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A mesoscopic or coarse-grained approach is presented to study thermo-capillary induced flows. An
order parameter representation of a two-phase binary fluid is used in which the interfacial region
separating the phases naturally occupies a transition zone of small width. The order parameter
satisfies the Cahn–Hilliard equation with advective transport. A modified Navier–Stokes equation
that incorporates an explicit coupling to the order parameter field governs fluid flow. It reduces, in
the limit of an infinitely thin interface, to the Navier–Stokes equation within the bulk phases and to
two interfacial forces: a normal capillary force proportional to the surface tension and the mean
curvature of the surface, and a tangential force proportional to the tangential derivative of the
surface tension. The method is illustrated in two cases: thermo-capillary migration of drops and
phase separation via spinodal decomposition, both in an externally imposed temperature gradient.
© 1996 American Institute of Physics.@S1070-6631~96!00503-X#

I. INTRODUCTION

The study of multi-phase flows leads to a classical mov-
ing boundary problem in which the equations governing fluid
motion are solved in each phase, subject to boundary condi-
tions specified on the moving boundaries. In the classical
case, the boundary of separation is assumed to be an ideal-
ized boundary without any structure. For viscous flows, the
velocity field is continuous across the boundary, whereas the
normal component of the stress tensor is discontinuous if
capillary forces are allowed for. Implicit in this formulation
are, of course, assumptions that local thermodynamic equi-
librium obtains and that the typical length scales of spatial
structures and flow are much larger than the scale of the
physical boundary separating the phases. In most cases of
interest to fluid mechanics the scale of the flow is set exter-
nally by macroscopic stresses on the system, whereas the
length scale of the interface is of microscopic size and set by
the range of the intermolecular forces in the fluid. Under
these conditions, the transition region between the two
phases can be approximated for all practical purposes by an
ideal, mathematical surface of discontinuity.

A notable exception to this rule concerns flow in a fluid
near or at its critical point. There the surface of separation
between both phases becomes arbitrarily diffuse, and the
flow within the boundary itself needs to be explicitly mod-
eled and resolved. The so-called Model H~following the
nomenclature of Hohenberg and Halperin1! was introduced
to study order parameter and momentum density fluctuations
near the critical point, as well as their interaction, at a coarse-
grained or mesoscopic scale.2 Additional ~reversible or
Hamiltonian! terms were added on phenomenological
grounds to the Navier–Stokes equation and to the equation
governing the relaxation of fluctuations in the order param-
eter appropriate for the phase transition under consideration.
Later studies based on the same model have addressed criti-
cal fluctuations of simple fluids3,4 and polymers5,6 under ex-

ternal shear, and more recently~and more closely related to
our study! hydrodynamic effects on spinodal decomposition
in a binary fluid.7,8 In spinodal decomposition, a binary sys-
tem is quenched from a homogeneous disordered state to a
region of the phase diagram in which the homogeneous state
is linearly unstable to fluctuations in a wide band of length
scales.~For a review, see, e.g., Ref. 9.! Some further details
on the general principles behind a mesoscopic description of
equilibrium properties of bulk phases and of interfacial struc-
tures can be found in readily available texts and monographs
~see, e.g., Refs. 10–14!. Implications of such a level of de-
scription on the equations governing fluid flow are discussed
in the Appendix, where the modifications of the non-
dissipative part of the stress tensor embodied in Model H are
obtained. This ‘‘Hamiltonian’’ or reactive part of the stress
tensor does not contribute to the entropy increase. Additional
treatments based on irreversible thermodynamics and con-
tinuum mechanics can be found in Refs. 15 and 16.

The usefulness of a coarse-grained approach away from
a critical point is less well established. Previous work along
these lines includes Ginzburg–Landau models used in the
study of the kinetics of phase separation~e.g., the Cahn–
Hilliard equation!,9 or phase field models of solidi-
fication.17–19 In both cases, a mathematical surface of sepa-
ration between the two phases becomes a transition region of
small but finite width, across which all magnitudes change
continuously. The essential ingredient in both cases is the
assumption that the relevant thermodynamic potential den-
sity ~entropy in closed systems, Helmholtz free energy if the
system is held at constant temperature! is a function not only
of the usual thermodynamic variables and of the order pa-
rameter, but also of the spatial gradient of the latter. In the
case of a binary fluid, for example, the entropy density is
assumed to depend on both the mass density of solute and its
spatial derivative. As a consequence, the chemical potential
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of the solute is no longer given by the derivative of the local
entropy with respect to solute density.

From a theoretical point of view, it is plausible to assume
that modes describing the motion of boundaries separating
bulk phases, even away from a critical point, are the long-
lived modes of the dynamics of the system, and hence gra-
dients of the order parameter can be considered as additional
arguments upon which the thermodynamic potential de-
pends, at least on the time scale over which the motion of the
boundaries is observable macroscopically. Furthermore, one
would also like to satisfy the consistency requirement that
the coarse-grained model reduces to the classical macro-
scopic description in the limit of a small transition region
~compared to the scale of relevant structures!. This requires,
in general, relating macroscopically measurable quantities
~e.g., the surface tension of the boundary! to phenomenologi-
cal parameters that enter the mesoscopic model.20

One of the chief advantages of a mesoscopic approach is
that it allows the study of fluid phenomena that lie outside
the classical continuum formulation, for example, the break
up and coalescence of fluid domains. More generally, by in-
corporating explicitly into the model dissipation at short
length scales~on the order of the interfacial thickness or
order parameter correlation length!, the model allows the
study of other physical situations that may be influenced by
phenomena at that scale. Other examples that may fall in this
class include motion of contact lines, flow near solid walls
and slip at a microscopic or mesoscopic scale.

From a purely computational point of view the model
used can be viewed as an extension of a class of numerical
methods often used to study the classical moving boundary
problem, namely, those that phenomenologically introduce
additional dissipation at short length scales. At least in prin-
ciple, however, the method that we describe in this paper
differs from those approaches~e.g., methods based on the
introduction of ad-hoc ‘‘ artificial dissipation’’ or ‘‘ artificial
viscosity’’!, since, in the present case, short length scale dis-
sipation is intrinsically part of the model, and is related to the
order parameter variable that describes the phases. Also from
a computational point of view, the approach that we follow is
similar to the so-called immersed boundary or diffuse inter-
face methods introduced for the study of multi-phase
flows.21–25The order parameter which we define below plays
a role analogous to the ‘‘color function.’’ However, it is not
an auxiliary field introduced for computational convenience,
but rather a thermodynamic variable in its own right, con-
trolled by a local free energy density. As a consequence, for
example, the surface tension of this model cannot be fixed
independently, but is completely determined by the choice of
thermodynamic potential and the parameters contained
therein. This will reveal some interesting features to be ex-
pected at high thermal gradients.

In Section II we introduce the coarse-grained model used
in our study. We concentrate in this work on thermo-capillary
flows and hence explicitly discuss how to couple the equa-
tion governing fluid motion and relaxation of the order pa-
rameter. In this paper we will consider the case of a constant,
externally imposed temperature gradient, although it is
straightforward to extend our calculations to incorporate a

fluctuating temperature field. We also discuss in this section
the limit of a thin interface and the boundary conditions that
result from our model in that limit. As illustrations, we apply
the numerical approach to two problems of interest. In Sec-
tion III thermo-capillary motion of small drops under large
thermal gradients is considered, while in Section IV we study
phase separation via spinodal decomposition in the presence
of a uniform temperature gradient. Section V is reserved for
concluding remarks. The Appendix provides additional de-
tails on the derivation of modifications to the Navier–Stokes
equation introduced through the coarse-grained level of de-
scription.

II. COARSE-GRAINED MODEL

A. Formulation

Consider an incompressible and Newtonian binary fluid
at a temperature below its phase separation critical point. Let
w be the order parameter density appropriate for the un-
mixing transition, chosen to bew50 in the disordered phase
above the transition point, and symmetric and equal to
6weq below. @w can be thought of asc2cc , wherec is the
mass fraction of one of the species andcc its value at the
phase separation critical point.# One further makes the rea-
sonable assumptions for binary liquid systems that the shear
viscosities of both phases are equal, and that the dependence
of the mass density on the order parameter is weak and can
be neglected. In effect, we consider here a ‘‘ symmetric’’
model in which all bulk properties of both phases are equal.
These restrictions, which conveniently dramatize interfacial
phenomena in the cases which we study here, can be easily
removed.

If v is the velocity of an element of fluid, conservation of
mass and momentum lead to

“–v50, ~1!

r
dv

dt
52“p1h“2v1m“w, ~2!

wherem5dF /dw is the chemical potential conjugate to the
order parameterw (d/dw stands for functional or variational
differentiation!, r andh are the density and shear viscosity
of the fluid, respectively, andp is the pressure field. The last
term in Eq.~2! is non-standard in macroscopic approaches
and incorporates capillary effects, as discussed further below
and in the Appendix. As a reference, we note that the
Navier–Stokes equation is also modified in Immersed
Boundary Methods by adding a term of the form

S skn̂1
]s

]s
ŝD d~x2xS!, ~3!

wherexS is the instantaneous location of the boundary. Here
s is the interfacial tension~independently prescribed!, n̂ and
ŝ are the unit vectors along the normal and tangential direc-
tions, respectively, andk is the mean curvature of the inter-
face. As we further discuss in Section IIB, the termm“w in
Eq. ~2! in the limit of a thin interface reduces to the term
used in Immersed Boundary Methods, but withs now deter-
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mined by the coarse-grained free energy functionalF ~see,
e.g., Refs. 10–14! that, for simplicity, is chosen to be of the
form

F @w#5E dVH K2 u“wu21 f ~w!J , ~4!

with

f ~w!52
r

2
w21

l

4
w4. ~5!

The integration extends over the entire system~both bulk
phases and interfacial regions!, and K,r , and l are three
phenomenological coefficients as yet unspecified, other than
requiringK,l.0. For the model defined by Eqs.~4! and~5!
the chemical potential is given bym52K“2w2rw1lw3.
As is well known, this free energy qualitatively describes a
single homogeneous phase over a range of parameters
(r,0) yielding to two-phase coexistence in another region
(r.0). The parameterr is therefore a measure of distance
below the phase separation critical temperature and is taken
to be proportional to that temperature difference, while the
parameterl, at this level of approximation, can be related to
the inter-particle potentials~or to a virial coefficient!. As
noted below, the parametersl andK can be determined from
equilibrium measurements. The order parameter is further
assumed to satisfy a modified Cahn–Hilliard equation,

]w

]t
1“–~wv!5M“

2m, ~6!

to allow for advective transport ofw. M is a phenomenologi-
cal mobility coefficient of microscopic origin, which, in a
real system, could be inferred from mutual diffusion and
order parameter susceptibility measurements away from the
critical region.

Equations~1!–~2! and ~4!–~6! completely specify the
model. We have imposed the following boundary conditions
at the edges of the fluid domain:v50, w5weq(T), and
]w/]n5]weq(T)/]n, i.e., the value of the order parameter
near the boundary is determined by the imposed temperature
field there. Note that with this choice of boundary conditions,
*dVw is not a strictly conserved quantity. The boundary con-
ditions required to enforce strict conservation of order pa-
rameter are]w/]n50 and]“2w/]n50. In this case small
boundary layers ofw ~of thickness of the order of the corre-
lation lengthj) would develop becausew in the bulk ~and
away from interfaces! is approximately equal toweq(T), and
therefore would not satisfy this latter set of boundary condi-
tions. Our choice of boundary conditions is motivated by
computational simplicity so that we do not have to resolve
additional boundary layers at the edges of the domains. In
any event, the spatial integral ofw changes very little during
the course of the numerical solution, and hence this choice
has little effect on the dynamics in the bulk phases.

From Eq.~5! one findsweq5Ar /l with 6weq as the two
coexisting solutions. Equation~6! also admits a nonuniform,
‘‘kink’’ stationary solution for v50 and constantr.0,

w0~u!5weqtanh
u

A2j
, ~7!

with boundary conditionsw→6weq asu→6`. The coor-
dinateu is along an arbitrary direction andj is the mean
field correlation length,j5AK/r . This stationary solution
represents the coexistence of two equilibrium phases with
w56weq , across a transition region located atu50 and of
width j. In what follows, we will refer to the regions
uu/ju@1 as the bulk phases, anduu/ju;1 as the interfacial
or transition region. In the region of parameters of Eqs.~4!
and ~5! that we explore, the surface area occupied by the
bulk phases is much larger than that of the interfaces.

The excess free energy density associated with Eq.~7!
compared to the free energy of either uniform phase is given
by,14

s5KE
2`

`

duS dw0

du D 252Kweq
2

3j
. ~8!

We introduce dimensionless variables by choosingj as
the scale of length,K/Mr 2 as the scale of time, andweq as
the order parameter scale. In dimensionless units, the model
equations reduce to

“–v50, ~9!

Re
dv

dt
52“p1“

2v1C~2“

2w2w1w3!¹w, ~10!

and

]w

]t
1“–~wv!5“

2~2“

2w2w1w3!. ~11!

Two dimensionless groups remain; one of them, Re5Mr /n
(n5h/r is the kinematic viscosity! gives the ratio between
order parameter diffusion and momentum diffusion due to
viscosity. In the calculations that we describe in this paper,
the system is in the overdamped limit of Re.0. The other,
C53sj/2hMr , plays the role of a capillary number. Flows
in our study are entirely driven by surface tension. In the
overdamped limit the velocity scale of such flows is
v;s/h, where we have assumed that the scale of the flow is
the same as the scale of the typical domains of the two
phases. Therefore, the characteristic time for an element of
fluid to be advected a distance equal to the interfacial thick-
ness ists5jh/s. The diffusive time scale given above is
tw5j2/Mr ; henceC} tw /ts .

In order to couple the previous equations to a slowly
varying temperature field, we make, as noted above, the tra-
ditional identification of the parameterr in Eq. ~4! as being a
linear function of temperaturer (x) } T02T(x), whereT0 is
a constant playing the role of the consolute or critical tem-
perature. In the case that we study, the temperature field is
fixed and remains constant throughout the calculation. If one
wishes to incorporate a fluctuating temperature field, the
model equations have to be supplemented with the equation
of energy conservation.26 In dimensionless units, we con-
sider,
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dF

dw
52“

2w2t~y!w1w3, ~12!

where the dimensionless local temperature variablet(y)
5 t01ay, with a the dimensionless temperature gradient.
We identify the y-direction as the direction in which the
imposed temperature varies. For our coarse grained analysis
to make sense we require that temperature variations are
small over small distances~of the order of the interfacial
thickness!, namely, in dimensionless form,uau!1, but per-
haps large over distances of the order of the system size, and
possibly even over adomainof one of the phases.

B. Sharp interface limit

We next present a heuristic analysis to illustrate that the
coarse-grained model introduced reduces to the classical
continuum description in the limit in which the width of the
interfacial region is much smaller that the size of the bulk
domains. We introduce a local orthogonal system (s,u) such
that a given point in space is given byr 5 R(s)1un̂, where
R(s) describes the location of the level setw(r )50 ~s is the
arclength along it!, n̂ is the local normal pointing towards the
~1! phase, andu is the distance along the normal direction.

In the bulk regions (uu/ju@1) m“w is of order higher
than linear in the gradients and therefore negligible. One
then recovers the standard Navier-Stokes equation. The
Cahn-Hilliard equation can be likewise linearized around
weq in the bulk regions, yielding the standard diffusion equa-
tion with advective transport.

In the interfacial regions (uu/ju;1), the termm“w does
become large. In the limit of gently curved interfaces,
ukju!1, wherek is the mean curvature of the interfacial
region, and for small temperature gradients,uau!1, the field
w relaxes on a fast time scale to essentially the stationary
solutionw0(u) as in Eq.~7!.29 One can develop a multiscale
expansion of the fieldw5w(S,u,U), with S,U the slowly
varying coordinates in the tangential and normal direction as
set by the slow variation of the temperature field, andu the
fast variation in the normal direction as determined by the
free energy functional. We further assume – and this remains
to be proven more rigorously – thatw relaxes quickly to its
local equilibrium profile given by the local value of the tem-
perature, but there remain slow gradients ofw, since this
approximate solution is no longer a solution ofdF /dw
5 constant, throughout the system. The surface tension in
Eq. ~8! can then be written as

s5E
2`

1`

duDF~u,U,S!, ~13!

whereF5 1
2Ku“wu21 f (w) andDF is the free energy~den-

sity! difference between the mean field value ofF at the
local value ofw in a configuration with a two-phase interface
and the free energy of the bulk phasesweq , at the local
temperature. Under the assumptions stated above, this ex-
pression can be used to define a slowly varying surface ten-
sion s(S) along the interface, since the magnitude of the
order parameterw will be the local equilibrium value at the
local temperature. Then,

]s

]S
5E

2`

`

duS ]Fint

]w D ]w

]S
5E

2`

`

dum
]w

]S
, ~14!

where we have used the fact that the metric tensor element
g225dr /ds–dr /ds5(11uk)2'1 in the limit of gently
curved interfaces considered.~Note thatk,0 for a sphere.!
The chemical potential appearing is appropriate for an inter-
facial configuration and is non-vanishing for a gently curved
~or indeed a flat! interface in a temperature gradient. Hence
the tangential component ofm“w gives rise to a tangential
surface force which equals the tangential derivative of the
surface tension.

We can likewise study the normal component by recall-
ing that

E
2`

`

dum
]w

]u
5E

2`

`

du@2“

2w1 f 8#
]w

]u

.E
2`

`

duF2
]2w

]u2
2k~S!

]w

]u
2

]2w

]S2
1 f 8G]w

]u

.k~S!E
2`

`

duS ]w

]u D 22E
2`

`

du
]2w

]S2
]w

]u
. ~15!

The first term gives again the surface tensions, and the
second term would remain in the sharp interface limit due to
the slow variation ofw with temperature.

Therefore in the case of a thin interfacial region, the
additional term in the Navier–Stokes equation is equivalent–
under the stated assumptions of a slowly varying temperature
field and gently curved interfaces–to a tangential surface
force proportional to the tangential derivative of the surface
tension, and to a normal force proportional to the mean cur-
vature of the interface.

C. Numerical method

We next discuss the numerical algorithm used in the ac-
tual computations. We restrict our attention in this paper to
two dimensional flows. Since the velocity field is solenoidal,
it is convenient to introduce the stream function,

v5“3~c k̂!5
]c

]y
î2

]c

]x
ĵ , ~16!

where the velocity field is defined in the (x,y) plane, andk̂ is
the unit normal perpendicular to that plane. By taking the
curl of Eq. ~10! with Re50 we find

“

4c1C@“~“2w!3“w#–k̂50. ~17!

The flow field can be found by solving a biharmonic equa-
tion for the stream function, subject to the boundary condi-
tions that both the stream functionc and its normal deriva-
tive ]c/]n vanish on the external boundaries of the system.

Concerning the equation for the order parameter, Eq.
~11!, we follow Ref. 30 and use a backward implicit method
which is first order in time,

w~ t1Dt !2w~ t !

Dt
1“–„v~ t !w~ t1Dt !…

52Lw~ t1Dt !1“

2w3~ t1Dt !, ~18!
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with L5“

41“

2. The convective term has been kept in
conservative form, and the velocity field retained in the dis-
cretization is at timet. The boundary conditions that we use
for the order parameter arew5weq(T) and ]w/]n
5 ]weq(T)/]n on the external boundaries. A Gauss–Seidel
iteration is used to solve Eq.~18!. First, one considers an
‘‘outer’’ iteration,

w~ t1Dt !.wk115wk1dk , with w05w~ t !. ~19!

Substitutingw(t1Dt) in Eq. ~18! and linearizing in the outer
correction fielddk(x,y) yields an equation for the outer cor-
rection with a residual that is a function ofwk . Successive
iterates converge to a solution when both the residual and
idki go to zero simultaneously. The outer iteration is per-
formed simultaneously on Eqs.~17! and~18!. In practice, an
‘‘inner’’ iteration is set up to solve fordk , by assuming

dk.dk,m115dk,m1hm , ~20!

wherehm is the inner correction. The variable coefficient
biharmonic operator acting onhm is then approximated by a
constant coefficient biharmonic operator,

@“41a“21b#hm5Rinner,m
w , ~21!

where a5123^wk
2& and b51/Dt26^wk“

2wk&, and ^•&
stands for spatial averages over the entire system. Then both
Eqs. ~17! and ~21! are solved with a fast biharmonic solver
~see Ref. 30 or 31 for additional details!.

III. THERMO-CAPILLARY MOTION OF DROPS

In this section we briefly summarize application of the
computational method introduced in Section II to the
thermo-capillary flow of a drop of one phase in the back-
ground of its coexisting partner. As we have noted above, the
main strengths of the coarse-grained technique are that~i! it
allows natural tracking of the interface separating the two
phases,~ii ! it naturally encompasses topology changes, such
as the merging of two droplets, and~iii ! it can include phe-
nomena from the scale of the thermal correlation length up to
macroscopic while providing a qualitatively correct picture
of behavior near criticality. Accordingly, to separate effects
from those which are normally treated at the macroscopic
level, we turn to relatively small drops and relatively large
temperature gradients.

To illustrate the method we consider the thermo-
capillary flow of a single drop. Initially the radius of the
small drop is fixed atR;10j, wherej is the thermal corre-
lation length at our reference temperaturet051, which is
typically the value of the temperature parameter at the cold
end. This size drop is about as small as we can go within the
coarse-grained description and retain some expectation that
the qualitative results will translate to the macroscopic scale.
However, on a macroscopic scale, we consider temperature
gradients which are large, so that the dimensionless number
isRu“Tu/T;0.01. Hence, over a correlation length, the tem-
perature change is typically 0.1%, allowing us to retain the
coarse-grained approach, but over a drop, the change is on
the order of 1%. By macroscopic standards this is large. Con-
sider, for example, a nucleating 1mm drop in a binary liquid

system in a temperature gradient of 1 C/mm at roughly room
temperature. The dimensionless ratio is three orders of mag-
nitude smaller.

Our first diagnostic is the drift velocity of such a droplet
as a function of the temperature gradient. In all figures to
follow, the high temperature side is at the bottom. First a
sample plot of the droplet ‘‘center of order parameter’’~de-
fined by analogy with the center of mass! as a function of
time is shown in Fig. 1, indicating motion with constant
velocity. We have repeated the calculation for a number of
values of the temperature gradienta, and the results are
shown in Fig. 2. At low values of the gradient, we observe
linearity32,33 of velocity, but at our higher values there is a
reproducible reduction, as seen in the figure.34 Furthermore,
at the higher values of the gradient the velocity of the drop is
dependent on the temperature itself, as well as the gradient.
These features are associated with the fact that this model,
which can ~qualitatively! apply near the phase separation
critical point as well, has an equilibrium order parameter

FIG. 1. Displacement of the drop’s center of order parameter as a function
of time for C51, R512, t051, anda520.004 in a square cell of side
a5200. Values for two system sizes are shown:s, a5400;h, a5200.
The straight lines are linear fits to the data with slopes~dimensionless ve-
locities! 0.0319 (a5400) and 0.0316 (a5200), respectively.

FIG. 2. Velocity of the center of order parameter versus temperature gradi-
ent forC51, R512, andt051 in a square cell of sidea5200.
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depending on the dimensionless temperature parameter as
t1/2;(T02T)1/2, as well as a nonlinear dependence of the
interfacial tension,s;t3/2;(T02T)3/2. These effects, for
fixed gradient, become relatively more apparent near the
high temperature side.

Despite the fact that the drop velocity for high gradients
reflects nonlinearities inherent in the model, we have found
that, for small enough temperature gradient, the velocity
scales quite linearly with drop radius over a limited range~a
factor of 3! accessible in these preliminary studies. For larger
gradients, the explicit dependence of both order parameter
and surface tension on temperature eventually affects the
proportionality, as seen in Fig. 3.

Even at the relatively high gradients~by macroscopic
standards! used, we observe little distortion of the droplets.
Discussion of this issue, further details on the flow fields and
analytic analysis of the droplet migration analysis based on
the coarse-grained equations is beyond the present scope.

We have finally done a qualitative study of drop coales-
cence in a temperature gradient. A sequence of configura-
tions illustrating the motion of two drops is shown in Fig. 4.
Coalescence involves a topology change, which is naturally
handled within the coarse-grained approach. An analysis of
the kinetics of droplet coalescence, and droplet detachment
and attachment to boundaries, is a potentially rich area but
also beyond the present scope.

IV. SPINODAL DECOMPOSITION IN A TEMPERATURE
GRADIENT

In order to study whether the method can describe more
complex flows, we have studied spinodal decomposition of a
binary fluid, in two spatial dimensions, and under an im-
posed constant temperature gradient. In dimensionless units,
the size of the rectangular fluid domain studied isa5800
andb5200 @in the gradient (y) direction#. We have used an
evenly spaced grid withm51024 nodes along thex direc-
tion, andn5256 along they direction. The results presented

involve a dimensionless temperature gradienta520.004
along they direction, and include up tot5100. The initial
condition for the order parameter at each point is a set of
uniformly distributed random numbers in@20.01,0.01#. The
time step used in the numerical integration isdt50.25.

Figure 5 shows an example of evolution of the system
for three different instants of time:t56.35,50, and 100. The
order parameter~between21 and 1 in the dimensionless

FIG. 3. Velocity of the center of order parameter as a function of the drop
radius forC51,t050.5 in a square cell of sidea5200: s, a520.001;
h, a520.004. Note thatvCM is proportional toR for small values ofR.
Interestingly, linearity is lost at lower values ofR at larger temperature
gradients.

FIG. 4. Sequence of configurations showing the coalescence of two drops of
radiusR512 in a cavity witha5b5200. In this caseC51, a520.004,
and t051. The dimensionless times shown~from left to right and top to
bottom! are t51305, 1555, 1605, and 2055.

FIG. 5. Spinodal decomposition of a binary fluid in a rectangular cell of
dimensionsa5800 andb5200 ~vertical direction in the figures, corre-
sponding to they-direction in the fluid!. The parameters used are
C51, t051, anda520.004. Note that the hotter end is at the bottom of
each figure. Shown is the value of the order parameter in grey scale at three
instants of time~from top to bottom!: t56.25, 50, and 100.
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units we are using! is shown in grey scale. The characteristic
spinodal pattern emerges, with an intensity and domain size
that is a function of the local temperature of the system. The
temperature parameterr as introduced in Eq.~4! is known to
couple extremely weakly to the phase separation process. It
is not expected to change the algebraic form of the growth
law for the domains~i.e., the power-law growth in time of
the characteristic domain size!, but rather it may change the
amplitude. Two questions naturally arise for a slowly varying
temperature, namely, whether the temperature gradient intro-
duces any anisotropy in the characteristic length scale of the
pattern, and whether an effective growth lawamplitudeex-
ists that slowly changes in space, as the temperature of the
system changes. Roughly speaking, the question is whether
in the presence of a slowly varying temperature, phase sepa-
ration proceeds temperature ‘‘slice’’ by ‘‘slice’’ as in ordinary
spinodal decomposition at that final temperature. Directional
anisotropy appears to arise in the purely diffusive Model B
~conserved order parameter without hydrodynamic
coupling,1! at early to intermediate times~in the form of a
lag in the growth parallel to the gradient!, and it carries over
into the late stage growth stage.35 Preliminary results over a
small ensemble of independent initial conditions~five! indi-
cate that, contrary to the situation in Model B, there is no
appreciable anisotropy in the characteristic length scale of
the domains. It is interesting to note that even if thermo-
migration effects themselves are small for dimensionless
timest<100, the hydrodynamic coupling and complex flows
appear to wash out any prominent anisotropy.

V. CONCLUSIONS

We have implemented a numerical algorithm to solve the
coupled Cahn–Hilliard and extended Navier–Stokes equa-
tions ~Model H! in a temperature gradient. The backward
implicit method is unconditionally stable, and with moderate
computing effort has allowed us to study reasonably large
system sizes for a reasonable amount of time. Two particular
examples of thermo-capillary induced flow in two dimen-
sions have been studied: the motion of droplets of one phase
in the background of its coexisting partner in a temperature
gradient, and phase separation via spinodal decomposition,
also in a temperature gradient. In two dimensions a stream
function representation has been used so that an efficient
biharmonic solver handles both the order parameter and flow
equations together. In the first case, the results given by this
method agree with classical macroscopic calculations in that
the migration velocity of the drop is proportional to both the
imposed temperature gradient and the radius. For large gra-
dients, the velocity depends nonlinearly on the temperature
gradient, as it is to be expected given the dependence of the
miscibility gap and surface tension on temperature in the
modeling of the coarse-grained free energy.

The chief advantage of the method is that it allows the
study of the flow on length scales which are not accessible to
classical macroscopic methods. One such case involves the
coalescence of drops and the concomitant topology change
of the interfaces. We have presented qualitative results in-
volving the coalescence of two drops induced by thermo-
capillary migration. Of course, the mesoscopic or coarse-

grained model introduced specifies a dependence of the fluid
variables at such length scales, and this requires the introduc-
tion of a phenomenological free energy at that coarse-grained
scale. This coarse-grained free energy is a function of a few
phenomenological parameters~imagined to depend smoothly
on the temperature and other experimentally accessible vari-
ables! and couples through the associated chemical potential
to the velocity field. The requirement that the model equa-
tions lead to the classical, macroscopic description in the
limit of a small interfacial region allows one, in principle, to
determine some of the phenomenological parameters~at least
within a mean field context!.

We have also argued that the model introduced reduces
to the classical boundary conditions at the two-phase inter-
face: namely, a normal force given by the surface tension of
the interface and its mean curvature, and a tangential force
equal to the tangential derivative of the surface tension.
These boundary conditions follow in the limit in which the
imposed temperature field does not change appreciably over
the scale of the interface. For these arguments we have used
the plausible assumption~consistent with observations from
simulations! that the order parameter within the two phases
and in the interfacial region relaxes quickly to its local equi-
librium value determined by the local curvature of the inter-
face and the local temperature. A more systematic analysis to
elucidate this point is clearly needed. This analysis can also
lead to a systematic cataloging of corrections to the macro-
scopic boundary conditions.

An additional advantage of the method is that it allows
the study~at least qualitatively! of very small drops and large
gradients. In fact, this method is not likely to be competitive
with classical methods in situations in which gradients are
weak and drops are large, as compared to the scale of the
interface. We remark, however, that classical methods cannot
handle topology changes that are controlled by physical pro-
cesses on short or intermediate length scales, such as the
order parameter correlation length. Finally, there are several
classes of problems in which the behavior at short lengths
scales needs to be resolved, since it eventually determines
the flow at macroscopic scales. Examples include the motion
of contact lines, discontinuous velocity fields at boundaries,
and slip and thermal fluctuations at the mesoscopic scale.
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APPENDIX: COARSE-GRAINED FLUID MECHANICS

In this appendix, a derivation is presented of the modi-
fications of the Navier-Stokes equation that are introduced if
the description of the system goes beyond local thermody-
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namics. In other words, if the density or order parameter
varies on short length scales so that a square gradient or
similar description is appropriate~see, e.g., Refs 10–14!, the
Navier-Stokes equation contains new terms in the dissipa-
tionless~reactive or Hamiltonian! part of the stress tensor. To
find these terms we can consider an ideal fluid. For this deri-
vation we use a Hamiltonian~canonical! formalism, since,
we believe, it is simplest. A more detailed discussion of the
Hamiltonian formalism is contained in the book by Zakharov
et al.,36 which we draw on; a discussion of variational prin-
ciples for an Euler fluid is contained in the monograph by
Serrin.37

Following Zakharovet al.we consider an inviscid fluid
with

] tr1“–~rv!50,
~A1!

] tx i1v–“x i50,

wherev(r ,t) is the Eulerian velocity field,r(r ,t) is the mass
density and the scalar functionsx i ,i51,2,. . . , represent any
advected quantities carried with the flow and satisfying
dx/dt50. The entropy per unit mass satisfiesds/dt50 in
isentropic flow so that we may treats5 constant. This al-
lows the pressure to be expressed asp5p(r) and thelocal
part of the energy per unit volume may be taken as
e(r,s)→e(r). For a single component fluid the functionx
represents an advected velocity circulation. Later when we
consider a binary fluid, in the absence of diffusion, the order
parameterw, representing the mass fraction of one species,
will be such a quantity. As usual the local part of the en-
thalpy per unit mass ish5]e/]r. The energy of the fluid is
taken to be

H5E F12 rv21e~r!GdrW. ~A2!

Following Ref. 36 we show that standard methods reproduce
the Euler equation. Then we modify Eq.~A2! to go beyond
local thermodynamics to find the new contributions to the
stress tensor.

A Lagrangian is defined in a standard fashion introduc-
ing Lagrange~undetermined! multipliers for the conservation
of r andx,

L5E H 12 rv22e~r!1F@] tr1“–~rv!# ~A3!

2 l@] tx1~v–“x!#J dr . ~A4!

The total actionS 5*Ldt is presumed to be an extremum
with respect to flowsv, which yields

v5“F1
l

r
“x. ~A5!

Variation with respect to the multipliersF and l recovers
the conservation conditions in Eq.~A1!. Substitution of the
velocity back into the Lagrangian yields the Hamiltonian
~canonical! description

L5E @F] tr2l] tx#drW2H, ~A6!

whereH is expressed in terms of the conjugate pairsr,F
andl,x. The Hamiltonian equations of motion are

] tr5
dH

dF
,

] tF5
2dH

dr
,

~A7!

] tl5
dH

dx
,

] tx5
2dH

dl
.

It is straightforward to show that the second and third equa-
tions yield

] tF1v–“F2
1

2
v21h50, ~A8!

] tl1“–~lv!50. ~A9!

Applying “ to the first yields the familiar Euler equation for
the velocity change

] tv1v–“v52r21
“p, ~A10!

using the local thermodynamics]h/]p5r21. This is easily
generalized to include external potentials yielding additional
body forces.

Now if the physics dictate that one must go beyond local
thermodynamics with, for example, a square gradient, the
Hamiltonian~A2! is modified to read

H5E F12 rv21e~r!1
1

2
K~r!~“r!2Gdr . ~A11!

Following all the same steps yields the modified Euler equa-
tion

] tv1v–“v

5r21F2“p1r“~“–K“r!2
r

2
K8~r!~“r!2G . ~A12!

Terms other than“p can be thought of as additional body
forces owing to short length scale variations of the density.
The dissipationless part of the stress tensor is appropriately
modified. In the most general case, any functionalg~r,
“r! can be added to the local energy in Eq.~A11!, and the
stress tensor is modified accordingly. The modification of the
stress tensor for a single-component fluid at the square-
gradient level was derived by Felderhof38 using a Lagrangian
~particle! description of the mechanical equations.

Further discussion of the generality of variational formu-
lations of inviscid hydrodynamics are contained in the Refs.
36 and 37. The addition of one additional advected quantity,
representing the ‘‘conservation of the identity of fluid par-
ticles’’ will allow every flow to be represented as an extremal
for the ~Herivel-Lin! variational principle.37

Now we turn to the more interesting case of a two-
component fluid. Background is contained in the text of Lan-
dau and Lifschitz.39 The total momentum flux isrv, where
r is the total mass density. The density of one of the species
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is rc, wherec is the ~dimensionless! mass fraction, which
plays the role of the order parameter~denotedw in the body!.
Now the local energy per unit volume becomese(r,c,s),
and for isentropic flow of an ideal fluid we may neglect the
specific entropy. In the absence of diffusion we have
] tc1v–“c50, so that we may considerc as an advected
quantity, denoted generally byx above. For simplicity~and
realistically for typical binary liquid systems! we consider
modifications of local thermodynamics due to short length
scale concentration variations only. In other words, for the
present purposes we assume, as is normally the case, that any
density variations are on scales large compared to the order
parameter correlation length,;j, so that a square gradient
contribution for the total density is not required. This as-
sumption may be generalized in special circumstances.

Hence, the total energy of the system is taken to be

H5E F12 rv21e~r,c!1
1

2
K~c!~“c!2Gdr . ~A13!

In Hamilton’s equations~A7! the mass fractionc now plays
the role of the advectedx as noted. NowdH/dc contains
new terms, and thel equation thus becomes

] t~2l!5“–~lv!1“–K“c2
1

2
K8~c!~“c!22

]e

]c
.

~A14!

Note that]H/]r, remains the same since we have not in-
cluded“r as noted above. From Eq.~A5! one evaluates the
acceleration as

] tv5“] tF1~l/r!“] tc1~] t~l/r!!“c ~A15!

which yields, using Eqs.~A8! and ~A14!,

] tv1~v–“ !v52r21
“p1r21

3F]e

]c
2~“–K“c!1

1

2
K8~c!~“c!2G“c.

~A16!

We have also used now the local specific enthalpyh5h(p,
c) and with]h/]p51/r. Equation~A16! means that if it is
necessary to go beyond local thermodynamics, the non-
dissipative~i.e., Hamiltonian or reactive! part of the stress
tensor is modified according to

2“p→2“p1S ]e

]c
2~“–K“c!1

1

2
K8~c!~“c!2D“c.

~A17!

This can be written in a more intuitive form. The internal
energy has the form

E5E @e~r,c!1g~“c,c!#dr , ~A18!

where the functiong contains derivatives ofc. Our example
above hadg(x,y)5K(y)x2/2. Now we define a generalized
chemical potential,

mc[
dE

dc
. ~A19!

In terms of this chemical potential the body force is of the
form

2“p1mc“c.

This is the general form of the additional part of the non-
dissipative part of the stress tensor used in the body of the
paper. In the critical dynamics literature this is known as
‘‘Model H’’ in the Hohenberg-Halperin1 lexicon. Note that
for an incompressible fluid one can rewrite this as

2“p82c“mc ,

where p8 is an effective pressure chosen to guarantee
“–v50. Intuitively, gradients of the chemical potential gen-
erate body forces which need to be included in the non-
dissipative part of the stress tensor.

The equations presented here~when viscous dissipation
is included! generalize the usual Navier-Stokes equation to
situations which go beyond linear irreversible thermodynam-
ics assumptions, but remain within the realm of classical
fluid mechanics.
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