Coarse-grained description of thermo-capillary flow
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A mesoscopic or coarse-grained approach is presented to study thermo-capillary induced flows. An
order parameter representation of a two-phase binary fluid is used in which the interfacial region
separating the phases naturally occupies a transition zone of small width. The order parameter
satisfies the Cahn—Hilliard equation with advective transport. A modified Navier—Stokes equation
that incorporates an explicit coupling to the order parameter field governs fluid flow. It reduces, in
the limit of an infinitely thin interface, to the Navier—Stokes equation within the bulk phases and to
two interfacial forces: a normal capillary force proportional to the surface tension and the mean
curvature of the surface, and a tangential force proportional to the tangential derivative of the
surface tension. The method is illustrated in two cases: thermo-capillary migration of drops and
phase separation via spinodal decomposition, both in an externally imposed temperature gradient.
© 1996 American Institute of Physid$$1070-663(96)00503-X]

I. INTRODUCTION ternal shear, and more recentgnd more closely related to

The study of multi-phase flows leads to a classical mov-°U" study hydrodynamic effects on spinodal decomposition
in a binary fluid’® In spinodal decomposition, a binary sys-

ing boundary problem in which the equations governing fluid™ & _
motion are solved in each phase, subject to boundary condie™ is quenched from a homogeneous disordered state to a

tions specified on the moving boundaries. In the classicaiegion of the phase diagram in which the homogeneous state
case, the boundary of Separation is assumed to be an ide&_linearly unstable to fluctuations in a wide band of Iength
ized boundary without any structure. For viscous flows, thescales(For a review, see, e.g., Ref)Bome further details
velocity field is continuous across the boundary, whereas then the general principles behind a mesoscopic description of
normal component of the stress tensor is discontinuous igquilibrium properties of bulk phases and of interfacial struc-
capillary forces are allowed for. Implicit in this formulation tures can be found in readily available texts and monographs
are, of course, assumptions that local thermodynamic equisee, e.g., Refs. 10—L4mplications of such a level of de-
librium obtains and that the typical length scales of spatiakcription on the equations governing fluid flow are discussed
structures and flow are much larger than the scale of thin the Appendix, where the modifications of the non-
physical boundary separating the phases. In most cases @issipative part of the stress tensor embodied in Model H are
interest to fluid mechanics the scale of the flow is set exterpptained. This “Hamiltonian” or reactive part of the stress
nally by macroscopic stresses on the system, whereas thgnsor does not contribute to the entropy increase. Additional
length scale of the interface is of microscopic size and set byreatments based on irreversible thermodynamics and con-
the range of the intermolecular forces in the fluid. Underjn,um mechanics can be found in Refs. 15 and 16.

these conditions, the_ transition region _between the tWo  The usefulness of a coarse-grained approach away from
phases can be approximated for all practical purposes by al wyitica| point is less well established. Previous work along
ideal, mathematical surface of discontinuity. these lines includes Ginzburg—Landau models used in the

A notable exception to this rule concerns flow in a fluid study of the kinetics of phase separatigng., the Cahn—
near or at its critical point. There the surface of separatiorhi”igrd equation® or phase field modé[s of solidi-

between both phases becomes arbitrarily diffuse, and thF

i 17-19 ; _
flow within the boundary itself needs to be explicitly mod- |c§tlon. In both cases, a mathematical surfgge of sepa
eled and resolved. The so-called Model (fllowing the ration between the two phases becomes a transition region of

nomenclature of Hohenberg and Halp&rimas introduced small but finite width, across which all magnitudes change

to study order parameter and momentum density fluctuation€ontinuously. The essential ingredient in both cases is the
near the critical point, as well as their interaction, at a coarse@SSumption that the relevant thermodynamic potential den-

grained or mesoscopic scdleAdditional (reversible or sity (entropy in closed systems, Helmholtz free energy if the
Hamiltonian terms were added on phenomenologicalSystem is held at constant temperajusea function not only
grounds to the Navier—Stokes equation and to the equatio?f the usual thermodynamic variables and of the order pa-
governing the relaxation of fluctuations in the order param+ameter, but also of the spatial gradient of the latter. In the
eter appropriate for the phase transition under consideratiogase of a binary fluid, for example, the entropy density is
Later studies based on the same model have addressed crassumed to depend on both the mass density of solute and its
cal fluctuations of simple fluid¢ and polymer3® under ex-  spatial derivative. As a consequence, the chemical potential
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of the solute is no longer given by the derivative of the localfluctuating temperature field. We also discuss in this section

entropy with respect to solute density. the limit of a thin interface and the boundary conditions that
From a theoretical point of view, it is plausible to assumeresult from our model in that limit. As illustrations, we apply

that modes describing the motion of boundaries separatintne numerical approach to two problems of interest. In Sec-

bulk phases, even away from a critical point, are the longtion Il thermo-capillary motion of small drops under large

lived modes of the dynamics of the system, and hence gradhermal gradients is considered, while in Section IV we study

dients of the order parameter can be considered as additionplhase separation via spinodal decomposition in the presence

arguments upon which the thermodynamic potential deof a uniform temperature gradient. Section V is reserved for

pends, at least on the time scale over which the motion of theoncluding remarks. The Appendix provides additional de-

boundaries is observable macroscopically. Furthermore, origils on the derivation of modifications to the Navier—Stokes

would also like to satisfy the consistency requirement thagquation introduced through the coarse-grained level of de-

the coarse-grained model reduces to the classical macrscription.

scopic description in the limit of a small transition region

(compared to the scale of relevant structurddis requires,

in general, relating macroscopically measurable quan_titieﬁ_ COARSE-GRAINED MODEL

(e.g., the surface tension of the bounddoyphenomenologi-

cal parameters that enter the mesoscopic mdfdel. A. Formulation

One of the chief advantages of a mesoscopic approach is  Consider an incompressible and Newtonian binary fluid
that it allows the study of fluid phenomena that lie outsideat a temperature below its phase separation critical point. Let
the classical continuum formulation, for example, the breakgp be the order parameter density appropriate for the un-
up and coalescence of fluid domains. More generally, by inmixing transition, chosen to be=0 in the disordered phase
corporating explicitly into the model dissipation at short ghove the transition point, and symmetric and equal to
length scaleqon the order of the interfacial thickness or * peq below.[ ¢ can be thought of as—c., wherec is the
order parameter correlation lengtithe model allows the mass fraction of one of the species andits value at the
study of other physical situations that may be influenced byhase separation critical poihOne further makes the rea-
phenomena at that scale. Other examples that may fall in thisonable assumptions for binary liquid systems that the shear
class include motion of contact lines, flow near solid wallsviscosities of both phases are equal, and that the dependence
and slip at a microscopic or mesoscopic scale. of the mass density on the order parameter is weak and can

From a purely computational point of view the model be neglected. In effect, we consider here a “ symmetric”
used can be viewed as an extension of a class of numericalodel in which all bulk properties of both phases are equal.
methods often used to study the classical moving boundaryhese restrictions, which conveniently dramatize interfacial
problem, namely, those that phenomenologically introducgphenomena in the cases which we study here, can be easily
additional dissipation at short length scales. At least in printemoved.
ciple, however, the method that we describe in this paper If v is the velocity of an element of fluid, conservation of
differs from those approachde.g., methods based on the mass and momentum lead to
introduction of ad-hoc “ artificial dissipation” or “ artificial

viscosity”), since, in the present case, short length scale dis- v-v=0, @
sipation is intrinsically part of the model, and is related to the dv )
order parameter variable that describes the phases. Also from P 5r =~ Vp+7Viv+uVe, 2

a computational point of view, the approach that we follow is
similar to the so-called immersed boundary or diffuse interWhereu= 6.715¢ is the chemical potential conjugate to the
face methods introduced for the study of multi-phaseorder parametep (6/ ¢ stands for functional or variational
flows22~?>The order parameter which we define below playsdifferentiation, p and » are the density and shear viscosity
a role analogous to the “color function.” However, it is not Of the fluid, respectively, and is the pressure field. The last
an auxiliary field introduced for computational convenience,ferm in Eq.(2) is non-standard in macroscopic approaches
but rather a thermodynamic variable in its own nght, Con_and incorporates Capillary effects, as discussed further below
trolled by a local free energy density. As a consequence, fornd in the Appendix. As a reference, we note that the
example, the surface tension of this model cannot be fixe@lavier—Stokes equation is also modified in Immersed
independently, but is completely determined by the choice oBoundary Methods by adding a term of the form
thermodynamic potential and the parameters contained o
therein. This will reveal some interesting features to be ex- (o-KﬁJr —§) O(X—Xg), 3

. . aJs
pected at high thermal gradients.

In Section Il we introduce the coarse-grained model useavherexs is the instantaneous location of the boundary. Here
in our study. We concentrate in this work on thermo-capillaryo is the interfacial tensiofindependently prescribgch and
flows and hence explicitly discuss how to couple the equas are the unit vectors along the normal and tangential direc-
tion governing fluid motion and relaxation of the order pa-tions, respectively, and is the mean curvature of the inter-
rameter. In this paper we will consider the case of a constanface. As we further discuss in Section 1B, the teuW ¢ in
externally imposed temperature gradient, although it isEq. (2) in the limit of a thin interface reduces to the term
straightforward to extend our calculations to incorporate aused in Immersed Boundary Methods, but witthow deter-
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mined by the coarse-grained free energy functiofialsee, u
e.g., Refs. 10-14that, for simplicity, is chosen to be of the (PO(U):(Peqtanh\/?r (7)
form §

K with boundary conditiongp— *+ ¢4 asu— +. The coor-
-ﬂsv]:f dv[ —|V<p|2+f(<p)], (4) dinateu is along an arbitrary direction anél is the mean
2 field correlation lengthg= \/K_/r This stationary solution

represents the coexistence of two equilibrium phases with

with ®=* @qq, ACross a transition region locateduat 0 and of
\ width ¢&. In what follows, we will refer to the regions

r s — . .
f)=— EgDzJr Z(P4' 5) |u/g|>1 as the bulk phases, ahd/¢|~1 as the interfacial

or transition region. In the region of parameters of Hg$.

and (5) that we explore, the surface area occupied by the
The integration extends over the entire systéth bulk  pylk phases is much larger than that of the interfaces.
phases and interfacial regionsaand K,r, and\ are three The excess free energy density associated with(Bq.

phenomenological coefficients as yet unspecified, other thagompared to the free energy of either uniform phase is given
requiringK,A>0. For the model defined by Eqgl) and(5)  py,14

the chemical potential is given hy=—KVZ2p—rp+\¢>.

As is well known, this free energy qualitatively describes a o deg\? 2K<p§q
single homogeneous phase over a range of parameters 7~ Kf d“(m T3¢ ®)
(r<0) yielding to two-phase coexistence in another region

(r>0). The parameter is therefore a measure of distance We introduce dimensionless variables by choosinas
below the phase separation critical temperature and is takehe scale of lengthik/Mr? as the scale of time, angd,q as

to be proportional to that temperature difference, while thethe order parameter scale. In dimensionless units, the model
parameteh, at this level of approximation, can be related to equations reduce to

the inter-particle potential§or to a virial coefficient As

— o0

noted below, the parametexsandK can be determined from V.v=0, ©)
equilibrium measurements. The order parameter is further
assumed to satisfy a modified Cahn—Hilliard equation, Red_\t/: —Vp+V+C(— V20— o+ 3 Vo, (10)
J
ﬁ—f+v-(<pv)=|\/|v2u, (6) and
I¢ 2 2 3
to allow for advective transport @f. M is a phenomenologi- 2t TV (@) =VA(=Vip—0+¢). (11

cal mobility coefficient of microscopic origin, which, in a
real system, could be inferred from mutual diffusion andTwo dimensionless groups remain; one of them=Rér/v
order parameter susceptibility measurements away from they= 7/p is the kinematic viscosiygives the ratio between
critical region. order parameter diffusion and momentum diffusion due to
Equations(1)—(2) and (4)—(6) completely specify the viscosity. In the calculations that we describe in this paper,
model. We have imposed the following boundary conditionsthe system is in the overdamped limit of R6. The other,
at the edges of the fluid domaiv=0, ¢=¢y(T), and C=3c¢/2yMr, plays the role of a capillary number. Flows
deldn=3dee(T)/dn, i.e., the value of the order parameter in our study are entirely driven by surface tension. In the
near the boundary is determined by the imposed temperatuta/erdamped limit the velocity scale of such flows is
field there. Note that with this choice of boundary conditions,y ~ o/ , where we have assumed that the scale of the flow is
JSdVe is not a strictly conserved quantity. The boundary conthe same as the scale of the typical domains of the two
ditions required to enforce strict conservation of order paphases. Therefore, the characteristic time for an element of
rameter arelo/dn=0 anddV2¢/dn=0. In this case small fluid to be advected a distance equal to the interfacial thick-
boundary layers op (of thickness of the order of the corre- ness ist,=&n/o. The diffusive time scale given above is
lation length&) would develop because in the bulk (and T(ngler; henceC « 7,/7,.
away from interfacesis approximately equal tg.(T), and In order to couple the previous equations to a slowly
therefore would not satisfy this latter set of boundary condi-varying temperature field, we make, as noted above, the tra-
tions. Our choice of boundary conditions is motivated byditional identification of the parameterin Eg. (4) as being a
computational simplicity so that we do not have to resolvelinear function of temperatung(x) « To—T(X), whereT, is
additional boundary layers at the edges of the domains. la constant playing the role of the consolute or critical tem-
any event, the spatial integral gfchanges very little during perature. In the case that we study, the temperature field is
the course of the numerical solution, and hence this choicéixed and remains constant throughout the calculation. If one
has little effect on the dynamics in the bulk phases. wishes to incorporate a fluctuating temperature field, the
From Eq.(5) one findspe,= JriN with = peqasthetwo model equations have to be supplemented with the equation
coexisting solutions. Equatiai®) also admits a nonuniform, of energy conservatioff. In dimensionless units, we con-
“kink” stationary solution forv=0 and constant>0, sider,
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oF

7 Jdo e JF; d ke d

5o = Ve et e (12) == fwdu( a;“‘) == fﬁwdu,u&—:, (14)
where the dimensionless local temperature variaklg)  where we have used the fact that the metric tensor element
= 7otay, with « the dimensionless temperature gradient.g,,=dr/ds-dr/ds=(1+ux)?~1 in the limit of gently
We identify they-direction as the direction in which the curved interfaces considere@ote thatk<0 for a spherg.
imposed temperature varies. For our coarse grained analysiie chemical potential appearing is appropriate for an inter-
to make sense we require that temperature variations af@cial configuration and is non-vanishing for a gently curved
small over small distance®f the order of the interfacial (or indeed a flatinterface in a temperature gradient. Hence
thicknes$, namely, in dimensionless forme|<1, but per-  the tangential component @fV ¢ gives rise to a tangential
haps large over distances of the order of the system size, ar@irface force which equals the tangential derivative of the
possibly even over domainof one of the phases. surface tension.

We can likewise study the normal component by recall-
ing that

B. Sharp interface limit

- L * dp [ B ,-0¢
We next present a heuristic analysis to illustrate that the] dup——=| du[—Ve+f]-~
I —o0

coarse-grained model introduced reduces to the classic

continuum description in the limit in which the width of the o & dp & dp
interfacial region is much smaller that the size of the bulk =J du -—-2 =« -7z am
domains. We introduce a local orthogonal systenyu) such o

that a given point in space is given by= R(s)+un, where % dp\? % @ dp

R(s) describes the location of the level sgfr)=0 (s is the =«(9) J_mdu(m) LT (15

arclength along jt n is the local normal pointing towards the
(+) phase, and is the distance along the normal direction. The first term gives again the surface tensionand the
In the bulk regions |u/£|>1) uV e is of order higher second term would remain in the sharp interface limit due to
than linear in the gradients and therefore negligible. Onéhe slow variation ofp with temperature.
then recovers the standard Navier-Stokes equation. The Therefore in the case of a thin interfacial region, the
Cahn-Hilliard equation can be likewise linearized aroundadditional term in the Navier—Stokes equation is equivalent—
@eqin the bulk regions, yielding the standard diffusion equa-under the stated assumptions of a slowly varying temperature
tion with advective transport. field and gently curved interfaces—to a tangential surface
In the interfacial regions|(/£|~ 1), the termuV ¢ does ~ force proportional to the tangential derivative of the surface
become large. In the limit of gently curved interfaces,tension, and to a normal force proportional to the mean cur-
|ké|<1, where is the mean curvature of the interfacial vature of the interface.
region, and for small temperature gradieitg, <1, the field
¢ relaxes on a fast time scale to essentially the stationarg numerical method
solution go(u) as in Eq.(7).2° One can develop a multiscale
expansion of the fieldpo=¢(S,u,U), with S,U the slowly We next discuss the numerical algorithm used in the ac-
varying coordinates in the tangential and normal direction agu@l computations. We restrict our attention in this paper to
set by the slow variation of the temperature field, anthe WO dlmens!onal ﬂqws. Since the velocity f|elq is solenoidal,
fast variation in the normal direction as determined by thdt iS convenient to introduce the stream function,
free energy functional. We further assume — and this remains NPT/ T/
to be proven more rigorously — that relaxes quickly to its v=V X (k)= WI - Kj’
local equilibrium profile given by the local value of the tem- ~
perature, but there remain slow gradients¢gf since this  where the velocity field is defined in th&,§/) plane, andk is
approximate solution is no longer a solution 6f7/8¢  the unit normal perpendicular to that plane. By taking the
= constant, throughout the system. The surface tension iaurl of Eq. (10) with Re=0 we find

Eg. (8) can then be written as Véy+ C[V(Vz(p)XV(p]°k:0. (17)

o= JMdUAF(u,U,S), (13)  The flow field can be found by solving a biharmonic equa-
* tion for the stream function, subject to the boundary condi-
whereF = 2K |V |2+ f(¢) and AF is the free energyden- t?ons that both.the stream functigh and its 'normal deriva-
sity) difference between the mean field value fofat the  tive d¢/an v:?\nlsh on the e'xternal boundaries of the system.
local value ofe in a configuration with a two-phase interface Concerning the equation for the order parameter, Eq.
and the free energy of the bulk phases,, at the local (11_), we fqllow Ref. _30_and use a backward implicit method
temperature. Under the assumptions stated above, this ewhich is first order in time,
pression can be used to define a slowly varying surface tens(t+ At) — o(t)

(16)

sion o(S) along the interface, since the magnitude of the———— - + V- (V() ¢(t+A1))

order parametep will be the local equilibrium value at the

local temperature. Then, =— Zp(t+At)+ V23 (t+At), (18
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with #=V*+V?2 The convective term has been kept in 1040
conservative form, and the velocity field retained in the dis-
cretization is at timeé. The boundary conditions that we use

for the order parameter ar@p=¢qy(T) and de/dn 1020 -
= dgeg(T)/dn on the external boundaries. A Gauss—Seidel
iteration is used to solve Eq18). First, one considers an
“outer” iteration,

p(t+A) =0y 1= @t 6, With eo=¢(1). (19

Substitutinge(t+ At) in Eqg. (18) and linearizing in the outer
correction fields,(x,y) yields an equation for the outer cor- %0 |
rection with a residual that is a function @f,. Successive

iterates converge to a solution when both the residual and
|6l go to zero simultaneously. The outer iteration is per- %9 - e - s _ oo
formed simultaneously on Eqél7) and(18). In practice, an t

“inner” iteration is set up to solve foB,, by assuming

Yem

FIG. 1. Displacement of the drop’s center of order parameter as a function
k=0 m+1= Sk m™t Mm, (20 of time for C=1, R=12, 7,=1, andae=—0.004 in a square cell of side
a=200. Values for two system sizes are shown: a=400; 1, a=200.
where 7y, is the inner correction. The variable coefficient The straight lines are linear fits to the data with slofimensionless ve-

biharmonic operator acting on,, is then approximated by a locities) 0.0319 @=400) and 0.0316g=200), respectively.
constant coefficient biharmonic operator,

[V4+aV2+b]y,= Rinerm: (21 system in a temperature gradient of 1 C/mm at roughly room
where a=l—3(<pﬁ> and b=1/At—6(¢,V2e,), and (-) temperature. The dimensionless ratio is three orders of mag-

stands for spatial averages over the entire system. Then bo|t~|'1tude smaller.

Egs.(17) and(21) are solved with a fast biharmonic solver as er:g;;r?l?)?ngutcelri tf;(reaijlzlrf;verlgg;;yn;)f Isnuglll ?idl:(r)ieto
(see Ref. 30 or 31 for additional details P 9 ' 9

follow, the high temperature side is at the bottom. First a
sample plot of the droplet “center of order parametédé-
fined by analogy with the center of masss a function of
time is shown in Fig. 1, indicating motion with constant

In this section we briefly summarize application of the velocity. We have repeated the calculation for a nhumber of
computational method introduced in Section Il to thevalues of the temperature gradient and the results are
thermo-capillary flow of a drop of one phase in the back-shown in Fig. 2. At low values of the gradient, we observe
ground of its coexisting partner. As we have noted above, thénearity*>3 of velocity, but at our higher values there is a
main strengths of the coarse-grained technique are(ithat  reproducible reduction, as seen in the figtft&urthermore,
allows natural tracking of the interface separating the twaat the higher values of the gradient the velocity of the drop is
phases(ii) it naturally encompasses topology changes, sucldependent on the temperature itself, as well as the gradient.
as the merging of two droplets, afiil) it can include phe- These features are associated with the fact that this model,
nomena from the scale of the thermal correlation length up tevhich can (qualitatively) apply near the phase separation
macroscopic while providing a qualitatively correct picture critical point as well, has an equilibrium order parameter
of behavior near criticality. Accordingly, to separate effects
from those which are normally treated at the macroscopic
level, we turn to relatively small drops and relatively large
temperature gradients.

To illustrate the method we consider the thermo-
capillary flow of a single drop. Initially the radius of the ¢
small drop is fixed aR~ 10¢, whereé is the thermal corre-
lation length at our reference temperatugg=1, which is
typically the value of the temperature parameter at the coldz o020 |
end. This size drop is about as small as we can go within the
coarse-grained description and retain some expectation that
the qualitative results will translate to the macroscopic scale.
However, on a macroscopic scale, we consider temperature
gradients which are large, so that the dimensionless number
isR|VT|/T~0.01. Hence, over a correlation length, the tem-
perature change is typically 0.1%, allowing us to retain the %040 00030 00020 00010 0.0000
coarse-grained approach, but over a drop, the change is on ¢

the order of 1%. By maCfOSCQDiC standards thi_s is Iar.ge._ COnFiG. 2. Velocity of the center of order parameter versus temperature gradi-
sider, for example, a nucleatinguim drop in a binary liquid  ent forC=1, R=12, andr,=1 in a square cell of sida=200.

lll. THERMO-CAPILLARY MOTION OF DROPS

0.040

0.010 -
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FIG. 3. Velocity of the center of order parameter as a function of the drop

radius forC=1,7,=0.5 in a square cell of sida=200: O, a=-0.001;
0, a=-0.004. Note thab ¢y, is proportional toR for small values oR.
Interestingly, linearity is lost at lower values & at larger temperature
gradients.

FIG. 4. Sequence of configurations showing the coalescence of two drops of
depending on the dimensionless temperature parameter EgliusR=12 in a cavity witha=b=200. In this cas€=1, a=—0.004,
7_1/2,\‘(-|-O_-|-)1/2' as well as a nonlinear dependence of theand 79=1. The dimensionless times showfnom left to right and top to
. . ; 3/2 3/2 bottom aret=1305, 1555, 1605, and 2055.
interfacial tension,oc~ 7°“~(To—T)*“ These effects, for
fixed gradient, become relatively more apparent near the
h'ghl;ee?%ir?;:rfazdtﬁét the drop velocity for hiah rad'entsinVOIVe a dimensionless temperature gradient —0.004

pite t o v vy 'gh gradi long they direction, and include up to=100. The initial
reflects nonlinearities inherent in the model, we have foundzl

that f I ht t dient. th locit ondition for the order parameter at each point is a set of
at, for small enough temperature gradient, the velocl yuniformly distributed random numbers|in-0.01,0.01. The
scales quite linearly with drop radius over a limited rage

factor of 3 ible in th limi wdies. For | time step used in the numerical integratiordis=0.25.
actor of 5 accessible in these prefiminary Studies. -or farger Figure 5 shows an example of evolution of the system

gradients, the explicit dependence of both order paramet%r three different instants of timé=6.35,50, and 100. The
and surface tension on temperature eventually affects th8 g

. . . rder parametefbetween—1 and 1 in the dimensionless
proportionality, as seen in Fig. 3.

Even at the relatively high gradientey macroscopic
standardsused, we observe little distortion of the droplets. ___
Discussion of this issue, further details on the flow fields and &
analytic analysis of the droplet migration analysis based on
the coarse-grained equations is beyond the present scope.

We have finally done a qualitative study of drop coales-
cence in a temperature gradient. A sequence of configura
tions illustrating the motion of two drops is shown in Fig. 4.
Coalescence involves a topology change, which is naturally
handled within the coarse-grained approach. An analysis O'ys
the kinetics of droplet coalescence, and droplet detachmen' :
and attachment to boundaries, is a potentially rich area bu &
also beyond the present scope.

IV. SPINODAL DECOMPOQOSITION IN A TEMPERATURE
GRADIENT

complex flows, we have studied spinodal decomposition of a
binary fluid, in two spatial dimensions, and under an im-
posed constant temperature gradient. In dimensionless unit8lG. 5. Spinodal decomposition of a binary fluid in a rectangular cell of
the size of the rectangular fluid domain studiedais 800  dimensionsa=800 andb=200 (vertical direction in the figures, corre-

_ . - . . sponding to they-direction in the fluig. The parameters used are
andb=200 [m the gradlent Y) dlreCtlon]' We have used an C=1, 7p=1, anda= —0.004. Note that the hotter end is at the bottom of

e_V9n|y spaced grid wittm= 1924 _nOdes along the direc-  each figure. Shown is the value of the order parameter in grey scale at three
tion, andn=256 along they direction. The results presented instants of time(from top to bottonx t=6.25, 50, and 100.
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units we are usingis shown in grey scale. The characteristic grained model introduced specifies a dependence of the fluid
spinodal pattern emerges, with an intensity and domain sizeariables at such length scales, and this requires the introduc-
that is a function of the local temperature of the system. Theion of a phenomenological free energy at that coarse-grained
temperature parameteras introduced in Eq4) is known to  scale. This coarse-grained free energy is a function of a few
couple extremely weakly to the phase separation process. fthenomenological parametdisagined to depend smoothly

is not expected to change the algebraic form of the growtton the temperature and other experimentally accessible vari-
law for the domaingdi.e., the power-law growth in time of ables and couples through the associated chemical potential
the characteristic domain sizéut rather it may change the to the velocity field. The requirement that the model equa-
amplitude. Two questions naturally arise for a slowly varyingtions lead to the classical, macroscopic description in the
temperature, namely, whether the temperature gradient intrdimit of a small interfacial region allows one, in principle, to
duces any anisotropy in the characteristic length scale of thédetermine some of the phenomenological paramésisast
pattern, and whether an effective growth lamplitudeex-  within a mean field context

ists that slowly changes in space, as the temperature of the We have also argued that the model introduced reduces
system changes. Roughly speaking, the question is whethé&s the classical boundary conditions at the two-phase inter-
in the presence of a slowly varying temperature, phase sep&ce: namely, a normal force given by the surface tension of
ration proceeds temperature “slice” by “slice” as in ordinary the interface and its mean curvature, and a tangential force
spinodal decomposition at that final temperature. Directionaéqual to the tangential derivative of the surface tension.
anisotropy appears to arise in the purely diffusive Model BThese boundary conditions follow in the limit in which the
(conserved order parameter without hydrodynamidmposed temperature field does not change appreciably over
coupling?) at early to intermediate timegn the form of a  the scale of the interface. For these arguments we have used
lag in the growth parallel to the gradignand it carries over the plausible assumptioftonsistent with observations from
into the late stage growth stadfePreliminary results over a simulation$ that the order parameter within the two phases
small ensemble of independent initial conditidfise) indi-  and in the interfacial region relaxes quickly to its local equi-
cate that, contrary to the situation in Model B, there is nolibrium value determined by the local curvature of the inter-
appreciable anisotropy in the characteristic length scale diace and the local temperature. A more systematic analysis to
the domains. It is interesting to note that even if thermo-elucidate this point is clearly needed. This analysis can also
migration effects themselves are small for dimensionlesgead to a systematic cataloging of corrections to the macro-
timest=<100, the hydrodynamic coupling and complex flows scopic boundary conditions.

appear to wash out any prominent anisotropy. An additional advantage of the method is that it allows
the study(at least qualitativelyof very small drops and large
V. CONCLUSIONS gradients. In fact, this method is not likely to be competitive

We have implemented a numerical algorithm to solve thewith classical methods in situations in which gradients are

coupled Cahn—Hilliard and extended Navier—Stokes equaweak and drops are large, as compared to the scale of the

tions (Model H) in a temperature gradient. The b(,chkwardmterface.We remark, however, that classical methods cannot
implicit method is unconditionally stable, and with moderatehandle topology changes that are controlled by physical pro-

computing effort has allowed us to study reasonably |arg&esses on short or intermediate length scales, such as the

system sizes for a reasonable amount of time. Two particula(?lr der parz:metiz corre_latlohn_ lﬁ nt?]th'bF'Q aII_y ' thfreharf Iseveirr]al
examples of thermo-capillary induced flow in two dimen- ¢1aSS€s of problems in which the benhavior at short lengths

sions have been studied: the motion of droplets of one phassﬁCales heeds o be rc_asolved, since it eve_ntually determi.nes
in the background of its coexisting partner in a temperaturé e flow at macroscopic _scales. Example; include the mquon
gradient, and phase separation via spinodal decompositioﬂ]c con.tact lines, d|scont|nuogs velocity fields at bqundanes,
also in a temperature gradient. In two dimensions a strearﬁnd slip and thermal fluctuations at the mesoscopic scale.
function representation has been used so that an efficient

biharmonic solver handles both the order parameter and flo#CKNOWLEDGMENTS
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study of the flow on length scales which are not accessible to

classical macroscopic methods. One sgch case involves tllePPENDIX: COARSE-GRAINED FLUID MECHANICS
coalescence of drops and the concomitant topology change

of the interfaces. We have presented qualitative results in- In this appendix, a derivation is presented of the modi-
volving the coalescence of two drops induced by thermodfications of the Navier-Stokes equation that are introduced if
capillary migration. Of course, the mesoscopic or coarsethe description of the system goes beyond local thermody-
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namics. In other words, if the density or order parametemwhere.7Z is expressed in terms of the conjugate paird
varies on short length scales so that a square gradient @andX\,y. The Hamiltonian equations of motion are
similar description is appropriatsee, e.g., Refs 10—14he

Navier-Stokes equation contains new terms in the dissipa- 4,p= 5_7/
tionless(reactive or Hamiltonianpart of the stress tensor. To oo
find these terms we can consider an ideal fluid. For this deri- —SW
vation we use a Hamiltoniafcanonical formalism, since, 0P = 55
we believe, it is simplest. A more detailed discussion of the P
Hamiltonian formalism is contained in the book by Zakharov O (A7)
et al,*® which we draw on; a discussion of variational prin- I\ = 5—)(
ciples for an Euler fluid is contained in the monograph by
Serrin®’ -8
Following Zakharovet al. we consider an inviscid fluid IX= "5
with It is straightforward to show that the second and third equa-
dp+V-(pv)=0, tions yield
Bt)(i‘f'V'VXi:O, (Al) 1
_ _ o _ P +v-Vd— -v2+h=0, (A8)
wherev(r,t) is the Eulerian velocity fieldy(r,t) is the mass 2
density and the scalar functions,i=1,2,. .., represent any IN+V-(\)=0. (A9)

advected quantities carried with the flow and satisfying

dy/dt=0. The entropy per unit mass satisfiégs’dt=0 in  Applying V to the first yields the familiar Euler equation for
isentropic flow so that we may treat= constant. This al- the velocity change

lows the pressure to be expr_esseqoasp(p) and thelocal dN+V-Vv=—p~1vp, (A10)
part of the energy per unit volume may be taken as

€(p,s)— €(p). For a single component fluid the functign ~ using the local thermodynamia#h/dp=p~*. This is easily
represents an advected velocity circulation. Later when w@eneralized to include external potentials yielding additional
consider a binary fluid, in the absence of diffusion, the ordepPody forces.

parameterp, representing the mass fraction of one species, Now if the physics dictate that one must go beyond local
will be such a quantity. As usual the local part of the en-thermodynamics with, for example, a square gradient, the
thalpy per unit mass ie=de/dp. The energy of the fluid is Hamiltonian(A2) is modified to read

taken to be
e

1 -
7%=J Epvz-l- e(p)|dr. (A2)
Following all the same steps yields the modified Euler equa-
Following Ref. 36 we show that standard methods reproducéion

the Euler equation. Then we modify EGA2) to go beyond
local thermodynamics to find the new contributions to the

1 1
5pvi+e(p)+ 5K(p)(Vp)?|dr. (A11)

dv+v-Vv

stress tensor. o P, 5

A Lagrangian is defined in a standard fashion introduc- —P | ~VP+PV(V-KVp)=SK'(p)(Vp)7|. (Al2)
ing Lagranggundeterminegmultipliers for the conservation .
of p and y, Terms other tharW p can be thought of as additional body

forces owing to short length scale variations of the density.

The dissipationless part of the stress tensor is appropriately

modified. In the most general case, any functiogép,

Vp) can be added to the local energy in £411), and the

_ )\[(7tX+(V'VX)]] dr. (A4) stress tensor is modifigd accordingly. The modification of the
stress tensor for a single-component fluid at the square-

The total action”’= [ “dt is presumed to be an extremum gradient level was derived by Felderfidfising a Lagrangian

1
%=f [Epvz—é(p)+q)[f7tp+v'(PV)] (A3)

with respect to flowsy, which yields (particle) description of the mechanical equations.
\ Further discussion of the generality of variational formu-
_ lations of inviscid hydrodynamics are contained in the Refs.
=Vd+—Vy. A5
v P X (A5 36 and 37. The addition of one additional advected quantity,

representing the “conservation of the identity of fluid par-
ticles” will allow every flow to be represented as an extremal
for the (Herivel-Lin) variational principle’’

Now we turn to the more interesting case of a two-
component fluid. Background is contained in the text of Lan-

Variation with respect to the multiplier® and A\ recovers
the conservation conditions in EGA1). Substitution of the
velocity back into the Lagrangian yields the Hamiltonian
(canonical description

. dau and LifschitZ® The total momentum flux ipv, where
S= - - . . . ! .
7z f [Pop=Ndx]dr=7, (A6) p is the total mass density. The density of one of the species
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is pc, wherec is the (dimensionlessmass fraction, which In terms of this chemical potential the body force is of the

plays the role of the order parametdenotedy in the body. ~ form

Now the local energy per unit volume becomgyp,c,s), —Vp+puVe.

and for isentropic flow of an ideal fluid we may neglect the_ = | .

specific entropy. In the absence of diffusion we haveT,h'S_ is _the general form of the addmonal_part of the non-

dc+v-Vc=0, so that we may consider as an advected dissipative part Qf the stress_ ten_sor used in thg body of the

quantity, denoted generally by above. For simplicitfand ~ PaPer. In the critical dynamics Iltergture.thls is known as

realistically for typical binary liquid systemsve consider Model H"in the Hohenperg-HaIpenh lexicon. Note that

modifications of local thermodynamics due to short lengthfo" @n incompressible fluid one can rewrite this as

scale concentration variations only. In other words, for the  —vyp'—cV .,

present purposes we assume, as is normally the case, that an

density variations are on scales large compared to the ord

parameter correlation length; ¢, so that a square gradient

contribution for the total density is not required. This as-

sumption may be generalized in special circumstances.
Hence, the total energy of the system is taken to be

In Hamilton’s equationgA7) the mass fractiow now plays
the role of the advecteg as noted. Nows.7/ 6c contains
new terms, and th& equation thus becomes

Kere p’ is an effective pressure chosen to guarantee
-v=_0. Intuitively, gradients of the chemical potential gen-
erate body forces which need to be included in the non-
dissipative part of the stress tensor.
The equations presented hdrehen viscous dissipation
is included generalize the usual Navier-Stokes equation to
1, 1 ) situations which go beyond linear irreversible thermodynam-
ZPpv te(p,)+ K (c)(Ve)Tidr. (A13)  jcs assumptions, but remain within the realm of classical
fluid mechanics.
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