax(t− τ) + bx(t− 2τ)− x3(t− τ)
]

[t′ − (t− τ)]

+ x(t− τ)

∫ t′

t−τ

ξ(t′′)dt′′ .
(10)

Perform then the integration of Eq. (10) in [t− τ, t],

∫ t

t−τ

x(t′)dt′ = x(t− τ)τ

+
[

ax(t− τ) + bx(t− 2τ)− x3(t− τ)
] τ 2

2

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′′)dt′dt′′ .

(11)

Note that only the first term in Eq. (11) is first order in τ . Repeat the same method on the

other integrands, keeping only terms that are first order in τ ,

∫ t

t−τ

x(t′ − τ)dt′ ≈ x(t− 2τ)τ . (12)

Using x3(t′) ≈ x3(t− τ) + 3x2(t) [x(t′)− x(t− τ)],

∫ t

t−τ

x3(t′)dt′ ≈ x3(t− τ)τ , (13)

and,
∫ t

t−τ

x(t′)ξ(t′)dt′ ≈ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′)ξ(t′′)dt′dt′′ , (14)

where we have used Eq. (9).
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Combine Eqs. (11)-(14) and substitute into Eq. (8),

x(t) =x(t− τ) + τ
[

ax(t− τ) + bx(t− 2τ)− x3(t− τ)
]

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

ξ(t′)ξ(t′′)dt′dt′′ .
(15)

Let t → t − τ in Eq. (15) so that x(t − τ) = x(t − 2τ) + O(τ). Approximate then

x(t−2τ) ≈ x(t− τ) and take the ensemble average on both sides of Eq. (15) given the value

of x(t− τ),

〈x(t)|x(t− τ)〉 = [1 + τ(a+ b)] x(t− τ)− τx3(t− τ)

+ x(t− τ)

∫ t

t−τ

∫ t′

t−τ

〈ξ(t′)ξ(t′′)〉dt′dt′′ .
(16)

Using
∫ t

t−τ

∫ t′

t−τ

〈ξ(t′)ξ(t′′)〉dt′dt′′ = Dτ , (17)

equation (16) finally leads to

〈x(t)|x(t− τ)〉 = [1 + τ(a+ b+D)] x(t− τ)− τx3(t− τ) . (18)

However, since in the statistical stationary state this conditional probability can only be a

function of the time difference τ , we also have that under stationary conditions,

〈x(t− τ)|x(t)〉 = [1 + τ(a+ b+D)] x(t)− τx3(t) . (19)

Substitution of Eq. (19) in Eq. (7) leads to a closed form for the stationary Fokker-Planck

equation,

−(1 + bτ)
∂

∂x

[{

(a+ b+D)x− x3
}

p(x)
]

+D
∂2

∂x2

[

x2p(x)
]

= 0 . (20)

This equation always has as a normalizable stationary solution p(x) = δ(x). This is the

trivial state, the stability of which is being sought. Equation (20) has an additional solution

p(x) ∼ |x|αe− (1+bτ)
2D

x2

, (21)

with

α =
(1 + bτ)(a+ b+D)

D
− 2 , (22)
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which is only normalizable (and hence physical) when α > −1. Since Eq. (21) allows for

finite moments of x, the point αc = −1 is defined to be the bifurcation threshold of Eq. (1).

Alternatively, the bifurcation point as a function of the control parameter is

ac = −b [1 + τ(b+D)]

1 + bτ
. (23)

The pitchfork bifurcation threshold [Eq. (23)] is shown in Fig. (1), and compared to the

numerically determined threshold given in [9]. Both agree quite well, except close to the

multicritical point, located at (a, b) = (1/τ −D,−1/τ).

The expansion method presented here captures the interplay between fluctuation corre-

lations and delay that lead to our result for the delayed conditional probability [Eq. (19)].

This non-Markovian term in Eq. (7) is directly responsible for the existence of a bifurcation

threshold shift relative to the deterministic case. Note that in the limit b = 0 we recover

the known result that ac = 0.

B. Hopf bifurcation

A straightforward expansion of Eq. (1) in powers of τ in the vicinity of the Hopf branch

fails. As a matter of fact, a similar expansion already fails in the deterministic limit [17, 18].

Close to the Hopf bifurcation line we introduce a multiple scale expansion for x and assume

a solution of the form,

x(t, T ) = ǫA(T ) cos (ωt) + ǫB(T ) sin (ωt) , (24)

where ω is a frequency, and T = ǫ2t is a slow time scale for the envelope variables A and B.

We neglect any stochastic component on the scale t, so that the only remaining stochastic

variation is in the amplitudes A and B. This is expected to be correct near the bifurcation

threshold.

Substituting Eq. (24) into Eq. (1) (following change of variable rules appropriate for the

7



Stratonovich interpretation of Eq. (1) [19] yields

ǫ2∂T ǫA(T ) cos(ωt) + ǫ2∂T ǫB(T ) sin(ωt) =

ω [ǫA(T ) sin(ωt)− ǫB(T ) cos(ωt)]

+ a [ǫA(T ) cos(ωt) + ǫB(T ) sin(ωt)]

+ b
[

ǫA(T − ǫ2τ) cos[ω(t− τ)] + ǫB(T − ǫ2τ) sin[ω(t− τ)]
]

− [ǫA(T ) cos(ωt) + ǫB(T ) sin(ωt)]3

+ [ǫA(T ) cos(ωt) + ǫB(T ) sin(ωt)] ξ(t) .

(25)

The time delay τ is small in the scale T , and hence we approximate A(T − ǫ2τ) ≈ A(T ) and

B(T − ǫ2τ) ≈ B(T ) to write Eq. (25) as,

ǫ3∂TA(T ) cos(ωt) + ǫ3∂TB(T ) sin(ωt) =

cos(ωt) [−ǫωB(T ) + ǫaA(T ) + ǫb cos(ωτ)A(T )− ǫb sin(ωτ)B(T )

−ǫ3A3(T ) cos2(ωt)− 3ǫ3A(T )B2(T ) sin2(ωt) + ǫA(T )ξ(t)
]

+ sin(ωt) [ǫωA(T ) + ǫaB(T ) + ǫb sin(ωτ)B(T ) + ǫb cos(ωτ)A(T )

−ǫ3B3(T ) sin2(ωt)− 3ǫ3A2(T )B(T ) cos2(ωt) + ǫB(T )ξ(t)
]

.

(26)

We next eliminate the dependence on the fast scale t. Multiply both sides of Eq. (26)

by (ω/2π)
∫ 2π

ω

0
dt cos(ωt) and perform the integration. Repeat the operation but multiply

instead by (ω/2π)
∫ 2π

ω

0
dt sin(ωt) and perform the integration (a related procedure has been

used previously in the literature to obtain the envelope equations of differential delay equa-

tions [20, 21], and for the van der Pol-Duffing oscillator [22–24], in the Ito interpretation).

We obtain two coupled stochastic differential equations,

ǫ3∂TA(T ) = ǫµA(T )− ǫνB(T )− 3

4
ǫ3A(T )

[

A2(T ) + B2(T )
]

+ ǫA(T )
ω

2π

∫ 2π
ω

0

ξ(t)dt

+ ǫA(T )
ω

2π

∫ 2π
ω

0

cos(2ωt)ξ(t)dt+ ǫB(T )
ω

2π

∫ 2π
ω

0

sin(2ωt)ξ(t)dt ,

ǫ3∂TB(T ) = ǫνA(T ) + ǫµB(T )− 3

4
ǫ3B(T )

[

A2(T ) + B2(T )
]

+ ǫB(T )
ω

2π

∫ 2π
ω

0

ξ(t)dt

− ǫB(T )
ω

2π

∫ 2π
ω

0

cos(2ωt)ξ(t)dt+ ǫA(T )
ω

2π

∫ 2π
ω

0

sin(2ωt)ξ(t)dt ,

(27)

where we have defined µ = a + b cos(ωτ) and ν = ω + b sin(ωτ) for simplicity. We assume

furthermore that these parameters scale as µ = ǫ2µ̃ and ν = ǫ2ν̃ close to the bifurcation.

This statement will be verified latter in the derivation.
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We next define the stochasticity over the slow time scale. One can takes the advantage

of the relation T = ǫ2t to write

ξ(t) = ǫξ0(T ) , (28)

where ξ0(T ) is a Gaussian random variable with mean 〈ξ0(T )〉 = 0 and correlation

〈ξ0(T )ξ0(T ′)〉 = 2Dδ(T − T ′). Note that ξ0(T ) is defined over the slow time scale

and is independent of t. We exploit the same idea and introduce two auxillary noises

η1(t) = cos(2ωt)ξ(t) and η2(t) = sin(2ωt)ξ(t) that have to be defined over the slow time

scale T . In order to do so, consider their correlations,

ǫ2〈η1(T )η1(T ′)〉 = ǫ2〈cos2(2ωt)〉〈ξ1(T )ξ1(T ′)〉 , (29)

ǫ2〈η2(T )η2(T ′)〉 = ǫ2〈sin2(2ωt)〉〈ξ2(T )ξ2(T ′)〉 , (30)

where ξ1(T ) and ξ2(T ) are independent Gaussian white noise with mean 〈ξj(T )〉 = 0 and

correlation 〈ξj(T )ξk(T ′)〉 = 2Dδ(T − T ′) if j = k and zero otherwise, with j, k = {1, 2}. We

replace 〈cos2(2ωt)〉 and 〈sin2(2ωt)〉 by their time average values 1/2 in Eqs. (29) and (30).

We thus get rid of the auxillary noises η1 and η2 and define over the slow time scale,

cos(2ωt)ξ(t) → ǫ√
2
ξ1(T ) , (31)

sin(2ωt)ξ(t) → ǫ√
2
ξ2(T ) . (32)

We then have two coupled stochastic differential equations for which the fast time scale t is

eliminated,

ǫ3∂TA(T ) = ǫµA(T )− ǫνB(T )− 3

4
ǫ3A(T )

[

A2(T ) + B2(T )
]

+ ǫ2A(T )ξ0(T ) +
ǫ2√
2
A(T )ξ1(T ) +

ǫ2√
2
B(T )ξ2(T ) ,

ǫ3∂TB(T ) = ǫνA(T ) + ǫµB(T )− 3

4
ǫ3B(T )

[

A2(T ) + B2(T )
]

+ ǫ2B(T )ξ0(T )−
ǫ2√
2
B(T )ξ1(T ) +

ǫ2√
2
A(T )ξ2(T ) .

(33)

The system of equations (33) can then be written in matrix form,

d

dT





A

B



 =





µ̃ −ν̃

ν̃ µ̃









A

B



− 3

4





A(A2 + B2)

B(A2 + B2)





+
1

ǫ
Σ0





A

B



 ξ0(T ) +
1

ǫ
Σ1





A

B



 ξ1(T ) +
1

ǫ
Σ2





A

B



 ξ2(T ) ,

(34)
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with

Σ0 =





1 0

0 1



 ; Σ1 =
1√
2





1 0

0 −1



 ; Σ2 =
1√
2





0 1

1 0



 . (35)

The Fokker-Planck equation corresponding to Eq. (34) is [19],

∂

∂T
p(A,B, T ) =

− ∂

∂A

{[

µ̃A− ν̃B − 3

4
A(A2 +B2)

]

p(A,B, T )

}

− ∂

∂B

{[

ν̃A+ µ̃B − 3

4
B(A2 + B2)

]

p(A,B, T )

}

+
D

ǫ2

{

A2
∂2

∂A2
+ 2AB

∂2

∂A∂B
+ B2

∂2

∂B2
+ 5

(

A
∂

∂A
+ B

∂

∂B

)

+ 4

}

p(A,B, T )

+
D

2ǫ2

{

A2
∂2

∂A2
− 2AB

∂2

∂A∂B
+ B2

∂2

∂B2
+

(

A
∂

∂A
+ B

∂

∂B

)}

p(A,B, T )

+
D

2ǫ2

{

B2
∂2

∂A2
+ 2AB

∂2

∂A∂B
+ A2

∂2

∂B2
+

(

A
∂

∂A
+B

∂

∂B

)}

p(A,B, T ) .

(36)

The intensity of the noise scales as D = ǫ2D̃, and all terms of Eq. (36) are on the same

order. In order to find the stationary solution of this Fokker-Planck equation, we change

to polar coordinates. Let A = r cos(θ) and B = r sin(θ). Under this change of variable,

the probability distribution function transforms as p̃(r, θ, T ) = rp(A,B, T ), where r is the

Jacobian of the transformation. The drift terms of Eq. (36) are,

1

r

∂

∂T
p̃(r, θ, T ) ∼ −1

r

∂

∂r

[(

µ̃r − 3

4
r3
)

p̃(r, θ, T )

]

− 1

r

∂

∂θ
[ν̃p̃(r, θ, T )] . (37)

On the other hand, terms in brackets proportional to D̃ in Eq. (36) transform as,
{

A2
∂2

∂A2
+ 2AB

∂2

∂A∂B
+B2

∂2

∂B2
+ 5

(

A
∂

∂A
+ B

∂

∂B

)

+ 4

}

p(A,B, T )

=

{

r2
∂2

∂r2
+ 5r

∂

∂r
+ 4

}

p̃(r, θ, T )

r
,

(38)

whereas the sum of the terms in brackets proportional to D̃/2 in Eq. (36) transform as
{

(A2 + B2)

[

∂2

∂A2
+

∂2

∂B2

]

+2

(

A
∂

∂A
+ B

∂

∂B

)}

p(A,B, T )

=

{

r2
∂2

∂r2
+ 3r

∂

∂r
+

∂2

∂θ2

}

p̃(r, θ, T )

r
.

(39)

Combining Eqs. (37), (38), and (39), the Fokker-Planck equation in polar coordinates is

1

r

∂

∂T
p̃(r, θ, T ) = −1

r

∂

∂r

[(

µ̃r − 3

4
r3
)

p̃(r, θ, T )

]

− 1

r

∂

∂θ
[ν̃p̃(r, θ, T )]

+
D̃

2

(

3r2
∂2

∂r2
+ 13r

∂

∂r
+ 8 +

∂2

∂θ2

)

p̃(r, θ, T )

r
.

(40)
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We now make use of the identities,

1

r

∂2

∂r2

[

r3
p̃(r, θ, T )

r

]

=

(

r2
∂2

∂r2
+ 6r

∂

∂r
+ 6

)

p̃(r, θ, T )

r
, (41)

2

r

∂

∂r

[

r3
∂

∂r

p̃(r, θ, T )

r

]

=

(

2r2
∂2

∂r2
+ 6r

∂

∂r

)

p̃(r, θ, T )

r
, (42)

1

r

∂

∂r

[

r2
p̃(r, θ, T )

r

]

=

(

r
∂

∂r
+ 2

)

p̃(r, θ, T )

r
, (43)

to rewrite the Fokker-Planck equation as,

∂

∂T
p̃(r, θ, T ) = − ∂

∂r

{[(

µ̃+
5D̃

2

)

r − 3

4
r3

]

p̃(r, θ, T )

}

+
3D̃

2

∂2

∂r2
[

r2p̃(r, θ, T )
]

− ∂

∂θ
[ν̃p̃(r, θ, T )] +

D̃

2

∂2

∂θ2
p̃(r, θ, T ) .

(44)

The stationary Fokker-Planck equation can now be solved by separation of variables. Let

p̃s(r, θ) = ps(r)ps(θ). The stationary solution of the angular component, ṗs(θ) = 0, satisfies,

0 = − ∂

∂θ
[ν̃ps(θ)] +

D̃

2

∂2

∂θ2
ps(θ) , (45)

which leads to

ps(θ) = Nθ exp

(

2ν̃

D̃
θ

)

, (46)

where Nθ is a normalization constant. The stationary solution of the radial component,

ṗs(r) = 0, satisfies

0 = − ∂

∂r

{[(

µ̃+
5D̃

2

)

r − 3

4
r3

]

p(r)

}

+
3D̃

2

∂2

∂r2
[

r2p(r)
]

, (47)

which leads to,

ps(r) = Nr|r|α
′

exp

(

− r2

4D̃

)

, (48)

where Nr is another normalization constant. We have defined,

α′ =
1

3

(

2µ̃

D̃
− 1

)

. (49)

The stationary probability distribution functions are normalized according to,

1 =

∫

2π

0

∫

∞

0

p̃s(r, θ)drdθ =

[
∫

2π

0

ps(θ)dθ

] [
∫

∞

0

ps(r)dr

]

, (50)

and we choose to normalize both components to one. Normalization of the radial component

leads to,

Nr = 2(4D̃)
−

(

α
′+1
2

)

Γ−1

(

α′ + 1

2

)

. (51)
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If α′ < −1, the probability distribution function of the radial component is negative, which

is unphysical. The bifurcation threshold is then located at α′ = −1. This leads to the

condition
1

3

(

2µ̃

D̃
− 1

)

= −1 , (52)

or µ̃+ D̃ = 0. Normalization of the angular component yields,

Nθ =
ν̃

D̃

exp
(

−2πν̃

D̃

)

sinh
(

2πν̃

D̃

) . (53)

The dynamics in the deterministic limit is a limit cycle at threshold. Here, we choose

the probability distribution function of the angular component to be uniform at threshold

(α′ = −1) [25]. This occurs at ν̃ = 0 for all θ and the stationary probability distribution

function of the angular component is ps(θ) = 1/(2π). By combining both conditions we find,

µ̃+ D̃ = ac +D + b cos(ωτ) = 0 , (54)

ν̃ = ω + b sin(ωτ) = 0 . (55)

Those conditions [Eqs. (54) and (55)] justify the assumption that the parameters µ, ν, and

the intensity of the noise D scale as ǫ2 close to the bifurcation.

By substituting Eq. (55) into Eq. (54), we find our final result for the Hopf bifurcation

line,

−
(

ac +D

b

)

= cos
[

τ
√

b2 − (ac +D)2
]

, (56)

Interestingly, this condition agrees with the bifurcation threshold of the first moment 〈x〉
from the linearization of Eq. (1) [7]. However, the bifurcation lines for higher moments of

x within a linearized model differ from Eq. (56).

Figure (1) shows our prediction for the Hopf line and compares it to a numerical estimate

obtained by direct integration of the original stochastic differential equation for τ = 1.

[9]. In the numerical study, the Hopf bifurcation threshold was determined as the point

in the (a, b) plane for which the exponent of the power law of the stationary probability

distribution p(x) at small x is -1. The same procedure was repeated for the stationary

probability distribution function of the maximum amplitude of the Fourier transform of

the trajectories p(max [X(ω)]) around the Hopf branch. The agreement is excellent, except

close to the multicritical point, despite the fact that the delay time τ = 1 is not small.

12



Because characteristic relaxation times diverge near the bifurcation line, we anticipate that

the validity of our analytic results is not confined to the range of small τ .

We finally mention that our two analytic predictions do not intersect for large a, and that

the numerical values in the region around the intersection of the pitchfork and Hopf lines

are subject to considerable statistical fluctuation.
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FIG. 1: Bifurcation diagram for Eq. (1) with τ = 1 and D = 0.3. The upper solid curve is the

pitchfork branch in the limit of small time delay [Eq. (23)] whereas the lower dashed curve is the

Hopf branch [Eq. (56)]. The symbols are the numerically determined bifurcation thresholds in

[9], namely the point in the (a, b) plane for which the exponent of the power law of the stationary

probability distribution function of the solution p(x) (◦) and of the maximum amplitude of the

Fourier transform of the trajectories ps (max[X(ω)]) (⋄) are -1.

15


