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We study the stability of a planar solid-melt boundary during directional solidification of a binary
alloy when the solid is being periodically vibrated in the direction parallel to the boun@dary
equivalently, under a far field uniform and oscillatory flow parallel to the planar boundéing
analysis is motivated by directional solidification experiments under the low level residual
acceleration field characteristic of a microgravity environment, and possible effects on crystal
growth in space. It is known that periodic modulation of the solid-melt interface under the
conditions stated induces second order stationary streaming flows within a boundary layer adjacent
to the interface, the thickness of which is the same as the wavelength of the modulation. We derive
an effective solute transport equation by averaging over the fast time scale of the oscillatory flow,
and obtain the resulting dispersion relation for a small disturbance of a planar interface. We find both
regions of stationary and oscillatory instability. For small ratios of the viscous to solutal layer
thicknessess, the flow generally destabilizes the planar interface. d=ef., the flow stabilizes the
stationary branch, but it can also excite an oscillatory instability. For Isrdiee effect of the flow

is small. © 2001 American Institute of Physic§DOI: [10.1063/1.1416883

I. INTRODUCTION turbation modes with wave vectors perpendicular to the flow
n tpical directional lidification experiment direction remain unaffected. Coriat al® considered solidi-
a typica ectionalsolidilication "expenment ‘a ..o into a forced Couette flow, and showed that convec-
sample is displaced at constant sp&edithin a furnace in . ) ; Iy S
. } o o .tive and morphological modes of instability are significantly
which a prescribed temperature gradient is maintained. It is

well known that a planar interface may become morphologi_decoupled. Interface perturbations with the wave vector par-
y llel to the flow direction were found to be stabilized. The

cally unstablé, and a great deal of research has addresse e _ )
both this instability and the ensuing cellular steady stateénStabIIIty is oscillatory, and corresponds to traveling waves

(see Refs. 2—5 for a revigwlt has also long been recognized along th.e flow. . Hobbs ~ and Metzener performed an
that flow in the melt may have a pronounced effect on the_asymptotlc analysis of long wavelength disturbances of the

stability of the interfacé.In the case of a binary alloy, if the mterfacglwith a constant far field flow. They concluded that
solute concentration of the solid and liquid phases is differ{h€ additional solute transport caused by the flow has a de-
ent, solute rejection or incorporation at the interface result§tapilizing influence at small wave numbers, and that this
in a density gradient that may cause thermosolutal convedlow |_ndu0ced destabilization is responsible for pattern
tion in the melt. In addition, since the density of the solid selection’
phase is generally larger than that of the melt, conservation Brattkus and Davis~? later studied the influence of
of mass requires fluid flow toward the interface. Given thatnonparallel flows on the stability of the interface. They con-
the existing solute gradient ahead of the moving interface igidered two configurations which are known to possess simi-
the main driving force behind the morphological instability, larity solutions for the flow above the plane wall: stagnation
flow in the melt that affects this solute distribution has apoint flow and von Keman swirl flow.”® In both cases, they
strong influence on the stability of the planar front. showed that in the limit of large Schmidt number, and when
Melt stirring is often used to reduce solute inhomogeneihe diffusive boundary layer is much thinner than the viscous
ity, and to increase the stability of the planar interface.layer, the interface is unstable to long wavelength perturba-
Delves investigated solidification into a Blasius boundary tions with the unstable modes being traveling waves propa-
layer and found that the interface may be stabilized for sufgating against the flow direction. The nonparallel nature of
ficiently fast stirring, and that, in contrast with the case with-the flow was found to be the destabilizing mechanism: The
out flow where the instability is stationafyoscillatory — perpendicular flow componeritoward the interfagecom-
modes bifurcate leading to traveling waves in the direction ofpresses the solutal boundary layer and enhances instability,
the undisturbed plane parallel flow. However, interfacial perwhile the nonuniform parallel component induces horizontal
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concentration gradients that lead to an oscillatory instabilitybility, the secondary flow has harmonic and steady
Buhler and Davis;* and Chen and Davi3'®have considered components. At first order in the perturbation, only steady
the stability of an initially planar front solidifying into pre- and harmonic components couple back to the interface per-
existing stationary and spatially periodic convective flows.turbation. For the entire flow, including the steady gatso
When the lateral size of the roll-like convective cell is muchreferred to as steady streamipwe adopt a quasi-static ap-
larger than the critical wavelength for morphologically insta- proximation according to which the flow relaxes instanta-
bility and the flow amplitude is weak, they find stationary neously for any given configuration of the solid-melt inter-
instability modes that are localized near converging stagnaface. The steady streaming induces convection of the base
tion points. For sufficiently large sizes of the convective cellsolute distribution. In addition, the oscillatory part of the
or large flow amplitude, the unstable modes are waves travsecondary flow also induces an oscillatory component of the
eling from diverging to converging stagnation points, with concentration field, and its nonlinear interaction with the
amplitudes that are modulated with the same periodicity obase oscillatory flow leads to additional mean solute trans-
the cellular structuré? The two-dimensional flow stabilizes port. Both contributions modify the mean solute distribution
two-dimensional disturbances of the interface, but destabiand therefore the instability threshold. In Sec. Il we briefly
lizes three-dimensional mod&sin the case of sufficiently review the governing equations and the flow induced by pe-
strong three-dimensional flows, a variety of localized station+iodic oscillation of a modulated solid boundary. We use this
ary interfacial patterns may be observed depending on theesult to derive in Sec. lll an effective solute transport equa-
geometry of the stagnation regions of the flo\s. tion and associated boundary conditions after averaging out

We finally mention a series of studies by Schulze andall the oscillatory contributions. Section IV presents the re-
Davist’~1° (see also the recent paper of Murrayal?) de-  sults of a linear stability analysis of the equations and bound-
voted to the influence of time dependent shear flows on morary conditions derived in Sec. Il
phological stability. In Ref. 17 they considered a shear flow
that is composed of steady and oscillatory components, the
latter due to oscillation of the solid phase relative to the melty;, govERNING EQUATIONS AND BASE FLOW
A perturbation expansion in the ratio of the amplitude of the
shear to the pulling speed shows that the flow ahead of the We consider an initially planar solid—liquid interface in
interface has periodic and stationary components, and thé&vo spatial dimensions that is moving with constant spéed
only the latter influences the instability threshold. Purely os4in the laboratory frame, and in the direction of the imposed
cillatory shear flow enhances stability at all wave numberdemperature gradient. A co-moving system of coordinates is
within a range of frequencies. With a steady componenintroduced such that=0 is the average position of the in-
added, the flow does not stabilize the small wave numbers dsrface, and the melt initially occupies the region0. A free
much as the purely oscillatory shear. They later addressed tlstream velocity far ahead of the interface is prescribed which
case of a purely oscillatory shear, but with an elliptic polar-is oscillatory in time and parallel to the undisturbed inter-
ization of the interface oscillation, still along its own plaffe. face. This may be accomplished in practice either by lateral
They showed that perturbations of arbitrary wave vectoroscillation of the solid with respect to the fluid, or by directly
couple to the flow if the phase lagbetween the two oscil- driving the oscillatory flow far from the solidifying front. In
latory components is not a multiple af, with the coupling former case we would choose a system of coordinates rigidly
being largest ford= /2. A numerical approach was then attached to the oscillatory interface which would lead to the
used to perform the linear stability analysis for finite valuessame system of equations after suitable definition of velocity
of the shear rate to pulling speed ratio. The results demorand pressure. We also assume that the fluid is incompress-
strated the possibility of substantial or even complete supible, and that gravity is absent, thus neglecting natural con-
pression of the morphological instability with sufficiently vection. Fluid motion is governed by the Navier—Stokes and
strong shear. continuity equations,

The research that we describe here is an extension of that Vp
reported in Refs. 17-19, as our analytic approach is not re-  gu+ (u-V)u—V du= — — + vAu—aw?sin( wt)e,,
stricted to small ratios of shear rate to pulling speed. We p
focus on the effect of an oscillatory planar flow on the mor- @)
phological stability of an initially planar solidification front. V-u=0, 2

Our study is based on the natural separation of time Scalev%hereu—(u w) is the fluid velocity,p the pr rew th
between the characteristic scale for the development of thﬁ:. S\ ; elocy,p the pressurey the
inematic viscosity, and the far field fluid velocity is as-

instability near threshold, and the relaxation time of the os'sumed eriodic of anaular frequenay and amplitud
cillatory flow for a given instantaneous interfacial configura- P g quenay plitudea.

tion. The base flow field for a planar interface has a Stoke§Er gr%a:(():gi(nlgv%ndv(v?t)h k}[?\éeuEi?srnm:’wgtgnar']r;.rt]hearifgegqs
layer structure, and does not alter the base solute diStribUtiotrérface but thegvelocit field is mgas \r/ed |I'1 ?hevlabc? tl
in the melt. A small perturbation of the interface induces a ' y Hield | u ! ratory

reference frame.

secondary nonplanar flow, which we calculate to first order The boundary conditions are no-slio at th lid-melt
in the amplitude of the interface perturbation. If the displace- y 0-slip at the solid-me

ment of a fluid element far from the interface is small Com_lnterface,
pared with the critical wavelength for morphological insta- uxXn=0 at z={(x,t), 3)
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wheren is the unit normal to the interface directed toward rangew~ 10'—10° s~ * we haves~5.2x 10" ?— 10 (material
the liquid. Neglecting intrinsic advectioftaused by a den- parameters for typical experimental conditions may be found
sity change upon solidificationwe consider a solid-liquid in Ref. 20.
interface that is impermeable, Since the far free-stream flow is parallel to the undis-
un=0 at z=Z(x.1) @ turbed interface ar=0, the base flow does not affect the
T base solute distribution, as both depend onlyzo®nly per-
The far field flow is defined by=[aw cost),0] at z=. turbations of the base flow field and of the base solute dis-
We focus on the so-called one sided model of solidificafion. tribution induced by interface perturbations couple. The lin-
The densities and thermal diffusivities of the solid and liquid€ar stability analysis will consider interfacial perturbations of
phases are equal, latent heat produced at the interface is i€ form z=eZ(x)=e e, where e={*/5, is the dimen-
glected, and diffusion in the solid is completely neglectedsionless amplitude of the perturbation ek 27 5¢/\ is its
These assumptions allow one to decouple the temperatutave number. The stability analysis that we present is re-

field from the velocity and solute fields, so that the temperastricted to the quasi-static approximation in which velocity
ture in both phases is a linear function of T(z)=T, field in the bulk fluid instantaneously relaxes for any given

+G z, whereT, is the equilibrium melting temperature of a configuration of the interface. We therefore first solve for the
planar interface, an@ is the constant temperature gradient. flow field given a fixed interfacial configuration, then aver-
Solute transport is governed by the convection-diffusiondge the solute transport equation and boundary conditions to

equation, incorporate the effect of the secondary nonplanar component
of the velocity field, and use the resulting equation to analyze
3C+(u-V)C-V3,C=DAC, (5 the morphological stability of the interface.

For a given interfacial configuration, the flow field in the

whereC is the solute concentration in the liquid, aBdthe oo
melt satisfies

solute diffusivity in the liquid. Conservation of solute across
the interface gives A, A

AP+ ReM =A%y, 9)

Dn.VC=(K—1)C(ug-n) at z={(x,t), (6) 9(z,x)

whereK is the segregation coefficient, defined as the ratioWith no-slip conditions at the boundary, and we have ne-
of the order efSc, =4d,4=0 atz= €/, and

between the equilibrium solute concentrations in the soliglected termsl it ,
and liquid, andu, is the solidification velocity. The concen- 9x¥=0.dz4=3€"+c.c. atz=cc. The stream functiop and
tration at the interface is determined by the local temperaturg1e boundary conditions are first expanded in power series of
(according to the phase diagrarand modified by capillary € ¥~ %ot €+, (@) 2= = Yo(2)] a0+ €(Ya(2)] -0
effects(the Gibbs—Thomson equatipn + L0,0(2) | j=0) ++ - and the sol_utlon f0L_md order by order

in e. At zeroth order the interface is effectively planar and the

% flow is a transverse wave, the so-called Stokes layer,
T=Ty+mC-Ty—XK, (7)
L, eit

) . _ To=d,0(z,t)= =Up(z)+c.c., Up(z)=1—e %,
whereTy, is the equilibrium melting temperature of the pure 0= 0ato(2,1)= 75 Uo(2) o(2)
substancern is the slope of the liquidus liney is the inter- (10
facial free energy per unit surfack, is latent heat per unit \ypare, = (1+i)/v2. In the following, a tilde over a variable
volume, andC is the mean curvature of the interface defined, ;| genote its oscillatory component, and a bar its average
positive for a sphere. over the fast time scale. At first order &one has the Orr—

we re(':ast' the Navier—Stokes a”‘?' continuity equat?On%ommerfeld equation with inhomogeneous boundary condi-
(1) and(2) in dimensionless form by using a stream function;,ng The equation can be solved perturbatively in the limit

formulation, k Re=2ma/A<1 by expanding the amplitudes,(z,t) in
WP AY) s power series ok Re. One finds
&tAlﬂ-l—Rem—S—c(?ZAlﬂ:Azl//, (8 - )

' 1=+ Y +HFT+O((kRe)), (11
where the stream functioty is such thatu= (9,4, — dy ). elt
We have made lengths dimensionlessshy the stream func- Y=g > do(z)+c.cl,
tion by awds, time by 1, and introduced the Reynolds
number Re=a/é;, and the ratics= 6./ 6 between the Stokes . o (12
layer thicknessS,= \/v/w and the solutal layer thickness do(2)= ka(e*”Z— e ),

=D/V. Sc=v/D is the Schmidt number. We have also used
the notation d(a,b)/d(z,x) = (d,a)(dsb) —(d,a)(d,b) for
the nonlinear term. In what follows, we assume thais (13
finite, and that Sc is largbwve will neglect terms of order R ol . )
O(Sc 1) and highe}. These assumptions are not restrictive.  Xo(2)= m(ﬁqe_pZ+ Age (Prat)zy pge(krat)z
For example, for a Pb—Sn alloy S81.0, and for pulling

speeds in the rangé~10—100um, and frequency in the +(B;+Bjyz)e k3,

=ik Ree™[ xo(2) +c.cl,
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X FIG. 2. Sketch of the streamlines and velocity field of the steady streaming
over a modulated boundam/= € coskx) of small wave number 2585/\
FIG. 1. Sketch of the streamlines and velocity field of the steady streaming<1. The flow is comprised of two pairs of recirculating cells per wall
over a modulated boundarg=ecosky) of large wave numberk period, with the fluid rotating in opposite directions. The amplitude of the
=2mds/n>1. The flow is comprised of two recirculating cells per wall boundary profilebold solid line has been magnified for clarity.
period. The amplitude of the boundary profileold solid line has been
magnified for clarity.

B B ll. EFFECTIVE SOLUTE TRANSPORT ABOVE AN
Ty=a,01, Uy=d,by, Wy=—dyh, Wy=—dy,  OSCILLATORY, MODULATED BOUNDARY

PP (14 In this section, we use the flow field described in Sec. Il
where p=(i+k*) ™ with %{p}>0 so as to have bounded (5 gerive an effective solute transport equation that is valid in
solutions asz—, and the coefficient®\—, 53 andBi-1>  the slow time scale associated with the morphological insta-
are given in the Appendi¢iFT stands for higher harmonic iy \We redefine time and length scales from those given in
flow components which only contribute higher order correc-ggc. |- the time scale from d/to D/V2 (so thatt— Qt, with
tions to the morphological stability analysis of Sec. 1V, a”dQ:wD/VZ), and the length scale from, to 6=D/V, (so
are therefore neglected. In Ed.3) the field y obtained as an that (x,2)— (x,2)/s), and hencé— ks ande—s Z/s. The ve-

O(k Re) correction to periodic componett describes the locity scale is changed fromaw to V [so that (1,w)

time independent part of the secondary flow, the so-called., 5,/v/(u,w)]. We restrict our analysis to the case in which

steady streaming. The solution given by EG)—(12) was  he ratio of the Stokes layer thickness to the solutal layer
first given in Ref. 21, and further discussed and extended tghicknesss is finite. SinceQ = Sc/s2. the assumptions al-

random vibration in Ref. 22. We summarize here its salien}eady introduced imply tha® is of the same order as the
qualitative features. When the Stokes layer thickness is largef-nmidt number. We also note thai/V=Re Sck. so that
than the interface wavelength* 1), the boundary layer is iphis group may be small compared to %Re<1), but larger

confined to the regiorz=1/k. Steady cellular flow is ob-  {han (1), Theequation for solute transport and associated
tained ahead of the perturbed interface, with two rec'rCUIatboundary conditions in dimensionless form are

ing cells per wavelengttsee Fig. 1 The normal component Res
of the velocity is in phase with the interfacial distortion, so it €oC _
is largest and directed toward the fluid ahead of the crests of HC+ S (U-VE)=a,L+AC, (15)
the interface. When the thickness of the Stokes layer i%md
smaller than wavelengtk<1, the boundary layer has four
recirculating cells per wavelengtkee Fig. 2 Two cells are (1+0,)[K+(1-K)C]=—9,C+d,{ d,C, (16
adjacent to the interface with a recirculation direction that is 1 .
the same as in the limi>1, and they extend over a distance C-1+M7+TLk=0, 17
of the order of the Stokes layer thickness. The second pair ait z={(x,t). Concentration has been scaled C,
cells stack on top of the other two, and the fluid rotates in the=C.,/K—C,,, so that the dimensional concentrati@
opposite direction. The flow extends up to distances of the=C.,,+AC,C. We have also introduced the dimensionless
order ofz~1/k. inverse morphological numbé&i 1= —G&/mAC,, and the

We confine our study to the case in which the amplitudesurface energy parametér=—Ty y/SmACgyL,. The mor-
of oscillation of the fluid elements far from the interface is phological number represents the degree of constitutional su-
much smaller than the boundary wavelengthr62\<1). percooling, and is proportional to the gradient of concentra-
The opposite limit ofk Re>1 could be considered analyti- tion ACy/é that builds up ahead of a planar interface
cally as well but it would be necessary to address the stabilmoving with speed/.
ity of the flow itself. We wish to avoid this complication and The base solution corresponds to a planar front, an ex-
to remain within the region of applicability of the quasi-static ponential solute profile, and a planar and parallel oscillatory
approximation for the flow. flow
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(o=0, Co=e"% uy=(Tig(z/s,0t),0), (18 only the second term within brackets in E1) remains as
a contribution to the calculation o;. Integration of thi
where Ty is given by Eq.(10). We next consider a time term yiélgsl watt ! grati s
dependent interface perturbatigre £;(x,t)=e*** !, and
write the corresponding perturbations for solute and velocity = _ ,Af o
i —_— _|._. (R
fields: C=Cy+Cy(X,z,t), U=up+uy(x/s,z/s,Qt), where C1=—~ReCol | Wy dr (22

all the perturbations are assumed of the same order, and t%ere we used SeQs? and--- stand for slowly varying

components ofu;=s*{(T;+U;,W,+W;) are given by terms that do not contribute to the average transport of solute
Egs.(11)—(13). Since the nonlinear term in E(LS) contains  ithin our approximation. Substituting the explicit expres-
a velocity field that is comprised of oscillatory and meangjons from Egs(22), (12), and(13), we find that the average
parts, a similar decomposition will hold for the concentrationtransport which is induced by nonlinear interaction between
field. We apply the method of multiple time scales and splitihe pase oscillatory velocity field and the oscillatory compo-
the time derivative and the concentration field into oscilla-nent of the solute perturbation is

tory and slowly varying partsg,=Qd,+d,, C;=C4(7)

— A* -~
f?l(t), wherer= Ot is the fast time. With this decompo- Re Sc<l~Jo f9x61>: _kZMCéZeikx Yo fﬁo teel, (23)
sition Eq.(15) leads to S 4
_ ResS _ 2 ~ where u=Re&? Sc=aw/D is a dimensionless group which
09.Cy+ —iﬁo 0,C1+ = Couy +{Ty axcl}} we assume to be finitéhis requires Re1/,/Sc).
s Similarly, using again Eqs(12) and (13), we find the
= 3,C,+AC, (19) second mean transport term in Eg0),
z ’
ReS Z R S Ci =K2uCyle y+c.c] (24)
_ e - - — ——{C{Wy= e c.cl.
9Cy+ Tc{(uoaxclw SCoWi|=9,C1+ACy, (20 g7 et TR AosBLX

Since both Eq923) and(24) are of the same order, and have

where C;=dCo/dz, and the oscillatory components are a similar spatial structure, it is convenient to combine them
functions of the fast timer=(t, with zero mean over the into one single field defined as

fast time scaldaveraging over the fast time scale is denoted A
by (-); {-} on the other hand, stands for the oscillatory com-  Re Sﬁ

(Tlg 95 C1) + gc(;wl =k?uC{l e[ #+c.cl,

ponent of a quantity S
Fast oscillatory dynamics does not directly couple to the (25)
interface perturbation; instead it induces solute redistributior\lNhere
on the slow time scale which then affects the stability of the
interface. The solution for the mean part of the solute pertur- ol

_ o~ —(psta*)zls —(ks+a*)z/s
bation C; follows from Eq. (20), where the only term that ™ e +Epe
couples to the fast solute dynamics of E9) is (Tig 94C).

Furthermore, we only need the harmonic response compo-
nent of C, (at frequency)). Since nonlinear terms in Eq. whereps= JKZs?+i, M{ps} >0, and the coefficients,, E,,
(19) are proportional to Sc, and thus dominant compared td-;, F, are given in the Appendix. Note that, by construction,
all other terms in the right hand side, we write 7=7'=0 at z=0. Equations(20), (25), and (26) are the
~ main results of this section.
~ ResS — ~ We next consider the decomposition of the boundar
Q9.Cot TK{EO K1t éCéVvﬁ-{ﬁo axcl}}zo. conditions into oscillatory and megn parts. The oscillator;/
(21)  components of Eqg16) and (17) yield C;=4,C,;=0. It is
The third term within brackets in Eq21) can lead to har- €asy to see from Eq22) that the conditionC,=0 is auto-
monic response o€, only through interaction betwedi, mgtically satisfied becaus*fl(z=0)=0, but the condition
=210t 4 term that is proportional to d,C1=0 is not. Recall thaCC; was obtained from Eq.19)

andC; of the formC,xe” octing the riaht h . o have | I
Rek<1, and hence small compared with the two other conPY neglecting the right hand side. Thus we have formally

vective terms in Eq(21). Thus it can be dropped out consis- reduced the order of the differential e'quation from two to
tent with our approximation for the Navier—Stokes equationzero' As a consequence, we cannot impose any boundary
which neglects terms of orde®(Re?k?). The first term  conditions onC,, and the fact that one is satisfied is acci-
within brackets in Eq(21) does not contribute t6, <9x61> dental. In ord(~ar to properly take into account both boundary
becauseC, is now out of phase witfiig. In order to show conditions onC; in the Iimit Q.O<Sc>ll, one needs to intro-
this, defined =0~ 1[Tiy dr, an Eulerian displacement field. duce a matched expansion involving a boundary layer of

~ = thicknessO(Sc *?) in the vicinity of the interface. How-
We now have C,=—Res®¢C,+:--, where the dots gyer this procedure will only lead to small corrections under

stand for slowly varying terms. Then(Tpg 3,C1)  the assumption that Scl. The situation is similar to that
= — Res(liy®)72C;=—ResQ(d 4,0)#C,=0.  Therefore, considered by Wheelest al,?® who studied the onset of so-

A(pe—ke) T
+(F1+F,z/s)e 7, (26)
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lutal convection in directional solidificatiofwith a nonde- tion hy and of the concentration gradiegt stabilize the
formable solid—liquid interfagewhen the system is sub- planar interface. The first observation follows from the asso-
jected to high frequency vertical vibration. As is the case inciated decrease in the local melting temperature, whereas the
our study, the leading order solution in their case is the outesecond is related to a decrease in the magnitude of the de-
solution and it does not satisfy the interfacial boundary constabilizing concentration gradient ahead of the interface. The

ditions. quantityk®qh, is positive at smalk, and negative at large
Averaging the boundary conditions Eq4.6) and (17)  Therefore its contribution to the concentration perturbation is
over the fast time scale we find, stabilizing at smalk, and destabilizing at large. The con-
_ _ _ tribution from the termk®g, shows exactly the opposite
(1+a)[K+(1-K)CJ=—3,C+ 3, 4,C, (27)  trend. In fact, both terms very nearly cancel for large and

— 4 _ smallk, so that the effect of the flow is most pronounced at
C-1+M 7 {+TK=0, (28) finite wave numbers.

both atz=¢(x,t). It is useful to start the analysis of the dispersion relation
In the following section, we study the stability of a pla- Ed. (31) by presenting analytical results that can be obtained

nar interface given the averaged solute transport equatiof the long wavelength limit. Fok<1 we find a stationary

(20), supplemented by Eq25) and Eq.(26), with boundary ~ branch given by

conditions(27) and(28).

k> 1+K fi(s
M_1=—Fk2+ R——K2—k4+,uk3 1( )
IV. LINEAR STABILITY ANALYSIS £.(9)
412(S 5
We study the linear stability of a planar interface when +uk K +0(k), (32)

solute transport by mean flow is taken into account. We as-

sume a solution of the form, . ) ) )
and the functiong, 4(s) are given in the Appendix. To low-

C=Cy+ eik><+vt{€le—qz+ Zuk?h(z)}, (29)  est order ink, the neutral stability curve is not affected by
the flow. The first contribution arising from the flow appears
whereo is the growth rate, the brancR(q)>0 for q=1/2  at O(uk?), and can be stabilizing or destabilizing since the
+1/2y1+4(o+Kk°) is chosen so that perturbations decay atfunction f,(s) is negative for =s<s* and positive fors*
infinity, and a fieldh(z) is introduced to incorporate the <s<w (s*=(./14—v2)/2~1.16). Therefore, the cubic
inhomogeneity due to the mean transport. Substitution of Edterm is stabilizing fors<s*, and destabilizing otherwise.
(29) into Eq. (20) yields the following equation foh(z) Note that increasing the dimensional angular frequeacy
PN 2N~ results in larger values oficw, but smaller values of the
h+h'= (o +kHh=Colm+c.cl. 30 ratio s w2, Sufficiently strong driving, which is neces-
Note that for a linear analysis we only need the valbgs sary for appreciable stabilization, may be achieved without
=h(z;0,k,8)|,-o and go=dh(z;o,k,s)/dz,-, computed significant compression of the Stokes layer. Alternatively, an
for a particular solution of Eq(30). They are given in the increase of the forcing strength may be accomplished with a
Appendix. The functiondy(o,k,s) andgy(o,k,s) are real small increase of the driving amplitudewa?), while
provided thato is real, and complex otherwise. keepingw fixed. However, the applicability of the latter ap-
By linearizing the boundary condition®7) and (28)  proach is limited by the assumptionra/\ <1, that may be
about the base solutiqid8), we arrive at an eigenvalue prob- rewritten asskyu/Sc<1. To ensure the self-consistency of
lem for the growth rates. The requirement that there be our approach the wave numbers of the most unstable pertur-
nontrivial solutions to the perturbation equations leads to dation must satisfy this inequality for given valuesofnd

dispersion relation given by Sc. The restriction o is not severe as the Schmidt number
B B I S is assumed to be large. Finally(s) is always negativéand
o+ K=[K+gq=1][1-M k1= ukTaho+go). bounded between—3/2 and —2.615). Thus the term

O(uk*) is always stabilizing.

Equation(31) is the main result of this paper. In the absence  These results may be compared with those of Schulze
of flow (. =0), the classical dispersion relation for the one-and Davi$®'® who derived an analytic expression for the
sided model of solidification is recoveréd. neutral stability curve in the long wavelengtk—¢0) and

Some general features of the dispersion relation are themall shearéw/V—0) limit. They also studied numerically
following: Uniform perturbations K=0) are damped «  the stability under arbitrary wave numbers and shears. Our
=—KM™1) unlessM ~1=0 or K=0. Thek=0 mode is an analytical results complement theirs in that we obtain an ana-
infinitesimal translation of the planar front toward higher lytical form of the dispersion relation for arbitrary wave
temperatures where it melts back. Furthermore, this modeumbers and shear rates, but under a different set of approxi-
does not induce any normal flow. Flow in the melt breaksmations (Se-(>1,a<<\). Even thougte is small, the fact
reflection symmetry X— —x), and hence Eq(31) is no thatwe allow large frequencies implies that our calculation is
longer invariant undek— —k. On the stationary instability not restricted to small shear ratgmte theJuQ =aw/V, the
branch, regions with positive perturbations of the concentralatter being the expansion parameter used in Ref. 18
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k (dashed linesinstability for K=0.3, s=2.85, ©=40.0, and a set of values

of I'.
FIG. 3. Neutral curvesM ~1(k) for stationary(solid line and oscillatory
(dashed linesinstability forK=0.3,s=2.85,I"=0.6, and a set of values of
. The inset shows the region near the origin, and that the long wavelength
instability is not completely suppressed even for large 360. We first compare the neutral curves obtained from Eq.

(31) and the numerical linear stability analysis of E¢kb)—
(17) given in Ref. 18. Their study considered the following
In Ref. 19 Schulze and Davis derived a nonlinear andsgt of parameter& =0.3, ' =0.6, Se=81.0,(21=10, and a

long wave evolution equation in the limit of smallo/V and  hymper of values chw/V. In Fig. 3 we show our results for
near the absolute stability limit. The linearized form of their the neutral curves for a set of parameters that corresponds to
evolution equation gave the neutral stability curve, which isgjg. 4 in Ref. 18 K=0.3, T'=0.6, s=2.85, and u
in good agreement with ours not only for Sc>1 but even  —q 40, 160, 360). The agreement is good for small to mod-
for Q) Sc~1. In particular, they found a curve in th8c£))  erate values ofs, but it becomes worse with increasing
plane separating the regions for which the flow is stabilizingrhe solutal layer thickness is of the same order as Stokes
or destabilizing at large wavelengths. This curve is well apjayer thickness, and the flow tends to stabilize long wave-
proximated by the functio)~0.73 Set 4.7, starting from  jength perturbations. We find that long wavelength modes are
fairly small values of Se-1. We find{)~0.738 Sc assuming always unstabldinset of the Fig. 3 though the range of
that Se-{)>1 (recall thats= ySc/}, and we use the value jnstapility narrows asu is increased. As discussed in the
of s*=1.16 given above that gives the boundary betweeryrevious section, the flow has no influence on perturbations
regions in which the flow is stabilizing or destabilizing of sufficiently small wave numbers. A new feature of our
Hence, we find that our asymptotic approximation holds, atesylts is the appearance of an oscillatérppf) instability
least for the long wavelength disturbances, from surprisinglyor sufficiency large values of and at finite wave numbers,
small values Schmidt number and dimensionless frequencye‘—m”ng to a discontinuity if.(u), the critical wave number

Note that it also holds for large values ab/V where, for  for instability. Figure 4 shows the dependence of the Hopf
example, the numerical approach of Ref. 18 fails because gfequency on the wave number.

computational complexity.
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FIG. 4. The positive Hopf frequenay, as a function of the wave numbler ~ FIG. 6. Neutral curved ~1(k) for stationary(solid lineg and oscillatory
corresponding to the oscillatory branches of the neutral curves of Fig. 3dashed linesinstability for K= 0.3, s=2.85, u=360.0, and a set of values
above for two different values gf. of I'.
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FIG. 7. Critical curvesMc’l(F) (from the maxima of the corresponding FIG. 9. Neutral curved
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instability for K=0.3, s=2.85, and a set of values of

~1(k) for stationary(solid lines and oscillatory
(dashed linesinstability for K=0.3, s=10.0,'=0.6, and a set of values
of u.

We next present additional cuts of the neutral surface.
Figures 5 and 6 show the neutral curves as the surface energy \yi now turn to the casse=10.0 in which the Stokes

paramet_e[‘ is_ in_crea_sed fr_om small values toward_ the abso'Iayer thickness is much larger than the solutal layer thick-
lute stability limit (I" = 1/_K In t_he absence_ of flo)/v_Flgure_ 5 ness. In this limit, the solutal layer is not appreciably modi-
shows the casget=40 in which the oscillatory instability fied by the flow, and hence the morphological stability

does not appear, and Fig. 6 shows the corresponding CUNSbundaries depend only weakly on the flow. The neutral
for =360, including an oscillatory branch. Figures 7 and 8 urves fork =0.3, I'=0.6 and a range of values of are

show the resulting dependence of the critical morphologic hown in Fig. 9. The effect of the flow is now very small

number and critical wave number, respectively, as a funCtiorﬂ)ecause the streaming flow is very weak near the interface,

of I'. At sufficiently low values ofy, the instability is sta- 54 hence the redistribution of solute by the flow near the
tionary (Fig. 5), and flow generally acts to stabilize the pla- interface is weak as well.

nar interface(Fig. 7). Within this range, two types of insta- In the opposite limit of smalk, the Stokes layer thick-

S'I'ty rg_ay OCCl:]r at leﬁhgfr a;]ﬂmte or Iovt\)/ wave n#mbgr, ness is small compared with the solutal layer thickness, and
epending on the value 67 (the transition between them is flow significantly changes the morphological instability

r_nar_keq by _the appearance of a cusp in Fig. 7, and_ a disCo reshold. We present in Fig. 10 the neutral stability curves
tinuity in Fig. 8). At yet higher values ofu, an additional for s=0.1, K=0.3, andl'=0.6, and in Fig. 11 its depen-
oscillatory branch appears between the finite and low wavgece o, The corresponding critical curves are shown in
number stationary branchédashed lines in Figs. G%BAS_ Figs. 12 and 13 for a range of values@f Figure 10 shows
stated above, our resuits fg=2.85 Qe”era”y agree With 5 flow can, in fact, destabilize the interface, but only at
those of Schulze qnd Da\ﬁg,.except. in that thgy report @ goie wave numbers. A separate analysisqtt, and g, in
complete suppression of the instability for sufficiently IargeEq_ (31) reveals that while the shift in the concentration at

Va'“?S Ofaf"_/v' and in that they do not observe the oscilla- the interface that is induced by the flow has a stabilizing
tory instability.

10
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m! /\
5 =170:0
—
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™~
0.01 T e T , —\\
\Q\\ 1=0.0
\\
0.001
0.0001 5
0 0.5 1 1.5 2 2.5 3 35 0 0.5 1
r k
FIG. 8. Values of the critical wave numblef as a function of" of station- FIG. 10. Neutral curves! ~1(k) for stationary(solid lines and oscillatory
ary (solid lineg and oscillatory(dashed linesinstabilities forK=0.3, s (dashed linesinstability for K=0.3, s=0.1, I'=0.6, and a set of values
=2.85, and a set of values @f. of u.
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several values of (solid lines. As a reference we also plot the neutral F!G- 13. Values of the critical wave numbky as a function ofl” for K
curve of the no flow caseu(=0) for K=0.3 andl'=0.1. =0.3,5=0.1, and a set of values of.

demonstrates a substantial destabilization at small pulling

effect, there is also an increase in the magnitude of the corPe€ds €<V is smal), stabilization at moderate values ¢f
centration gradient that promotes instability. Note that thelS=1), and no influence of the flow whew is large &
instability persists beyond the absolute stability limit in the>1). Both stabilization and destabilization become more
case without flow, as shown in Fig. 12. Figure 13 shows théronounced as the flow amplitude is increased at fixed

corresponding values &, . The curvek,(T') at largel” ter- ~ frequencyw. Note the presence of cusps in the curves that
minates at a finite value df., in contrast with the no flow correspond to shifts between different instability branches. In

case wherek,—0 as the absolute stability limit is ap- the case ofu=384.6, which corresponds to a shear rate to
proached. pulling speed ratio ofw/V=4.0x 107, we observe destabi-
As an example, we present the stability diagram comdization due to the appearance of the oscillatory instability
puted from Eq(31) with material parameters appropriate for (rélative to the trend observed in the stationary bran€br
the binary succinonitrile-acetone grown in a temperature gra€*ample, a pulling speed=50um/s falls within the range
dient of G=20 K/cm2* The Schmidt number of this alloy is Of oscillatory instability, and the corresponding amplitude
large (Se=2050), and hence our quasi-static approximatior1d_frequency of shear ar@=2.5x10"cm, and v=38

. . . —1
for the flow is expected to hold. We consider pulling speed* 10Ps™™ )
V, melt concentration away from the interfaCe , flow an- We do not have at present a clear understanding of the

gular frequencyw and amplitudea as experimentally adjust- mechanism leading to the oscillatory instability, but we can
able parameters. For fixed, , andV the neutral curve offer a conjecture based on the structure of the neutral curves

C..(\) always has at least one minimum for a critical wave-Used to obtain the stability diagram discussed above. Figure
length \. that determines the onset of instability. Figure 1415 shows how the neutral curves,(27/\) change as the
shows the locus of critical points as a function\éfin di-

mensional units for a number of values®fnda. The plot .
2 5
2 S ol /\’ /
! ' (@)
c u=>50.0
15 —_—
0.01 {b)
[ —
E— i =100 ©
0.001
0.5 1 10 100 1000
V (um/s)
w=0.0
0 FIG. 14. Critical values of the concentrati@, versus pulling speed in
le-05 0.0001 0.001 0.01 0.1 1 10 dimensional units for succinonitrile-acetone in a temperature gradent
r =20 K/cm for a number of combinations of the flow angular frequeacy

and amplitudea. The solid(resp. dashedines mark the onset of stationary
FIG. 12. Critical curveﬂ\/lgl(l“) (from the maxima of the corresponding (resp. oscillatory instability. () Case without flow £=0); (b) o
neutral curvesfor stationary instability forK=0.3, s=0.1, and a set of =800.0s!, a=1.0x10%cm (u=61.5), () »=800.0s! a=2.5
values of . X1073 cm (u=384.6).
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flow amplitude is increased. The appearance of the oscillasition at the interface, and the solute gradient ahead of it. The
tory branch connecting two distinct stationary branchesslowly varying equation governing solute transport has been
closely resembles the case in which convective and morphaderived in Sec. Il under assumptions that Schmidt number
logical instabilities are weakly coupléd.The mechanism and dimensionless frequency are of the same order and large,
responsible for the oscillatory instability in that case wasScx()>1. This equation along with the boundary conditions
explained by Davi€® and it relies on qualitative differences averaged over the fast time have been used in Sec. IV to
between the eigenfunctions of the flow and concentratiorobtain the neutral stability surface for a moving solid-melt
perturbations corresponding to convective and morphologiinterface. We find both regions of stationary and oscillatory
cal modes of instability. The oscillatory marginal modes arisanstability. For small ratios of the viscous to solutal layer
from the competition between the two. A similar mechanismthicknessess, the flow generally destabilizes the planar in-
is possible in our case. We do not find significant differencederface. Fors=1, the flow stabilizes the stationary branch,
in the flow structure near the interface; the direction of thebut it can also excite an oscillatory instability. For large
steady streaming ahead of the modulated front is indeperthe effect of the flow is small.

dent of the wave number, and fluid moves from troughs to

crests. However, we observe that appearance of the oscill’"CKNOWLEDGMENT

tory instability is always accompanied by the emergence of . . .
the band of wave numbers corresponding to positive pertur-, . This research_ ha§ been .Sl_Jpported by the Microgravity
bation of the concentration field ahead of cressmputed Science and Applications Division of NASA under Contract
from Eq. (29) linearized about the interfageWithin this No. NAG3-1885.

range the flow progressively stabilize the system against the

stationary perturbations as the flow amplitude is increase@PPENDIX

(see Fig. 1h A collateral result of this stabilization is the The coefficients in Eqg13) and (26) are
splitting of the stationary branch into short and long wave-
length ones. 1 1

In summary, when the free-stream flow in the melt un- A1=—1, Ay=5——1>,
: ; . | 2i(i+K?)
dergoes oscillatory motion parallel to the undisturbed inter-
face, a perturbation of the solid-melt interface leads to the
formation of secondary flows comprised of both oscillatory
and steady components. When the amplitude of the flow os-
cillation away from the interface is small compared with the
wavelength of the interface perturbation#£@/\<1), the

A= T {2k a® )2
Blz - (A1+A2+A3), (Al)

Bzz(p_k)A1+(p+ a* _k)A2+ a*A3,

structure of the secondary flow can be obtained analytically — 1 _ —1— 1
. . . . . El W 2o2 17 EZ 1 : *\21
as it adiabatically follows théslow) motion on the interface, 2i(i+ks%) i(2ks+a™)
as shown in Sec. Il. Mean transport terms arising from con-
vection of the base solute distribution, and from nonlinear F;=—(E;+E,), (A2)

interaction between the base velocity field and the oscillatory
part of the solute disturbance modify both the solute compo- F,=(ks—pg) +(ps+ a* —ks)(E;+ 1)+ a*(E,— 1),
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ho(o,k,s)=[k(z;0,k,s)+ k*(z;0* ,k,S)]| =0,

d
do(ok,8)= - [k(Zo k) + " (2,0 K,8)1|—0,

e e B Fus(k— o)+ Fo(1+2K) (A3)
K(z,0,k,9)|z-0=Q k’+o—aj—a, k’+o—as—a, s(k—o)? :
d . _ _(1+al)E1 (1+32)E2 Fls(k_(T)+F2(1+2k) F2
az<(zok9)z-0=Q K+o—a’-a; k2+a—a§—a2+(l+k) s(k—0)? ~s(k—o) )’
wherea; = (ps+ a*)/s, a,=(ks+a*)/s andQ=a>/[4(ps—k9)];
1 V2(—3+s5°+V2s)
fi(s)=—7— ,
4 ($2+v2s+1)(s+Vv2)
1 20s®+83v2s°+2925% + 300/2s°+ 3685%+ 115/2s+ 24
fa(s)=—3 5 > > : (A4)
8 (s24+v2s+1)3(s+v2)
2v2(3s°+4v2s+4
f3(s)=—— 5
s(s°+2v2s+4)
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