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Abstract

We examine the linear response of a lamellar block copolymer phase in the weak segrega-

tion regime, and focus on those effects that arise from the uniaxial symmetry of the phase. The

classical two fluid model of a polymer solution is extended to allow for anisotropic monomer

diffusion as well as hydrodynamic flows. The latter include constitutive laws for the stress that

also reflect the symmetry of the phase. Transverse relaxation of weakly perturbed lamellae

is the slowest mode, and is sub-diffusive, in contrast to diffusive decay of longitudinal per-

turbations. Anisotropic diffusion can both enhance or reduce the rate of relaxation of long

wavelength perturbations of lamellae depending on the relative magnitude of longitudinal and

transverse mobilities. Hydrodynamic flows at the scale of the lamellae are negligible for most

situations of interest, but not long ranged flows as would appear in, for example, multi domain

configurations. We find that such flows accelerate linear decay, and even dominate diffusive

relaxation in the long wavelength limit. We finally examine anisotropic effects on defect mo-

tion as exemplified by a tilt grain boundary. The boundary velocity is significantly affected

by anisotropic diffusion through the coupling between undulation and permeation diffusive

modes in the defect region.
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Introduction

Block copolymers are finding numerous applications in nanotechnology,1,2 and have been of great

interest in soft matter science because of the properties that derive from their microphase separa-

tion to ordered phases of a wide variety of symmetries (for a brief review see Ref.3 and references

therein). Microphase separation also brings about interesting dynamical properties, including un-

usual rheological response4–8 and orientation selection during shear aligning.9,10 We describe here

a long wavelength and low frequency order parameter model that is consistent with the uniaxial

symmetry of a lamellar phase, and explore some the consequences for the relaxation of weakly

perturbed lamellar phases and motion of defects.

Order parameter models that describe the equilibrium properties and phase diagram of diblock

copolymers were given in Refs. 11–14. In addition, the so called two fluid model has been widely

used to describe the dynamical behavior of polymer solutions and blends in the low frequency hy-

drodynamic regime (compared with inverse relaxation times of the polymer chains) and long wave-

length (compared with their radius of gyration).15–17 More recently, the two fluid model has been

further extended to describe the dynamics of block copolymer melts, including a quantitative de-

scription of the microscopic details of the polymer chain through Self Consistent Field Theory.18,19

The resulting governing equations include dissipative dynamics for the order parameter driven by

free energy reduction from a functional obtained through Self Consistent Field Theory, and over

damped (or Stokesian) dynamics for hydrodynamic flows. However, both dissipative relaxation of

the order parameter and momentum transport equations assume that the block copolymer phase is

isotropic. We wish to investigate here some of the limitations of this assumption.

In principle, the low frequency and long wavelength hydrodynamic equations of motion for

ordered systems can be derived by considering conservation laws and symmetry arguments.20,21

For a diblock copolymer there are six conservation laws: total number of each monomer, three

components of momentum, and energy. In addition, when a diblock copolymer undergoes an order-

disorder transition to a lamellar phase, a new hydrodynamic variable arises associated with the

broken translational symmetry of a lamellar phase (smectic symmetry). We restrict our attention
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to an isothermal sample, and assume that the melt is incompressible. With this assumption the

total number and energy conservation laws drop out. It is then sufficient to consider a description

based on a periodic order parameter ψ in which amplitude and phase of describe local changes

of composition and distortions of the layers respectively, and a velocity field v. By employing the

conventional method described in Refs.20,21 one can derive the hydrodynamic equations for ψ and

v that reflect the uniaxial symmetry of a lamellar phase.22,23 Unlike earlier research18,19 in which

the melt was assumed to be isotropic, the resulting equations of motion involve an anisotropic

mobility tensor and a constitutive relation for the dissipative stress with three viscosity coefficients.

Previous studies of the effects of hydrodynamic flows on the dynamics of composition fluctu-

ations include an analysis of the high temperature, homogeneous phase of diblock copolymers,24

flows in polymer solutions,25 the isotropic-to-lamellar transition of polymer solutions26,27 and a

study of hydrodynamic effects in layered phases.28 The stationary structure factor under steady

shear flow has been computed to show that order parameter fluctuations are greatly affected by

the flow. In particular, shear flow distorts the director away from the layer normal in Smectic A

liquid crystals in such a way that the undulation mode (associated with the rippling of the layers)

becomes an “elastic” mode.28

We do not consider here a steady external shear. Instead, flows are driven by lamellar distortion.

This internally generated flows produce similar effects to those in Smectic A liquid crystals: For

small wavevector perturbations perpendicular to the lamellar normal hydrodynamic flows couple

only with the phase of order parameter, and can dominate the relaxation process for sufficiently

long wavelenghts. No hydrodynamic effects appear for perturbations parallel to the layer normal

(permeation mode).

This paper is organized as follows. In section 2 we present the hydrodynamic equations of

motion for diblock copolymers in a lamellar phase. This requires both an anisotropic mobility

tensor for order parameter diffusion, and anisotropic viscosities for the dissipative stress tensor.

Next, we investigate the effect of hydrodynamic flow and anisotropic diffusion on linear relaxation

of lamellae subject to weak distortions parallel and perpendicular to layers in section 3, and the
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motion of a tilt grain boundary in section 4.

Model equations

The equations governing the dynamics of an AB diblock copolymer in its lamellar phase can

be derived by using conservation laws and broken symmetry arguments.20,21,23 According to the

two-fluid model for polymer solutions, blends, or diblock copolymers15–17 one introduces two

continuity equations for each monomer

∂tρA =−∂i(ρAviA), (1)

∂tρB =−∂i(ρBviB), (2)

where ρA, B and viA, B are the monomer number fraction and the corresponding velocities with A

and B denoting polymers and solvent for polymer solutions, or two types of monomers in polymer

blends or diblock copolymers. It is customary to introduce an order parameter ψ = ρA−ρB so that

∂tψ +∂iJi = 0, (3)

where the flux Ji has both a reversible part JR
i that accounts for advection of ψ , and a dissipative

part JD
i responsible for energy dissipated due to the relative motion of the two types of monomers.

By taking the difference of the continuity equations, the order parameter equation Eq. (3) contains a

reversible current JR
i =ψvi where the average flow velocity is vi = ρAviA+ρBviB with ρA+ρB = 1,

and a dissipative current

JD
i = 2ρAρB

[
viA − viB

]
. (4)

According to the two-fluid model, the relative velocity between two monomers in JD
i is obtained

by employing a Rayleigh’s variational principle29 in which a dissipation function is introduced

that contains the square of the relative velocity times an isotropic friction coefficient γ . Under this
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assumption, the resulting dissipative current is15–19

JD
i =−γ−1(ρAρB)

2∂iµ, (5)

where µ = µA −µB is the difference in the monomer chemical potentials.

The constitutive law Eq. (5), however, must reflect the symmetry of the ordered phase. In

general, one writes

JD
i =−Λi j∂ jµ, (6)

with Λi j a kinetic mobility tensor. The number of independent components of Λi j is determined

by the symmetry of the phase. For layered systems of uniaxial symmetry, there are only two

independent components: A longitudinal part ΛL and a transverse part ΛT ,

Λi j = ΛLnin j +ΛT (δi j −nin j), (7)

where ni is the unit normal to the lamellar layers. Alternatively, the kinetic mobility tensor can be

decomposed into a scalar (isotropic) part ΛI and a traceless (anisotropic) part ΛA:

Λi j = ΛIδi j +ΛA

(
nin j −

1
3

δi j

)
, (8)

where ΛI = ΛL/3+2ΛT/3 and ΛA = ΛL −ΛT . We will use both sets of mobilities in subsequent

calculations. In the hydrodynamic limit when lamellae are weakly perturbed, the unit vector ni

varies slowly. We assume that in this limit Λi j retains the same functional form with the local

principal axis defining the local normal to the perturbed layers.

For lamellar diblock copolymers in the weak segregation limit the relative chemical potential

is obtained by taking the functional derivative with respect to ψ of the free energy functional given

by11–13

F =
1
2

∫
d3x

{
− rψ2 +

u
2

ψ4 +ξ
[
(∇2 +q2

0)ψ
]2
}
, (9)
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where q0 is the wavenumber of the layers, and r, u, and ξ are coefficients that depend on the

material properties of the block copolymer. Since the reversible current JR
i = ψvi, and with Eq. (6)

for JD
i , the order parameter equation Eq. (3) becomes

∂tψ +∂i (ψvi) = ∂i

[
Λi j∂ j

(
δF
δψ

)]
. (10)

The coupling term to flow velocity describes advection of order parameter whereas the right hand

side reflects anisotropic diffusion of order parameter.

Given the high viscosity of block copolymer melts, the momentum conservation equation is

considered in the over damped limit (small Reynold number)

∂iP−∂ jσR
i j −∂ jσD

i j = 0, (11)

which has an implicit dependence on velocity. In this equation P is the hydrostatic pressure, σR
i j

is the reversible elastic stress tensor, and σD
i j is the dissipative stress tensor. The gradient of the

reversible elastic stress tensor is simply23,30,31

∂ jσR
i j =−ψ∂i

(
δF
δψ

)
. (12)

Since there is no external stress to generate hydrodynamic flows, the flow velocity v is produced

only by fluctuations in ψ as given by the so called osmotic stress tensor in Eq. (12). For linearly

stable lamellae, excess reversible stresses due to distortion of the morphology will be dissipated in

part through hydrodynamic flow.

For fluids of uniaxial symmetry there are five independent viscosities in σD
i j ,32 although the

number reduces to three under the assumption of incompressibility. The dissipative stress tensor

can be written as32

σD
i j = α1nin jnknlvkl +α4vi j +α56nk(nivk j +n jvki), (13)
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where the strain rate tensor is vi j = (∂iv j +∂ jvi)/2, and α1,α4 and α56 are three constant viscosi-

ties. Within the order parameter model description, we assume that for slow spatial variations in

the lamellar order, Eq. (13) holds locally.

In summary, Eq. (7), Eq. (10), and Eq. (13) plus the incompressibility condition ∂ivi = 0 are the

governing equations for the evolution a lamellar phase in a diblock copolymer. Before we proceed

any further, we recast the governing equations of motion in terms of dimensionless quantities:

x′ = q0x, t ′ = ξ ΛIq6
0t, ψ ′ = ψ/

√
ξ/uq2

0, and F ′ = F/(ξ 2q5
0/u). With the newly defined variables

the order parameter equation can be rewritten as

∂tψ + vi∂iψ = ∂i

[
Λi j∂ j

(
δF
δψ

)]
, (14)

with the free energy being

F =
1
2

∫
d3x

{
− εψ2 +

1
2

ψ4 +

[
(∇2 +q2

0)ψ
]2
}
, (15)

and the anisotropic kinetic tensor

Λi j = Λ̄Lnin j + Λ̄T (δi j −nin j), (16)

or

Λi j = δi j +Λ
(

nin j −
1
3

δi j

)
, (17)

where ε = r/ξ q4
0 ≪ 1, Λ̄L = ΛL/ΛI , Λ̄T = ΛT/ΛI , and Λ = ΛA/ΛI . The positiveness of Λ̄L and

Λ̄T lead to −3/2 < Λ < 3. In addition, the momentum conservation equation becomes

∂iP+ζψ∂i

(
δF
δψ

)
−∂ jσD

i j = 0, (18)
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where we have used the viscosity α4 to rescale the dissipative stress tensor such that

σD
i j = α1nin jnknlvkl + vi j +α56nk(nivk j +n jvki). (19)

In the rescaled momentum conservation equation, the hydrodynamic coupling coefficient ζ =

ξ q2
0/ΛIuα4 plays the role of an inverse capillary number.31 The reader should also note that we

have omitted the primes and, for clarity, retained q0 = ∥q0∥= 1 explicitly.

Relaxation of Diblock Copolymer Lamellae

We begin by investigating the linear relaxation of weakly perturbed lamellae to obtain the relax-

ation time scales as a function of the strength of the anisotropy and of hydrodynamic coupling.

Consider as reference state a stationary solution of the order parameter Eq. (14) describing an

ordered lamellar phase,

ψs(r) = ψ1 cos(q · r). (20)

where q is the wave vector of the reference state. We introduce a small disturbance of wave number

Q ≪ q such that

ψ(r, t) = ψ1 cos(q · r)+ψ2(t)exp[i(q+Q) · r]

+ψ3(t)exp[i(q−Q) · r]+ c.c.+ . . . ,

(21)

where c.c. stands for complex conjugation. The time dependent amplitudes ψ2(t), ψ3(t) and their

complex conjugates are assumed to be small compared to the amplitude ψ1 of the reference state.

Since we are interested in linear response, the local unit normal to perturbed lamellae is simply

the wavevector of the reference state, ni ≃ qi/q, thus neglecting its fluctuations. The kinetic tensor,

Eq. (16), becomes uniform, and only depends on the reference state

Λi j = Λ̄L
qiq j

q2 + Λ̄T

(
δi j −

qiq j

q2

)
, (22)
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from which the order parameter equation, Eq. (14), reduces to

∂tψ + vi∂iψ = Λi j∂i∂ j

(
δF
δψ

)
(23)

where
δF
δψ

=−εψ +ψ3 +(∇2 +q2
0)

2ψ . (24)

We follow Zhang’s study in Ref. 23 on the effect of hydrodynamic flows on the relaxation of

lamellar block copolymers to derive the amplitude equations by replacing Eq. (21) into Eq. (23).

In deriving the amplitude equations, we retain only terms linear in ψ2,3(t) and ψ∗
2,3(t), and of six

relevant modes, ±q and ±(q±Q), and omit higher order modes that arise from mode coupling

terms in Eq. (23). We focus on the linear stability of two different modes: a permeation (longitu-

dinal) mode, Q ∥ q, and an undulation (transverse) mode, Q ⊥ q.

We start by analyzing the anisotropic diffusion term in Eq. (23). By substituting the perturbed

order parameter Eq. (21) into Eq. (23), the excess of free energy due to the perturbation Eq. (24)

becomes [in Fourier space (k,ω)],

[
δF
δψ

]
(k,ω) = (2π)4M0

ψ1

2
δ (ω)δ (k+q)+(2π)4M0

ψ1

2
δ (ω)δ (k−q)

+(2π)3
[

M1(ω)δ (k−q−Q)+M∗
1(ω)δ (k+q+Q)

+M2(ω)δ (k−q+Q)+M∗
2(ω)δ (k+q−Q)

]
,

(25)

where

M0 =−ε +(q2 −q2
0)

2 +
3
4

ψ2
1 , (26)

M1(ω) =−εψ2(ω)+

[
|q+Q|2 −q2

0

]2

ψ2(ω)+
3
4

ψ2
1

[
2ψ2(ω)+ψ∗

3 (ω)

]
, (27)

M2(ω) =−εψ3(ω)+

[
|q−Q|2 −q2

0

]2

ψ3(ω)+
3
4

ψ2
1

[
2ψ3(ω)+ψ∗

2 (ω)

]
, (28)

where ψ∗
2,3(ω) are the temporal Fourier transforms of the complex conjugates of ψ2,3(t), respec-
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tively. With Eq. (25) the right hand side of Eq. (23) becomes

−Λi jkik j

[
δF
δψ

]
(k,ω) = −Λi jqiq j(2π)4M0

ψ1

2
δ (k+−q)δ (ω)

−Λi j(qi +Qi)(q j +Q j)(2π)3M1(ω)δ (−k−q−Q) (29)

−Λi j(qi −Qi)(q j −Q j)(2π)3M2(ω)δ (−k−q+Q)+ c.c

where in complex conjugation (c.c.) a sign change of mode is implied, e.g., δ (k− q−Q) →

δ (k+q+Q).

Next, we turn our attention to the advection term in Eq. (23). For the permeation mode (Q ∥ q)

the direction of the gradient of the order parameter coincides with the normal direction to the layers

(k ∥ n), whereas the direction of the velocity should be perpendicular to the unit normal n because

of the incompressibility condition. As a consequence, the advection term (vi∂iψs ∼ vini) vanishes,

and there is no hydrodynamic flow corresponding to the permeation mode.

For the undulation mode [Q ⊥ q(∼ n)], the direction of the gradient of order parameter is

perpendicular to the unit normal n, which implies that niki = 0, and the velocity becomes parallel

to n because of the incompressibility condition. Therefore, the advection term does not vanish.

In the linear regime, the velocity field couples only to the gradient of reference state ψs, and the

advection term reduces to

[
vi∂iψ

]
(k,ω) =

∫ d3k1dω1

(2π)4 vi(k−k1,ω −ω1)ik1iψ(k1,ω1)

=−iqi
ψ1

2

[
vi(k+q)− vi(k−q)

]
.

(30)

Since the relevant modes in the order parameter equation are k =±(q±Q), the relevant velocity

modes which couple to the reference state should be of the perturbing wavenumber ±Q.

We now use the momentum conservation equation to write the velocity in terms of ψ . First,

we take the gradient of the momentum conservation equation Eq. (18), and solve for the pressure

in Fourier space. Next, the obtained pressure is substituted back into the momentum conservation
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equation, resulting in

vi(k,ω) =− 2ζ
1+α56

1
k2

(
δi j −

kik j

k2

)
f j(k,ω), (31)

where the reversible force associated with the order parameter perturbation is given by fi =ψs∂ j (δF/δψ).

In obtaining Eq. (31) we have used the fact that, in the linear regime, the velocity must be linear in

the perturbation amplitudes. It is also worth mentioning here that the velocity vi does not depend on

the viscosity coefficient α1 because we are considering an undulation mode in an incompressible

fluid.

Similar to the case of advection term, we find from Eq. (31) that the free energy change of

modes ±(q±Q) couples to the reference state because the relevant modes of the flow velocity are

±Q. Therefore, the first two terms in the right hand side of Eq. (25) can be neglected, and we

now obtain the velocity in terms of the amplitudes of the perturbation by substituting Eq. (21) and

Eq. (25) into Eq. (31),

vi(k,ω) =−i(2π)3 2ζ
1+α56

ψ1

2
q j

k2

(
δi j −

kik j

k2

)
δ (k+Q)×

×
[
M2(ω)−M∗

1(ω)+ψ∗
2 (ω)M0 −ψ3(ω)M0

]
+ c.c,

(32)

The resulting advection term in the order parameter equation is,

[
vi∂iψ

]
(k,ω) =H⊥δ (k−q−Q)

[
M1(ω)−M∗

2(ω)−ψ2(ω)M0 +ψ∗
3 (ω)M0

]
+H⊥δ (k−q+Q)

[
M2(ω)−M∗

1(ω)−ψ3(ω)M0 +ψ∗
2 (ω)M0

]
+ c.c

(33)

where we have introduced a wavenumber dependent hydrodynamic coupling coefficient

H⊥ =
2
3

ζ
1+α56

q2

Q2

[
ε − (q2 −q2

0)
2
]
, (34)

which is what one would obtain if an effective isotropic dissipative stress tensor with shear viscos-

ity α4 +α56 is considered.
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The hydrodynamic coupling coefficient has an explicit dependence proportional to 1/Q2 aris-

ing from viscous damping of the induced velocity modes of wavenumber ±Q. The advection

scale contains this scaling of the hydrodynamic coupling and that of the amplitudes Mi [Eq. (26) -

Eq. (28)]. We now show that the combination of the two leads to a decay rate of the phase of order

parameter proportional to Q2 rather than the expected decay rate ∼ Q4 in uniaxial systems.33

By combining the self-diffusion term Eq. (25) and the hydrodynamic term Eq. (33) we can

write the amplitude equations in a general form. We present them separately for different modes

in the small Q limit. First there is an equation corresponding to modes ±Q which defines the

amplitude of the reference wave ψ1

ψ2
1 =

4
3

[
ε − (q2 −q2

0)
2
]
, (35)

where ε − (q2 −q2
0)

2 > 0 is the condition for instability of the uniform state ψ = 0. Second, there

are two coupled amplitude equations corresponding to the modes q+Q and −q+Q for ψ2 and

ψ∗
3  a b

c d


 ψ2(ω)

ψ∗
3 (ω)

= 0, (36)

where

a =−iω +(H +Λ+)l++
3ψ2

1
4

Λ+, (37)

b =−Hl−+
3ψ2

1
4

Λ+, (38)

c =−Hl++
3ψ2

1
4

Λ−, (39)

d =−iω +(H +Λ−)l−+
3ψ2

1
4

Λ−. (40)

where H vanishes if Q ∥ q or is given by Eq. (34) if Q ⊥ q, and we have defined

Λ± = Λi j(qi ±Qi)(q j ±Q j), (41)
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l± = (|q±Q|2 −q2
0)

2 − (q2 −q2
0)

2. (42)

Additionally, there are two more amplitude equations for modes −q−Q and q−Q leading to equa-

tions for ψ∗
2 and ψ3 that are just the complex conjugates of Eq. (36). The perturbation considered

is linearly stable if the frequency ω is negative and pure imaginary. The imaginary frequencies are

the decay rates, and they are obtained by solving the characteristic equation of the 2×2 matrix in

Eq. (36).

When Q ∥ q (permeation mode) there is no hydrodynamic coupling effect (H = 0), and Λ± =

Λ̄L(q2 +Q2). From Eq. (36) we find two relaxation rates

τ−1
∥,1 =

3
2

Λ̄Lψ2
1 q2 + Λ̄L

[
3
2

ψ2
1 +2(11q2 −9q2

0)q
2 +

32
3
(q2 −q2

0)
2q4ψ−2

1

]
Q2 +O(Q4), (43)

τ−1
∥,2 = Λ̄L

[
2(3q2 −q2

0)q
2 − 32

3
(q2 −q2

0)
2q4ψ−2

1

]
Q2 +O(Q4), (44)

The relaxation rate τ−1
∥,1 describes the decay of the perturbation amplitude, whereas τ−1

∥,2 describes

the decay of its phase. Due to the order one term in τ−1
∥,1 the amplitude decays much faster than

the phase, and follows adiabatically any change in the phase. The longitudinal phase relaxation is

diffusive (∼ Q2), and depends only on Λ̄L. Since ΛL = ΛI +2ΛA/3 in dimensional units, the effect

of anisotropic mobility is to enhance (reduce) diffusion if 0 < ΛA < 3 (−3/2 < ΛA < 0).

When Q ⊥ q, we have l± = 2(q2 − q2
0)Q

2 +Q4, and Λ± = Λ̄Lq2 + Λ̄T Q2. Then it is straight-

forward to obtain two relaxation rates

τ−1
⊥,1 =

3
2

Λ̄Lψ2
1 q2 +

[
2Λ̄L(q2 −q2

0)q
2 +

3
2

ψ2
1 Λ̄T

]
Q2 +O(Q4), (45)

τ−1
⊥,2 = 4h⊥(q2 −q2

0)+2
[

h⊥+ Λ̄L(q2 −q2
0)q

2
]

Q2 +

[
Λ̄Lq2 +2Λ̄T (q2 −q2

0)

]
Q4 +O(Q6), (46)

where

h⊥ = H⊥Q2 =
2
3

ζ
1+α56

q2
[

ε − (q2 −q2
0)

2
]
. (47)

As in the permeation mode, τ−1
⊥,1 and τ−1

⊥,2 govern the relaxation of the amplitude and phase
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respectively. Transverse mobility (terms in Λ̄T ) contributes at order Q2 to τ−1
⊥,1, and at order Q4

to τ−1
⊥,2. These terms are negligible in the limit of small Q. On the other hand, as was the case

for longitudinal distortions, there is a modification of the decay rates as they explicitly depend on

the longitudinal mobility Λ̄L rather than on the isotropic mobility ΛI . Second, hydrodynamic flow

couples to the phase of the perturbation and modifies its rate of decay as compared to the purely

diffusive case. Interestingly, hydrodynamic decay dominates diffusive decay in the limit of small

Q. It is only for larger values of Q that the conventional diffusive relaxation rate is recovered (∼ Q4

for a transverse perturbation).

It is therefore of interest to examine the magnitude of the crossover length scale separating

hydrodynamic and diffusive dominated relaxation. This scale may be relevant in the study of the

relaxation of multi domain samples34 as the present analysis suggests that hydrodynamic effects

could be dominant as the linear scale of the microstructure grows. From Eq. (46), and assuming

that the local wavenumber q relaxes to q0 on a faster scale, we define a cross over length λc as

λ 2
c =

Λ̄Lq2

2h⊥
. (48)

Hydrodynamic relaxation dominates at long wavelengths λcQ ≪ 1, whereas hydrodynamic flow

becomes negligible compared to order parameter diffusion otherwise. Furthermore, if q = q0,

the diffusion mode becomes identical to the undulation mode of a Smectic A liquid crystal (with

a decay rate ∝ Q4).33 In the hydrodynamically dominated regime λcQ ≪ 1, the decay rate is

proportional to Q2 instead.

In order to estimate the crossover length λc, we first rewrite it in dimensional units

(λ ∗
c )

2 =
ΛL(α4 +α56)

ψ2
1

. (49)

Since we do not have direct information about ΛL, for the purpose of the estimate we just as-

sume that it is of the same order as ΛI as given by the non local Onsager coefficient for a binary
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homopolymer mixture derived in35–37

λ (k) =
6 f (1− f )R2

g

τ0N
g(1,k2R2

g), (50)

where f is the overall equilibrium composition, Rg the radius of gyration of the copolymer, and τ0

a microscopic relaxation time for a single segment. N the degree of polymerization, and g(x)

the Debye function. The microscopic relaxation time for a segment of statistical length b is

τ0 = 6πb3η/kBT , with η being an effective shear viscosity.35 This assumes Stokesian dynam-

ics for a spherical particle of radius b. By using the fact that the Debye function in λ (k) decays

exponentially with a length scale Rg, we find

ΛI ≃ R3
g

λ (k)
kBT

∼
R2

gN1/2

η
. (51)

If we further assume that η =α4+α56, then ΛL(α4+α56)∼ R2
gN1/2. Finally, the cross over length

becomes

(λ ∗
c )

2 ∼
R2

gN1/2

ψ2
1

, (52)

For typical block copolymers the layer spacing q−1
0 is order of Rg,12 and (λ ∗

c )
2 ∼ N1/2/q2

0ψ2
1 . In

the weak segregation limit of interest here, ψ2
1 ∼ ε , the reduced distance to the mean field order

disorder transition so that λ ∗
c ∼ RgN1/4/

√
ε , and thus significantly larger than the lamellar spacing.

In summary, flows at the scale of the lamellar spacing (∼Rg) are strongly damped (as argued in Ref.

8), but dominate diffusive relaxation when Q−1 > λ ∗
c ∼ Rg/

√
ε in the weak segregation regime.

We close this section by discussing the consequences of our analysis on scattering experiments.

As already studied in Refs. 24–28, hydrodynamic effects on order parameter fluctuations manifest

themselves in the structure factor which can be measured in a scattering experiment. In order

to calculate the structure factor (and assuming that transverse diffusivity is negligible as shown
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above), we add a thermal noise source to Eq. (23), which reduces to, in Fourier space,

∂tψ +
[
vi∂iψ

]
(k, t)+ΛL(niki)

2
(

δF
δψ

)
(k, t) = θ(k, t). (53)

In this calculation we work in dimensional units. The noise term in Eq. (53) obeys

⟨
θ(k, t)θ(k′, t ′)

⟩
= 2(2π)3kBT (niki)

2ΛLδ (k+k′)δ (t − t ′), (54)

with kB being Boltzmann’s constant. We now consider an order parameter fluctuation as δψ =ψ−

ψs where the reference state is given by Eq. (20) with q = q0 and ψ2
1 = 4r/3ξ q4

0. Moreover, since

hydrodynamic flow does not affect longitudinal (permeation) modes, we consider only transverse

perturbations with wavevector Q. As shown in the linear stability analysis, the mode q0 + Q

couples with the mode −q0 +Q. We then have two coupled equations for ψ(k1 = q0 +Q, t) and

ψ(k2 =−q0 +Q, t):

∂tδψ(k1, t)+
[
h⊥Q2+ΛLq2

0(4r+ξ Q4)
]
δψ(k1, t)−

[
h⊥Q2−4rΛLq2

0

]
δψ(k2, t)= θ(k1, t), (55)

∂tδψ(k2, t)+
[
h⊥Q2+ΛLq2

0(4r+ξ Q4)
]
δψ(k2, t)−

[
h⊥Q2−4rΛLq2

0

]
δψ(k1, t)= θ(k2, t), (56)

where, in dimensional units,

h⊥ =
2
3

ξ
u(α4 +α56)

q2
0r. (57)

We can decouple these equations by introducing ϕ1(Q, t)= [ψ(k1, t)+ψ(k2, t)]/
√

2 and ϕ2(Q, t)=

[ψ(k1, t)−ψ(k2, t)]/
√

2 as

∂tϕ1(Q, t)+8rΛLq2
0ϕ1(Q, t) = η1(Q, t), (58)

∂tϕ2(Q, t)+2h⊥Q2ϕ2(Q, t)+ξ ΛLq2
0Q4ϕ2(Q, t) = η2(Q, t), (59)

where the noise terms η1(Q, t) = [θ(k1, t)+θ(k2, t)]/
√

2 and η2(Q, t) = [θ(k1, t)−θ(k2, t)]/
√

2
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satisfy ⟨
η1,2(Q, t)η1,2(−Q, t ′)

⟩
= 2V kBT q2

0ΛLδ (t − t ′), (60)

and where V is the volume of system. Again the other pair of coupled equations of the modes

−q0 −Q and q0 −Q are just the complex conjugates of Eq. (58) and Eq. (59). While the first

equation for ϕ1 describes the amplitude relaxation in the absence of distortion of the lamellar

structure, from the second equation we can obtain the structure factor due to phase fluctuations.

The solution of Eq. (59) is given by

ϕ(Q, t) =
∫ t

−∞
dt ′ η2(t ′)exp

[
− (t − t ′)

(
ξ ΛLq2

0Q4 +2h⊥Q2
)]

(61)

from which we obtain the structure factor for transverse perturbations

lim
t→∞

⟨ψ(Q)ψ(−Q)⟩⊥ =
kBT

ξ Q4[1+2Q−2(λ ∗
c )

−2]
∼


Q−2 for Qλ ∗

c ≪ 1

Q−4 for Qλ ∗
c ≫ 1

(62)

As expected from Eq. (46), we find two different regimes: A hydrodynamic dominated region

(with scattering proportional to Q−2) and a diffusion dominated region (with scattering propor-

tional to Q−4). Close to the order disorder transition where our model is valid, (λ ∗
c )

2 ∼ ψ−2
1 , and

the hydrodynamic dominated region in the structure factor becomes narrow and perhaps difficult to

detect. We mention that the equilibrium structure factor of block copolymers in the lamellar phase

has been measured (see, e.g., Ref. 38). An oval shaped diffraction peak was observed close to the

order-disorder transition which was interpreted to be a manifestation of rippling of layers based on

a calculation of quasi-static properties of lamellar block copolymer near the order-disorder transi-

tion.39 This conclusion agrees with our results. However, the detailed dependence of the scattering

intensity along the transverse direction has not been, to our knowledge, analyzed. We also point

out that the hydrodynamic mediated relaxation would become apparent in transient measurements

of the non equilibrium structure factor during coarsening of a multi domain configuration.
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Figure 1: Sketch of a 90◦ tilt grain boundary separating two semi-infinite lamellae. In regions I and
III the lamellae are nearly in their stationary state with wavevectors q0x̂ and q0ŷ, respectively. The
grain boundary region (II) is the region between the two blue dashed lines. In it, both envelopes A
and B exhibit large variation.

Grain Boundary Motion

We have shown in the previous section that an anisotropic mobility tensor has only a small effect

on the linear relaxation of a weakly perturbed lamellar phase. In general, however, when a block

copolymer is brought below its microphase separation transition point, a large number of struc-

tural defects are quenched in a spatially extended system. These defects separate locally ordered

domains of different orientations in an otherwise macroscopically disordered system. Within the

defected region (the extent which is much larger that the lamellar wavelength in the weak segre-

gation limit considered in this paper) undulation and permeation diffusive modes strongly couple.

This coupling is expected to lead to a more significant contribution from anisotropic mobility to

defect dynamics, the subject matter of this section.

We consider here a 90◦ tilt grain boundary that separates two semi-infinite domains of block

copolymer lamellae with wavevector q0x̂ in region I, and q0ŷ in region III as shown in Figure 1. For

simplicity, we focus on an effective two-dimensional system by taking advantage of translational

symmetry along the ẑ direction, the direction perpendicular to the wavevectors of the two semi-

infinite lamellae. We follow earlier work on grain boundary motion in layered systems as studied

in other contexts such as Rayleigh-Bénard convection.40–42

In order to take into account the inhomogeneous nature of the kinetic mobility tensor Λi j within
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the interfacial region (region II in Figure 1) we introduce an auxiliary function Θ(x) that smoothly

interpolates within the width of the grain boundary, from unity in the region where one semi-infinite

lamella is present to zero in the other region,

Λi j = Θ(x)ΛI
i j +Θ(−x)ΛIII

i j

= Θ(x)
[

δi j +Λ
(

δixδ jx −
1
3

δi j

)]
+Θ(−x)

[
δi j +Λ

(
δiyδ jy −

1
3

δi j

)]
, (63)

where we have used Eq. (17). The constants ΛI
i j and ΛIII

i j are the kinetic tensors defined in regions

I and III with q0x̂ and q0ŷ, respectively, and Θ(−x) = 1−Θ(x). This assumes that the microscopic

mobility smoothly interpolates across a length scale proportional to the size of grain boundary.

Since the width of the grain boundary diverges as ε−1/2 in the weak segregation limit,40,41 we

infer that Λi j changes very slowly within the interfacial region. Due to the inhomogeneity of Λi j

its gradient does not vanish, but ∂ jΛi j = Λδx j∂xΘ(x). Then, the order parameter equation becomes

∂tψ =

{
Λ[∂xΘ(x)]∂x +Λi j∂i∂ j

}{
− εψ +ψ3 +(∇2 +q2

0)
2ψ

}
. (64)

Advection is neglected in the analysis of this section. We now use a multiple scale analysis to

derive amplitude equations close to the linear instability threshold (ε ≪ 1). Following Tesauro

and Cross,41 we introduce slow variables X̄ = ε1/4x, X = ε1/2x, Y = ε1/4y, Ȳ = ε1/2y, T = εt,

and expand the derivatives ∂x → ∂x + ε1/4∂X̄ + ε1/2∂X , ∂y → ∂y + ε1/4∂Y + ε1/2∂Ȳ , and ∂t → ε∂T .

Next, by noting that the order parameter scales as ε1/2 we assume

ψ =
ε1/2
√

3

[
Aexp(iq0x)+Bexp(iq0y)

]
+ c.c., (65)

where A and B are functions of the slow variables only. Then the amplitude equations at O(ε3/2)

are,

∂T A =−q2
0

(
1+

2
3

Λ
)

δF ′

δA∗ +Λ
[

iq0∂xΘ(x)+q2
0Θ(−x)

]
δF ′

δA∗ , (66)
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∂T B =−q2
0

(
1+

2
3

Λ
)

δF ′

δB∗ +Λq2
0Θ(x)

δF ′

δB∗ , (67)

where the free energy functional is given by

F ′[A,A∗,B,B∗] =
∫

d2rF ′[A,A∗,B,B∗], (68)

with the free energy density being

F ′[A,A∗,B,B∗] =−|A|2 −|B|2 + 1
2

(
|A|4 + |B|4

)
+2|A|2|B|2

+

∣∣∣∣(2iq0∂x +∂ 2
y )A

∣∣∣∣2 + ∣∣∣∣(2iq0∂y +∂ 2
x )B

∣∣∣∣2. (69)

The stationary solutions As and Bs of a planar 90◦ grain boundary without anisotropy have been

given in Refs. 40 and 41. Both As and Bs saturate to ε1/2 as x tends to +∞ or −∞ respectively,

but have different decaying behaviors within the grain boundary. The amplitude As has a longer

decaying length scale ∼ ε−1/2 than Bs. Since the width of the grain boundary scales as ε−1/2, it

is reasonable to assume that this is the same scale of variation of the function Θ(x). This leads

to ∂iΛi j ∼ ε1/2, and its contribution to the amplitude equations appears at higher order in ε . The

remaining relevant term is Λi j∂i∂ j(δF/δψ), and Eq. (66) and Eq. (67) reduce to

∂T A =−q2
0

{
1+

1
3

Λ
[
2+3Θ(−x)

]}δF ′

δA∗ , (70)

∂T B =−q2
0

{
1+

1
3

Λ
[
2+3Θ(x)

]}δF ′

δB∗ . (71)

Hence the stationary solution of the amplitude equations remain unchanged by the anisotropy to

lowest order in ε . Note that since −3/2 < Λ < 3, the coefficients of both δF ′/δA∗ and δF ′/δB∗

are positive.

We now use the energy method40,43 to calculate the grain boundary velocity. The time deriva-
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tive of F ′ is given by

dF ′

dt
=− 2

q2
0

∫
d2r

3
3+Λ[2+3Θ(−x)]

|∂tA|2 −
2
q2

0

∫
d2r

3
3+Λ[2+3Θ(x)]

|∂tB|2. (72)

Note that any anisotropy effect is on the right hand side only. Assuming that the grain boundary

moves with a constant velocity vGB, we take As(x−vGBt) and Bs(x−vGBt) so that they are station-

ary in the moving frame. Then the time derivative can be replaced ∂t with −vGB∂x, and we find for

the grain boundary velocity

vGB = M
∫

dy
[
F ′(x = ∞,y)−F ′(x =−∞,y)

]
, (73)

and the effective mobility of the boundary is given by

1
M

=
2
q2

0

∫
d2r

3
3+Λ[2+3Θ(−x)]

|∂xAs|2 + 2
q2

0

∫
d2r

3
3+Λ[2+3Θ(x)]

|∂xBs|2. (74)

Since Λ is an order one quantity, the contribution to the boundary velocity due to anisotropic

diffusion is large. The envelope A relaxes in region I (of dominant orientation q0x̂) differently than

in region III (of dominant orientation q0ŷ). In region I, diffusion is along the lamellar normal,

whereas this component of the order parameter evolves through transverse diffusion in region III.

Exactly the same is true of component B. As a consequence, the boundary velocity depends on a

weighted average of the two independent mobility coefficients, with the weight function being the

gradient of the order parameter envelopes, as given in Eq. (74). Of course, a similar qualitative

behavior can be expected in the vicinity of other structural defects. When Λ = 0, the isotropic

result of Refs. 40,42 is recovered.

We note that there is no grain boundary motion for unperturbed lamellae when F ′(x = ∞) =

F ′(x =−∞)∼ ε . In practice, an imbalance of the free energies caused by external sources is nec-

essary to drive grain boundary motion so as to reduce excess free energy. We find that anisotropy

enhances (reduces) vGB when 0 < ΛA < 3 (−3/2 < ΛA < 0).
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In conclusion, we have investigated diffusive and hydrodynamic driven relaxation of lamellar

phases in block copolymers while allowing for uniaxial symmetry of the constitutive laws between

forces and fluxes. We have shown that coupling to hydrodynamic flows leads to a relaxation rate

proportional to Q2, where Q is the wavenumber of the characteristic perturbation. This relaxation

rate is faster than that arising from copolymer diffusion which is known to scale as Q4 instead. The

uniaxial symmetry of the lamellar phase requires an anisotropic mobility in the order parameter

equation, and an anisotropic stress tensor in the momentum conservation equation. The effect of

transverse mobility in general is negligible compared to either hydrodynamic flows or longitudi-

nal order parameter diffusion for weakly perturbed lamellae. Hydrodynamic transport dominates

diffusive relaxation when the wavevector of the perturbation is smaller than λ−1
c ∼

√
ψ2

1/R2
gN1/2.

Finally, by studying the motion of a grain boundary we argue that defect velocities will be signifi-

cantly affected by anisotropic diffusion.
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