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A phase field model of a crystalline material is introduced to develop the necessary theoretical
framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from
the phase field crystal free energy under weak distortion, and show that it obeys the stress strain
relation of linear elasticity. We focus next on dislocations in a two dimensional hexagonal lattice.
They are composite topological defects in the weakly nonlinear amplitude equation expansion of
the phase field, with topological charges given by the standard Burgers vector. This allows us to
introduce a formal relation between dislocation velocity and the evolution of the slowly varying
amplitudes of the phase field. Standard dissipative dynamics of the phase field crystal model is
shown to determine the velocity of the dislocations. When the amplitude expansion is valid and
under additional simplifications, we obtain that the dislocation velocity is determined by the Peach-
Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two
setups, pure glide and pure climb, and compare it the analytical predictions.

PACS numbers: 46.05.+b,61.72.Bb,61.72.Lk,62.20.F-

I. INTRODUCTION

The description of plastic response in crystals at a
mesoscale level poses fundamental challenges because of
collective effects in dislocation dynamics that give rise to
multiple-scale phenomena, such as spatio-temporal dislo-
cation patterning [1, 2] and intermittent deformations [3].
Different multiscale models including discrete dislocation
models, stochastic models, and cellular automata have
been proposed and used to explore various aspects of
collective dislocation dynamics [4–6]. We focus here on
a phase field description of a crystalline solid, the so-
called phase field crystal, first introduced by Grant and
collaborators [7–9]. This model has allowed the study of
defect configurations and their kinetics that are difficult
to address with either microscopic or atomistic simula-
tion techniques, or with classical continuum mechanics.
Examples include large strain formulations of dislocation
motion [10], creep motion mediated by diffusion [11], or
defect core transformations that are seen to be key to the
motion of grain boundaries [12].

A mesoscale theory is also timely given that defect
imaging techniques are beginning to reveal strain and ro-
tation fields created by one or a small number of defects
in atomic detail. High Energy Diffraction Microscopy
and Bragg Coherent Diffractive Imaging represent the
state of the art in imaging at advanced synchrotron fa-
cilities [13, 14]. The former can provide three dimen-
sional maps of grain orientations with micron resolution,
whereas the latter can determine atomic scale displace-
ments with ≤ 30 nm resolution. Advanced image pro-
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cessing methods allow the determination of the strain
field phase around a single defect, clearly evidencing its
multivalued nature. Indeed, single dislocations have been
successfully imaged and their motion tracked quantita-
tively just recently [15]. Experiments also go beyond the
determination of strain fields, and determine other quan-
tities sensitive to the topology of the defects. For ex-
ample, lattice rotation has been imaged and analyzed in
nanoindentation experiments [16], or in two dimensional
graphene sheets [17].

Mesoscale models aim at bridging fully atomistic de-
scriptions and macroscopic theory based on continuum
mechanics. Along these lines, we mention the so called
generalized disclination theory [18, 19]. This theory is a
fully resolved nano scale yet continuum dynamical de-
scription of dislocations that preserves all topological
constraints necessary in the kinematic evolution of the
singular fields. Singularities are replaced by topologically
equivalent but smooth local fields that allow a full deriva-
tion of the governing dynamical equations following the
principles of irreversible thermodynamics. The newly in-
troduced fields are similar to a phase field model, except
that they are constructed to satisfy all conservation laws,
including those of topological origin. On the other hand,
the dynamical part of the theory requires constitutive in-
put for both the free energy at the mesoscale, functional
of the smooth fields, and mobility relations for their mo-
tion.

Conventional phase field models have also become one
of the tools of choice in the study of dislocation and grain
boundary motion in a wide variety of circumstances.
Contrary to kinematic models, a phenomenological set
of dynamical laws for the phase field are introduced,
with topological invariants appearing as derived quanti-
ties. There are two different classes of phase field models
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in the plasticity literature. In one approach, the elemen-
tary dislocation is described as an eigenstrain, which is
then mapped onto a set of phase fields [20–22]. If b is the
Burger’s vector of the dislocation, and n the normal to
the dislocation line, then the corresponding eigenstrain
is defined as

u∗ij =
binj + bjni

2a
(1)

where a is the crystal lattice spacing. The connection to
the phase fields φα(x), where α label all the slip systems
of a particular lattice, is made through the decomposition

u∗ij =
∑
α

ε∗αij φα(r). (2)

The phase fields are assumed to relax according to purely
dissipative dynamics driven by minimization of a phe-
nomenological free energy. This free energy includes a
non-convex Ginzburg-Landau type contribution of the
same functional form as related studies in fluids [23].
This contribution is supplemented by an elastic inter-
action energy that depends only on the incompatibility
fields associated with the eigenstrains [24–26], and hence,
ultimately, on the phase fields themselves [20–22].

The second approach, which we adopt here, is based
on a physical interpretation of the phase field as a tempo-
rally coarse-grained representation of the molecular den-
sity in the crystalline phase. Such as model is also known
as the phase field crystal (PFC) model [8, 9]. The evo-
lution of the phase field is diffusive, and governed by
a Swift-Hohenberg like free energy functional, which is
minimized by a spatially-modulated equilibrium phase
with the periodicity of the crystal lattice. The chosen
free energy not only determines the crystal symmetry
of the equilibrium phase, but all other thermodynamics
quantities and response functions such as its elastic con-
stants [8]. As it is generally the case with phenomeno-
logical free energies, it is only a function of a few free
parameters, and hence the range of physical properties
that can be attributed to the resulting macroscopic phase
is somewhat limited. Nevertheless, the PFC model has
been used in numerous numerical studies including crys-
tal growth, grain boundaries and polycrystalline coarse
graining phenomena [12, 27–30], strained epitaxial films
[31], fracture propagation [8], plasticity avalanches from
dislocation dynamics [32, 33], and edge dislocation dy-
namics [9]. It appears to us that this second approach is
more natural from a physical point of view in that once
the mesoscopic order parameter and the corresponding
free energy are introduced, defect variables such as the
Burgers vector and slip systems emerge as derived quan-
tities. This seems preferable to introducing Ginzburg-
Landau dynamics for slip system amplitudes defined a
priori. Also, this second approach can nominally de-
scribe highly defected configurations in which a slip sys-
tem, even in a coarse grained sense, can be difficult to
define.

In this paper, we address the important theoretical
question as to what extent the PFC model is actually
capable of capturing mesoscopic plasticity mediated by
dislocation dynamics. Although previous numerical sim-
ulations of dislocation dynamics [9, 33] suggest that dis-
location motion is controlled by local stress, a theoret-
ical derivation from the PFC model is still lacking. To
address this question, we consider the PFC model and
its amplitude expansion formulation, where we can show
that the complex amplitudes are order parameters that
support topological defects corresponding to dislocations
in the crystal ordered phase. This allows us to accurately
define a Burgers vector density field from the topological
charges and predict the dislocation velocity directly from
the dissipative relaxation of the amplitudes. We show
that elastic stresses can be obtained from the PFC free
energy functional through standard variational means,
and recover known expressions for the linear elastic con-
stants of the medium. Furthermore, we show that the
dislocation velocity, near the bifurcation from the disor-
dered state, follows the Peach-Koehler’s force and is given
by the product of Burgers vector and the elastic stress.
Our theoretical predictions are consistent with previous
numerical PFC studies of dislocation dynamics [9, 34].

The rest of the paper is organized as follows: In Sec-
tion II, the phase field crystal model and its elastic equi-
librium properties are discussed for the two dimensional
case. Here, we also derive the elastic stress by variation
of the free energy functional, and express it in terms of
the crystal density field. Plastic motion mediated by dis-
location dynamics is treated in Section III, where we use
the amplitude expansion and the connection to an order
parameter that supports topological defects. In Section
IV, we verify the theoretical results by direct numerical
simulations of the PFC model for a hexagonal lattice with
a dislocation dipole. Summary and concluding remarks
are presented in Section V.

II. LINEAR ELASTICITY IN THE PHASE
FIELD CRYSTAL MODEL

The phase field crystal model that we employ involves
a single scalar field ψ(r, t), function of space r in two-
dimensions (2D) and time t, and a phenomenological free
energy given by [9]

F [ψ] =

∫
d2r f

(
ψ,∇2ψ

)
=

∫
d2r

[
1

2
[(∇2 + 1)ψ]2 +

r

2
ψ2 +

1

4
ψ4

]
, (3)

where r is a dimensionless parameter. In equilibrium, the
free energy functional (3) is minimized with respect to ψ
while keeping the average density constantly equal to ψ0,

so that
(
δF
δψ

)
0

= µ0 where µ0 is a constant Lagrange mul-

tiplier. When r > 0, ψ = ψ0 is the only stable solution,
whereas for r < 0, equilibrium periodic solutions of unit
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wavenumber are possible for stripes and hexagonal pat-
terns in 2D [8]. The crystalline phase with density distri-
bution n(r) is related to the phase field crystal through
ψ(r, t) = n(r, t)/n0 − 1, where n(r, t) =

∑
i〈δ(r− ri)〉 is

the statistical average number density of the equivalent
crystal, and n0 its spatially averaged density.

We focus below on the range of parameters for which
a 2D hexagonal lattice is the equilibrium solution [8]

ψ = ψ0 +
∑
g

A(0)
g eig·r, (4)

where the sum extends over all reciprocal lattice vectors
g of a hexagonal lattice. We distinguish below three re-
ciprocal lattice wave vectors qn, of unit length in the
dimensionless units of Eq. (3), which are given in Carte-
sian coordinates by,

q1 = j, q2 =

√
3

2
i− 1

2
j, q3 = −

√
3

2
i− 1

2
j, (5)

which fixes the lattice constant a = 4π√
3
. These three

vectors satisfy the resonance condition
∑3
n=1 qn = 0.

The corresponding amplitudes A
(0)
n are all constant and

equal.
We first examine the change in free energy ∆F =
F [ψ(r′)] − F [ψ(r)] due to a small affine distortion r′ =
r + u(r). The free energy change ∆F [ψ,u] associated
with such a distortion is given, after a transformation of
variables from r′ to r, by

∆F =

∫
d2r

{
(1 +∇ · u)f [ψ(r′),∇′2ψ(r′)]− f(ψ,∇2ψ)

}
,

(6)

where the transformed derivatives are given by

∂′i = ∂i − (∂iuj)∂j +O
(
|∇u|2

)
,

∂′ijψ = ∂ijψ − ∂i [(∂juk)∂kψ]− (∂iuk)∂kjψ +O
(
|∇u|2

)
.

(7)

After a Taylor expansion of Eq. (6) for small deformation
gradients ∂iuj , we obtain

∆F =

∫
d2r

[
− ∂f

∂(∂iψ)
(∂iuj)∂jψ −

∂f

∂(∂ijψ)
{∂i [(∂juk)∂kψ] + (∂iuk)∂kjψ}+ (∇ · u) f

]
+O

(
|∇u|2

)
. (8)

Because of the translational invariance of F , the change
∆F does not depend on the distortion, but only on its
spatial gradients. Furthermore, the first term on the
r.h.s. vanishes since f does not depend on the gradient
of ψ. The second term on the r.h.s. can be transformed
to a total divergence term and one proportional to the
deformation gradient. Changing summation indices in
order to factor the deformation gradient out, and using
Stokes’ theorem on the divergence term, we obtain that

∆F =

∫
d2r E +

∫
dSi

∂f

∂(∂ijψ)
(∂juk)∂kψ, (9)

where dS is the surface element vector on the boundary
of the integration domain and

E =

[
− ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + δijf

]
∂iuj

(10)

Equation (9) yields the elastic stress defined as the con-
jugate to the displacement gradient

σij =
∂E

∂(∂iuj)

= − ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + fδij .(11)

Substituting Eq. (3), the corresponding stress is in our

case

σij = [∂iLψ] ∂jψ − [Lψ] ∂ijψ + fδij , (12)

with L = 1+∇2. Hence the elastic stress can be straight-
forwardly evaluated from the phase field ψ. Below we will
show that this stress gives rise to the expected stress-
strain relation in the linear elasticity regime, in agree-
ment with earlier results for modulated phases [35, 36].

The stress gives rise to a body force density Fj = ∂iσij
given by

Fj = L2ψ∂jψ − LψL(∂jψ) + ∂if. (13)

For an incompressible deformation, the Jacobi determi-
nant is unity, the second term is the gradient of − 1

2 (Lψ)2,
and can be included into a pressure term ∂jp as a gra-
dient force. Thus, we can write the body force up to its
gradient force contributions as

Fj = µ∂jψ, (14)

as the additional terms in the chemical potential µ =
δF
δψ = L2ψ + rψ + ψ3 also lead to gradient terms.

More generally, the additional contribution of a com-
pressible deformation to the body force

∂i (δijf) = ∂jf = LψL(∂jψ) + rψ∂jψ + ψ3∂jψ. (15)

Hence, the body force density induced by a deformation
is the same in both the compressible and incompressible
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cases (up to a gradient force in the incompressible case),
and given as

Fj = ∂iσij =
(
L2ψ + rψ + ψ3

)
∂jψ = µ∂jψ. (16)

Thus, the body force associated with a small distortion in
the phase field crystal density is expressed in general as
µ∇ψ. Analogous results have been derived by using mi-
croforce balances in the context of continuum mechanics
[23], or invoking thermodynamic relations arising from
broken symmetries [37].

In the weakly nonlinear region of |r| � 1, the order pa-
rameter ψ can be expanded in terms of the slowly varying
amplitudes An of the resonant modes qn of Eq. (5). A
weakly distorted configuration relative to the reference
hexagonal configuration can then be written in this ex-
pansion as [34, 38]

ψ = ψ0 +
∑
n

Ane
iqn·(r−u) + c.c., (17)

with both the mean density ψ0 and the amplitudes An
are slowly varying on length scales much larger than the
lattice spacing. After straightforward differentiation of ψ
in Eq. (17), we obtain that

∂i (Lψ) = 2iA0∂luk
∑
q

qlqkqi exp [iq · (r− u)] ,

[∂i (Lψ)] ∂jψ = −2A2
0∂luk

∑
q,q′

qlqkqiq
′
j

× exp [i(q + q′) · (r− u)] , (18)

where the sums involve the components of the vectors
±qn, the negative vectors included for the complex con-
jugate (we have dropped the subindex n for ease of no-
tation). Similarly, we find

[Lψ]∂ijψ =− ψ0A0

∑
q

(qiqj − qiqk∂juk − qjqk∂iuk) exp [iq · (r− u)]− 2A2
0∂luk

∑
q,q′

qlqkq
′
iq
′
j exp [i(q + q′) · (r− u)] .

(19)

Finally, by averaging this result over a unit cell of the
lattice, and given that the slowly varying deformation
gradients are constant over a lattice spacing, all single
q terms vanish, whereas exp[i(q + q′) · (x − u)] factors
integrate to δq,−q′ . Therefore the averaged stress field
from Eq. (12) becomes

〈σij〉 = 4A2
0∂luk

∑
q

qlqkqiqj . (20)

Since the coefficients multiplying ∂luk are symmetric un-
der the interchange l↔ k, we can also write the relation
in terms of the symmetrized strain ulk = 1

2 (∂luk + ∂kul).
Reintroducing the vectors qn and their negatives −qn
explicitly, we find

〈σij〉 = 8A2
0ulk

3∑
n=1

qni q
n
j q

n
k q

n
l . (21)

Equation (21) is a linear stress-strain relationship which
only depends on three crystal reciprocal lattice vectors
and the slowly varying amplitudes. For a hexagonal
lattice, inserting the reciprocal lattice vectors given in
Eq. (5) yields C11 = C22 = 9A2

0, C12 = 3A2
0 and C44 =

3A2
0 (cf., e.g., Ref. [9]). This result can also be written in

terms of Lamé coefficients as 〈σij〉 = λδijukk+2µuij with

λ = µ = 3A2
0, giving a Poisson’s ratio of ν = λ

2(λ+µ) = 1
4 .

This is different from the Poisson’s ratio of 1
3 obtained

in Ref. [28], as they use the plane stress condition, while
we are assuming plane strain without loss of generality.

III. PLASTIC FLOW AND DISLOCATION
DYNAMICS

At the mesoscale level, the evolution of the phase field
is driven by local relaxation of the free energy functional,

∂ψ

∂t
= ∇2 δF

δψ
, (22)

where we have assumed a constant mobility coefficient
(equal to unity in rescaled units). Equation (22) governs
both conservation of mass and the evolution of crystal de-
formations. We will focus here on 2D systems, although a
similar development can be applied in three dimensions.

There are no topological singularities in the phase field
ψ(r, t). However, under conditions in which the ampli-
tude expansion of Eq. (4) is valid (mean density ψ0 and
amplitudes An that vary on length scales much larger
than the wavelength of the reference pattern), topological
defects can be identified from the location of the zeros of
the complex amplitudes [39, 40]. Evolution equations for
ψ0 and An have been derived by several techniques, such
as Renormalization Group methods [41] and multiple-
scale analysis [42]. In the lowest derivative approxima-
tion that preserves the rotational invariance of the phase
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field model [43], the resulting equations are given as [42]

∂ψ0

∂t
= ∇2

[
(1 +∇2)2ψ0 + ψ3

0 + 6ψ0

∑
n |An|2

+6 (
∏
nAn + c.c.)

]
,

∂An
∂t

= −L2
nAn − (3ψ2

0 + r)An − 6ψ0

∏
m6=nA

∗
m

−3An
(
2
∑
m |Am|2 − |An|2

)
, (23)

where n = 1, 2, 3, Ln = ∇2+2iqn ·∇ and qn are the three
reciprocal vectors of Eq. (5). Variation of ψ0 at constant
An needs to be interpreted as vacancy diffusion. These
amplitude equations are themselves variational, and can
be written as [42],

∂ψ0

∂t
= ∇2 δFCG

δψ0

∂An
∂t

= −δFCG
δA∗n

. (24)

where FCG{ψ0, An} is the free energy, function of the
amplitudes alone. Recall that all of these equations ig-
nore higher Fourier components |q| > 1, so they are only
valid close to the bifurcation point, |r| � 1.

A. Transformation of field singularities to
dislocation coordinates

In order to make contact with the classical macroscopic
description of plastic motion in terms of the velocity of
a dislocation element under an imposed stress, we de-
scribe the transformation of variables that is required to
relate the evolution of the phase field to the motion of
the singularities associated with the amplitudes. Assume
a spatial distribution of point dislocations and define a
Burger’s vector density as B(r) =

∑
α bαδ(r−rα), where

rα is the location of the dislocation with Burger’s vector
bα in some element of volume. For each Burger’s vector
bα we define the three integers sαn = 1

2π (qn · bα), which

satisfy the relation
∑3
n=1 s

α
n = 1

2πbα ·
∑3
n=1 qn = 0.

A dislocation at rα corresponds to a discontinuous de-
formation field u(r) with

∮
du = bα around a contour

containing only rα. This deformation field is associated
with a phase factor in the complex amplitudes, given
by An(r) = |An|e−iqn·u+iφ, with φ(r) smooth inside the
contour. The phase circulation of the amplitude around
the same contour can then be found as∮

d(argAn) = −qnj
∮
∂kujdrk +

∮
∂kφdrk

= −qnj bαj = −2πsαn, (25)

using that φ has no circulation, being smooth inside the
contour. Thus the amplitude An has a vortex with wind-
ing number −sαn at r = rα. This induces the following

transformation of delta functions [44–47]

Dnδ(An) = −
∑
α

sαnδ(r− rα)

= − 1

2π

∑
α

(qn · bα)δ(r− rα), (26)

for a given amplitude An, where

Dn = Im (∂xA
∗
n∂yAn) =

1

2i
εij∂iA

∗
n∂jAn, (27)

is the Jacobian of the transformation from complex am-
plitudes An to vortex coordinates rα, and εij is the anti-
symmetric tensor. Multiplying the above expression with
a reciprocal vector qn and summing over n, we find the
dislocation density as

B(r) = −4π

3

3∑
n=1

qnDnδ(An), (28)

by making use of the fact that
∑3
n=1 q

n
i q

n
j = 3

2δij (see
appendix A for why we use reciprocal lattice vectors in
this expansion rather than real space lattice vectors).

In order to obtain the equation governing the motion of
the Burgers vector density, we use that the determinant
fields Dn have conserved currents given by [47]

J
(n)
k =

1

2i
εkl

(
∂An
∂t

∂lA
∗
n −

∂A∗n
∂t

∂lAn

)
= εkl Im

(
∂An
∂t

∂lA
∗
n

)
,

(29)

so that ∂Dn

∂t = −∂kJ (n)
k , as can be verified by substitu-

tion. The amplitude evolution at the vortex location ∂An

∂t

can be found from an amplitude expansion of ∂ψ
∂t , such

as Eq. (23).
We also have a similar continuity equation for the delta

functions,

Dn
∂

∂t
δ(An) = −J (n)

i ∂iδ(An), (30)

which can be proved by differentiating through the delta

functions and inserting for Dn and J
(n)
i . Hence, differ-

entiating the dislocation density with time, we find the
Burger’s vector current

∂Bi
∂t

= −4π

3

3∑
n=1

qni

(
∂Dn

∂t
δ(An) +Dn

∂

∂t
δ(An)

)

=
4π

3

3∑
n=1

qni

(
∂jJ

(n)
j δ(An) + J

(n)
j ∂jδ(An)

)
= ∂j

(
4π

3

3∑
n=1

qni J
(n)
j δ(An)

)
= −∂jJij . (31)

Whenever Dn = 0 we have δ(An) = 0, otherwise we can
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transform back to physical coordinates using Eq. (26),

Jij = −4π

3

3∑
n=1

qni J
(n)
j δ(An)

=
2

3

3∑
n=1

qni J
(n)
j

∑
α

qn · bα
Dn

δ(r− rα). (32)

On the other hand, if the dislocations are moving with
velocity vα, we have

Jij =
∑
α

bαi v
α
j δ(r− rα). (33)

Hence, equating the two expressions for Jij at r = rα
and contracting with the burger’s vector bα, we find

vαj =
2

3

3∑
n=1

(qn · bα)2

|bα|2
J
(n)
j

Dn
=

1

S2
α

3∑
n=1

(sαn)2
J
(n)
j

Dn
, (34)

where we set S2
α =

∑3
n=1(sαn)2 and used that |bα|2 =

8
3π

2S2
α. This is a general result and the central rela-

tion between the velocity of a point singularity and the
equation governing the evolution of the phase field am-
plitudes. We apply this expression below to obtain an
estimate of the velocity response of a single point dislo-
cation under an applied strain.

B. Dislocation motion

At a dislocation core, assumed at r = 0, the ampli-
tude An will vanish as long as 2πsn = qn · b 6= 0. Since
s1 + s2 + s3 = 0, any dislocation must give rise to vor-
tices in at least two of the three amplitudes, and so these
two amplitudes vanish. This means that the amplitude
evolution equation (23) for vanishing amplitudes at the
dislocation position reduces to

∂An(r = 0)

∂t
≈ −L2

nAn

∣∣∣
r=0

(35)

whenever sn 6= 0. The equations governing the defect
amplitudes entering Eq. (34) decouple, and hence we can
study the motion of each amplitude independently.

We now consider a dislocation which would be sta-
tionary in the absence of any externally imposed stress,

L2
nAn

∣∣∣
r=0

= 0. If a smooth deformation ũ, is imposed

in addition to the singular deformation field associated
with the stationary dislocation, the total displacement
field can be written as u = using + ũ. This displace-
ment includes the singular deformation using for the sta-
tionary dislocation described by the amplitudes An, and
a smooth “phonon” part (e.g., as described in ref. [25,
Eq. (2.8a)]). The defect amplitude under this distortion

is Ãn = Ane
−iqn·ũ+hn(r), where the unknown function

hn models how the defect core responds to the deforma-
tion [46]. We assume that these core perturbations are

small compared to the driving force due to the deforma-
tion gradient, |∇hn| � |∇ũ|, and neglect them. The
applied smooth deformation will cause the dislocation to
move,

∂tÃn = −L2
nÃn 6= 0, (36)

and our aim is to compute how the resulting dislocation
motion depends on the imposed deformation.

Let us focus on one particular n and write Ã =
Ae−iq·ũ, with its associated wave vector q. Then,

∂iÃ = (∂iA− iAqk∂iũk) e−iq·ũ

∂ijÃ = (∂ijA− i∂iAqk∂j ũk − i∂jAqk∂iũk) e−iq·ũ. (37)

Continuing in this manner and using that A is the sta-
tionary vortex solution (L2A = 0), we then have that

∂tÃ = −L2Ã = 4iqj [(∂i + iqi)LA]∂iũje
−iq·ũ. (38)

If s = ±1, one solution of L2A = 0 is the isotropic vortex
solution A ∝ x − isy. We will assume the vortex takes
this form, although other solutions are possible. For this
solution, we have LA = 2iqk∂kA and ∂iLA = 0. Hence
∂tÃ simplifies to

∂tÃ = −8iqiqjqk∂kA∂iũje
−iq·ũ. (39)

Inserting this into to the defect current in Eq. (29), we
find

Ji = −8εijqkqlqm∂kũl Im (i∂mA∂jA
∗) . (40)

Since the defect density is unchanged under the smooth
deformation, the Jacobi determinant at the dislocation
position is unchanged,

D =
1

2i
εij∂iÃ

∗∂jÃ =
1

2i
εij∂iA

∗∂jA. (41)

The isotropic vortex A ∝ x− isy satisfies

i∂iA = −1

s
εij∂jA, (42)

so that

Ji =
8

s
εijεmoqkqlqm∂kũl Im (∂oA∂jA

∗) . (43)

We can show that Im(∂oA∂jA
∗) = εjoD, which means

that

Ji =
8

s
εijqjqkql∂kũlD. (44)

Thus, for a simple dislocation with all |sn| ≤ 1, we find
that the vortex velocity from Eq. (34) is

vi =
8εij
S2

3∑
n=1

snq
n
j q

n
k q

n
l ∂kũl

=
4bm
πS2

εij

3∑
n=1

qnmq
n
j q

n
k q

n
l ∂kũl

=
1

4πA2
0

εij 〈σ̃jk〉 bk, (45)
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FIG. 1: (a) and (b): Magnitude and phase of the A2 amplitude, showing the initial vortices corresponding to the initial
dislocations. (c): The D2 field showing the sign of the vortex charge. (d): The resulting Bx dislocation density in the x
direction, with w = A0/5. x and y is given in units of the lattice constant a = 4π√

3q0
.

where we used the stress-strain relation from Eq. (21) to
relate the gradient of the smooth deformation ũ to its
associated stress σ̃ij .

Thus, we obtain an expression for the dislocation veloc-
ity which agrees with the Peach-Koehler force of classical
dislocation theory [4], and gives an explicit form of the
dislocation mobility. The derivation has excluded the sin-
gular deformation using associated with the dislocation,
as well as any defect core variations in the amplitudes
which would be contained in the functions hn(r). Within
our approximations, the mobility coefficient is isotropic.
This probably follows from our assumption that the vor-
tex solution of L2

nAn = 0 is isotropic.
In what follows, we calculate numerically the disloca-

tion velocity by tracking the position of the dislocation
and compare it with the velocity determined by Eq. (34)
from the topological defect currents. We also discuss
the numerical challenge to verify the overdamped motion
with isotropic mobility and following the Peach-Koehler
force according to Eq. (45), as well as the extent to which
we expect this to be valid.

IV. NUMERICAL RESULTS

We test our predictions by directly simulating a per-
fect hexagonal crystal containing a dislocation dipole in
two scenarios of pure glide and pure climb, respectively.
The dislocations move under the mutual interaction force
between them until they annihilate.

We use two parameter sets r = −0.01 and ψ0 = −0.04
(small amplitude near the bifurcation) and r = −0.8 and
ψ0 = −0.43 (finite amplitude). The initial state is pre-
pared by setting ψ(r) = ψ0+

∑
nAne

iqn·r+c.c., where the
amplitudes contain vortices with the appropriate charges
for each dislocation An = A0 exp [−

∑
α is

α
nθ(r− rα)].

We use two different initial geometries for measuring
glide and climb motion. For the glide case, we put
two dislocations with opposite Burger’s vectors pointing
along the x direction, i.e b = (±a, 0), and located in the
same glide plane on the x axis with some initial separa-
tion. For climb, we place the same dislocations directly
above each other on the y axis, on different glide planes.
We then evolve Eq. (22) using an exponential time differ-
encing method [48], and track the motion of dislocations
as topological defects.

The amplitudes of the phase field are computed by
performing a local amplitude decomposition, which cor-
responds to averaging ψe−iq·r over a region roughly cor-
responding to a lattice unit cell [49]. For numerical sta-
bility we use a convolution with a Gaussian of width
a = 2π/

√
3 instead of hard limits to the averaging re-

gion. This convolution is most efficiently evaluated in
Fourier space, using the expression

An(r) = e−iqn·rF−1
{
e−

8
3π

2(k−qn)
2

F [ψ]
}
, (46)

where F and F−1 denote the Fourier and inverse Fourier
transforms, respectively. Similarly, the time evolution of
the amplitude can be extracted from the PFC dynamics
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FIG. 2: (a): Map of the stress field 〈σxy〉, as computed directly from the formula in eq. (12), with a Gaussian average. (b):
Map of the strain field ∂yux, computed from the amplitudes by eq. (50). Note that the color scale is saturated, and the
measured strain field diverges at the dislocation. (c): Comparison of the stress computed along the indicated horizontal line in
two different ways: Using the direct expression for the stress in Eq. (12) (solid line), and using the stress-strain relation from
Eq. (21) (dashed line). Both expressions agree in the crystal bulk, but break down close to the dislocation.

as

∂An(r)

∂t
= e−iqn·rF−1

{
e−

8
3π

2(k−qn)
2

F

[
∂ψ

∂t

]}
, (47)

Figure 1 shows the magnitude and phase of the com-
plex amplitude A2 for the initial dislocation dipole after
a short period of relaxation (panels a-b). From the am-
plitudes we can calculate a Gaussian approximation to
the δ(An) function as

δ(An) =
1

2πw2
e−

|An|2

2w2 , (48)

where smaller w’s give sharper delta functions. Along
with the Dn fields obtained by numerically differentiat-
ing the amplitudes (Fig. 1, panel c), we obtain approx-
imations to the Burger’s vector density from Eq. (28),
shown in Fig. 1, panel (d).

The total displacement field away from defect cores can
be obtained by writing An = |An|e−iqn·u, so that

Im
∂jAn
An

= −qnk∂juk. (49)

This relation can be inverted to find

∂juk = −2

3

∑
n

qnk Im
∂jAn
An

, (50)

thus giving numerical values for the total strain. Figure
2 summarizes our results. We show the distortion ∂xuy

given by Eq. (50) along with the corresponding stress
field evaluated from Eq. (12) with a Gaussian average.
Of course, this stress-strain relation is not expected to
hold near the defect cores where the distortion is large.
However, we also plot the shear stress as a function of y
along the line shown in the figure, and show that the lin-
ear stress-strain relation, Eq. (21), does hold away from
the cores.

Properties of a given dislocation can be computed by
taking averages weighted by the Burger’s vector density
B(r) inside a thresholded region. Thus we compute the
location of each dislocation by taking centers of mass of
the Burger’s vector density, and dislocation speeds by
averaging the topological defect currents of Eq. (34). In
Figure 3, we compare glide and climb velocities predicted
from Eq. (34), and a direct numerical determination of
the velocities by performing a finite time difference be-
tween successive dislocation positions. In panels (a) and
(b), the glide and climb velocities are presented for small
|r|, showing excellent agreement. The glide velocity for
finite r is presented in panel (c), and shows a stick and
slip like behavior with periodicity related to the lattice
constant a, consistent with previous numerical simula-
tions from Ref. [9]. These are lattice effects affecting the
motion of the amplitudes when r is not small due to non-
linear couplings, the phase field analog of Peierls pinning
stresses [50]. Note that we observe no climb motion at
the deep quench parameter r = −0.8.
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FIG. 3: The dislocation velocity as a function of time until
the annihilation time for low quenches (panels a and b) versus
deep quenches (panel c), given in the dimensionless units of
Eq. (22). In panel (c), vertical lines indicate points in time
where the dislocation has traveled a distance a from its initial
point.

The velocity computations shown are robust with re-
spect to the delta function width parameter w from
Eq. (48). However, the dislocation center of mass lo-
cation used in the tracked velocity shows artificial fluc-
tuations for width parameters larger than ≈ A0/20.

Directly verifying the Eq. (45) is more difficult due to
the required separation of stress fields into a singular part
and a phonon part σ̃ij . Furthermore, σ̃ij needs to be in
mechanical equilibrium during the PFC evolution. As
an indirect test, one can assume as a first approximation
that the stress field on each dislocation is due only to the
other, and it is approximately given by the shear stress
induced by an edge dislocation in an infinite space

σxy =
b

2π

2µ(λ+ µ)

λ+ 2µ

cosφ cos 2φ

d
,

σxx = − b

2π

2µ(λ+ µ)

λ+ 2µ

sinφ(2 + cos 2φ)

d
, (51)

where d and φ are the instantaneous distance and angle
between the dislocations, respectively. Inserting this ex-
pression into Eq. (45) and using appropriate values for

the angle φ for the glide and climb geometries, we find

vglidex = vclimb
y = ± a2

2π2d
, (52)

with the sign depending on which of the two disloca-
tions we are considering. This equilibrium velocity is
denoted as “Peach-Koehler force” in Fig. 3 (panels a,b).
For glide velocity we find a reasonable agreement with the
measured velocity, but the climb velocity shows a differ-
ent functional form. The deviations from the predicted
evolution from Eq. (52) are due to simplifying assump-
tions used in deriving the Peach-Koehler force, the most
important being the isotropic solution of the stationary
vortex structure. In practice, the profile of the vortex
near the core maybe anisotropic and dependent on the
driving force. This means that the core structure would
deform in the presence of external forces, which would
be described by having the hn(r) functions depend on ũ.
Note that the decoupling of the amplitude equations and
the assumption of an isotropic vortex solution were what
allowed us to ignore the effect of vacancies. It is known
that vacancy diffusion is important for climb motion, and
therefore we expect greater deviations from the theoreti-
cal prediction in the case of climb, as it is also evidenced
in Fig. 3 panel (c).

V. CONCLUSIONS AND DISCUSSION

We have introduced a phase field model of a crystalline
phase to describe the topological singularity that corre-
sponds to isolated dislocations. The phase field itself is
regular (non singular) at defect cores. The singularity
appears through consideration of the slowly varying am-
plitudes or envelopes of the phase field in a macroscopi-
cally defected configuration. These amplitudes allow the
computation of local stresses near the defect, as well as
the velocity of the point defect from the kinetic equations
governing the evolution of the phase field. The combina-
tion of both results allows the derivation of the classical
Peach-Koehler force on the defect as well as an explicit
calculation of the defect mobility, although these depend
sensitively on the dislocation core structure. Our main
results have been verified by direct numerical solution of
the equation governing the evolution of the phase field
for the case of a dislocation dipole in a two dimensional
hexagonal lattice.

Phase field crystal models of the type discussed in this
paper lack a dependence on lattice deformation as an in-
dependent variable. However, we have shown explicitly
that it is possible to calculate the elastic stress directly
from the phase field free energy by considering its vari-
ation with respect to a suitably chosen phase field dis-
tortion. The stress thus derived is consistent with linear
elasticity and leads to known expressions for the elastic
constants of the phase field crystal. Furthermore, the
phase field description can also describe defected config-
urations. While the phase field remains nonsingular no
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matter how large the local distortion of the reference con-
figuration is, the location of any isolated singularities can
be accomplished through the determination of the zeros
of a slowly varying (on the scale of the periodicity of the
field) complex amplitude or envelope of the phase field.
Such a coarse graining is essential to defining singular
fields from the regular phase field. On this slow scale,
we have then derived the Peach-Koehler force on a topo-
logical defect, subject to some simplifying assumptions.
As expected, this force depends only on a slowly vary-
ing stress (distortion), and not on other fast variations
of the phase field near the defect that constitute the sin-
gular strain field. However, more work is needed to fully
understand the effect of the core structure and vacancy
diffusion on this Peach-Kohler force.

Our results also clarify the relationship between dissi-
pative relaxation of the phase field and plastic motion.
Equation (45) relates the velocity of a dislocation with its
Burgers vector and the slowly varying stress 〈σ̃ij〉. Such
a relation follows directly from the equation governing
the relaxation of the phase field, Eq. (22), in the range
of r � 1 in which it can be described by an amplitude
equation. This equation also gives an explicit expression
for the dislocation mobility which depends on the specific
functional form of the free energy considered. More gen-
erally, the role of the free energy functional introduced in-
cludes the definition of a Burgers vector scale, and topo-
logical charge conservation over large length scales. Of
course, any fast variations of the phase field near defects
are still described and very much included in Eq. (22).
Short scale effects such as dislocation creation and anni-
hilation, and any nonlinearities of both elastic and plastic
origin evolve according to the dissipative evolution of the
phase field.
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Appendix A: Calculation of the dislocation current

Equation (28) gives an expression for the dislocation
density in terms of the three reciprocal lattice vectors qn.
Since the Burger’s vector is a vector in the real space lat-
tice, it would seem more natural to express the disloca-
tion density in terms of the two real space lattice vectors
an, where qn · am = 2πδmn (for n,m = 1, 2). Indeed,

using that
∑2
n=1 a

n
i q
n
j = 2πδij , we find the alternative

expression

B(r) = −
2∑

n=1

anDnδ(An), (A1)

which of course is equal to Eq. (28). Going through the
same derivation as in section III A leads to a Burger’s
vector current

Jij = −
2∑

n=1

ani J
(n)
j δ(An), (A2)

however this current does not agree with the current in
Eq. (32).

The missing point is that the conservation equation for
the field Dnδ(An),

∂t[Dnδ(An)] + ∂i[J
(n)
i δ(An)] = 0, (A3)

only determines its current I
(n)
j up to an unknown

divergence-free vector field K
(n)
j , i.e.

I
(n)
i = J

(n)
i δ(An) +K

(n)
i , (A4)

where ∂iK
(n)
i = 0. To determine this residual current,

we observe that

3∑
n=1

Dnδ(An) = − 1

2π

∑
α

bαi δ(r− rα)

3∑
n=1

qni = 0, (A5)

due to the resonance condition
∑
n qn = 0. Hence it is

natural to require that the current of this field vanishes
identically,

3∑
n=1

I
(n)
i =

3∑
n=1

J
(n)
i δ(An) +

3∑
n=1

K
(n)
i = 0. (A6)

This condition is fulfilled by setting K
(n)
i =

− 1
3

∑3
m=1 J

(m)
i δ(Am), which has vanishing divergence.

With this choice, the dislocation current in Eq. (32) is
modified to

Jij = −4π

3

3∑
n=1

qni J
(n)
j δ(An) +

4π

9

3∑
n=1

qni

3∑
m=1

J
(m)
j δ(Am),

(A7)
where the second term vanishes due to resonance. Hence
the additional fields K

(n)
i give no contribution when we

express B(r) in terms of the three reciprocal lattice vec-
tors. On the other hand, if we used real lattice vectors
an instead, the extra term would not vanish.
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(1997).

[27] J. J. Eggleston, G. B. McFadden, and P. W. Voorhees,
Physica D: Nonlinear Phenomena 150, 91 (2001).

[28] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605
(2004).

[29] K.-A. Wu and P. W. Voorhees, Phys. Rev. B 80, 125408
(2009).

[30] M. Bjerre, J. M. Tarp, L. Angheluta, and J. Mathiesen,
Phys. Rev. E 88, 020401 (2013).

[31] Z.-F. Huang and K. R. Elder, Phys. Rev. Lett. 101,
158701 (2008).

[32] P. Y. Chan, G. Tsekenis, J. Dantzig, K. A. Dahmen, and
N. Goldenfeld, Phys. Rev. Lett. 105, 015502 (2010).

[33] J. M. Tarp, L. Angheluta, J. Mathiesen, and N. Gold-
enfeld, Phys. Rev. Lett. 113, 265503 (2014).

[34] V. Heinonen, C. V. Achim, K. R. Elder, S. Buyukdagli,
and T. Ala-Nissila, Phys. Rev. E 89, 032411 (2014).

[35] K. Kawasaki and T. Ohta, Physica 139A, 223 (1986).
[36] R. Tamate, K. Yamada, J. Viñals, and T. Ohta, J. Phys.
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