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Abstract

A phase field model is introduced to study local equilibrium thermodynamics and dissipative

motion of smectic-isotropic interfaces. An asymptotic analysis of of the model valid for weakly

curved interfaces at coexistence is used to generalize the classical condition of local equilibrium

(the Gibbs-Thomson equation) to include bending and torsion contributions that explicitly depend

on the Gaussian curvature of the interface. An equation of motion for the interface is also derived

that depends on its curvatures and alignment of the smectic layers. A numerical solution of the

model is used to study the evolution of transient toroidal focal conic domains in smectic films

that proceeds through local evaporation and condensation of smectic layers. The motion of the

smectic-isotropic interface is well captured by the asymptotic analysis away from singularities. As

in experiments, pyramidal structures are seen to emerge near the center of the focal conic due to

evaporation of adjacent smectic planes. Our results clarify the limitations in modeling motion of

hyperbolic surfaces as driven solely by mean curvature, including regions of large curvature, as well

as regions, like the pyramidal structure, in which there are exposed smectic layers.
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I. INTRODUCTION

The key role of interfacial curvature and excess interfacial energy on both equilibrium and

nonequilibrium behavior of multiphase systems has long been recognized [1]. Both quantities

are critical in the determination of equilibrium morphologies, as well as in interfacial motion

driven by free energy reduction. Classic examples include fluid dynamic instabilities [2, 3],

combustion fronts in fluid systems [4], grain growth [5], and the Mullins-Sekerka instability

and crystal growth in solid or solid-fluid systems [6, 7].

More recently, interfacial curvature effects, and in particular those related to the Gaus-

sian curvature, have become the subject of interest in a number of Soft Matter systems

including, for example, studies of shape engineering (controllable and reversible changes in

surface morphology under the application of external stimuli) [8], the assembly of hierar-

chical structures [9], colloidal and molecular crystals, controllable motion of defects [10],

and active matter motion in designed substrates [11, 12]. Because of the ubiquity of lipid

bilayers and membranes in biological systems, there is also growing interest in the effects

and engineering possibilities attached to curvature control in that field. Recent examples

include necking instabilities and their role in cellular fission and fusion [13], or the clinical

role that Gaussian curvature can play in the efficiency of clinical surfactants used to treat

neonatal lung alveoli [14].

Interfacial geometry, and hence interfacial energy, are described by the local mean and

Gaussian curvatures, H and G respectively. The mean curvature has been the quantity of

primary physical interest in expressing interfacial energy, as it is directly related the the

change in interfacial area for a small displacement of the interface. The classical manifes-

tation of this result is the Gibbs-Thomson equation, which relates the change in chemical

potential δµ relative to planarity to the mean curvature as δµ = 2Hσh, where σh is the ther-

modynamic excess free energy (surface tension for a fluid interface). Indeed, this equation

is central to all studies of equilibrium morphology and interfacial motion. In contrast, the

role of Gaussian curvature on interfacial behavior is not well studied, partly because the

integrated Gaussian curvature over a compact surface is an invariant that depends on the

Euler characteristic of the surface alone. Hence it is usually neglected in equilibrium stud-

ies, unless the morphologies being compared are not topologically equivalent. Furthermore,

its corresponding elastic modulus is difficult to measure, although recent progress has been
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made via numerical simulation [15].

Our research is directly motivated by recent observations of the role that Gaussian cur-

vature plays on morphological changes in smectic-A (SmA) films after thermal treatment.

In SmA liquid crystals, rod like molecules are organized in planes with a distinct inter-layer

spacing. This periodic stack of liquid layers can be bent in intriguing ways. For example,

SmA are known to exhibit layers bent into focal conic domains (FCDs). Kim et al. [16, 17]

have shown recently that equilibrium arrays of such focal conics can be fabricated, but

become morphologically unstable under thermal treatment. Following sintering at temper-

atures in which the smectic phase is still stable, curvature driven evaporation/condensation

of smectic layers results in a variety of transient film structures, including pyramids, domes,

or narrow filaments capped with small spherical domains. On the focal conic, the mean

curvature is positive in the outer region, but changes sign near the center. The Gaussian

curvature is negative throughout. Morphological instabilities lead in some cases to new struc-

tures with locally positive Gaussian curvature. In addition to the fact that toroidal FCDs in

SmA provide an ideal platform in which to consider higher order curvature effects on growth

and pattern formation, smectic films displaying such a morphology constitute a potential

platform for surface engineering through thermal treatment. Indeed, researchers have been

finding new applications for arrays of focal conics as building-blocks for soft lithography

patterning [18], base structures for the fabrication of superhydrophobic films [19], guides

for the self-assembly of nanoparticles [20, 21], and optically selective microlens photomasks

[22], which make for a cost-efficient way to produce patterns through photolithography. By

sintering SmA films with arrays of FCDs, a range of new morphologies becomes available

for applications, so it is fundamental to understand the role of curvatures on the thermal

process in order to fine tune the morphology and properties of these patterns.

In order to be able to describe the complex morphologies observed, we adopt here a phase

field description of the two phase (smectic/isotropic) system. This model is well suited

to represent computationally the small scale interfacial structure that is involved in the

observed instabilities. In the phase field treatment, smectic planes are replaced by a periodic

mass density so that the two phase interface is a region within which smectic order decays into

the isotropic phase. Solutions of the model governing equations are obtained numerically for

toroidal focal domains, and their equilibrium morphology and transient evolution following

a temperature change are studied. We also present an amplitude or envelope equation
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description for weakly distorted SmA-isotropic interfaces in order to make contact with the

numerical results in the appropriate regions of the interface. The asymptotic analysis allows

the derivation of a generalized Gibbs-Thomson equation in which the Gaussian curvature

explicitly appears when terms of second order or higher in the principal curvatures are

retained. Such a dependence is key in regions of large curvature, including near topology

changes.

In Sec. II we briefly summarize the phase field model used and its relation to the more

common description based on the smectic layer displacement field. Section III studies weakly

nonlinear solutions of the model, including the one dimensional, stationary smectic-isotropic

profile at coexistence, and the amplitude equation for weakly distorted smectic layers. We

also construct a front solution connecting smectic and isotropic phases which allows us

to derive generalized Gibbs-Thomson and interface velocity equations. We find that these

equations are different depending on whether the smectic planes are parallel to the interface,

or perpendicular (as in exposed smectic layers). In Sec. IV, we present our numerical

results for a three dimensional configuration in order to verify both stationary solutions

and our asymptotic results. We also examine kinetic phenomena that are not restricted to

weak interfacial curvatures. Starting from a toroidal focal domain, we show how curvature

induced evaporation and condensation of SmA planes leads to morphological change and the

formation of conical pyramids. Away from regions of large curvature or interfacial cusps,

surface evolution is well described by the generalized Gibbs-Thomson equation. In some

cases mean curvature driven growth is sufficient to describe interface motion, whereas in

others, Gaussian and mean curvature terms are both needed to fully describe interfacial

motion.

II. MODEL

The smectic phase of a liquid crystal has uniaxial symmetry: a layered structure along

one direction, and liquid like properties along the two transverse directions. We describe

such a phase with a scalar order parameter ψ(x, t), function of the three dimensional space

x and time t [23], that also accounts for an isotropic phase when its value is zero. At a

microscopic scale on the order of the smectic layer separation, the two phase interface is

not sharp, but rather has a finite characteristic width which is larger than the smectic layer
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wavelength. The free energy associated with the order parameter is [24, 25]

Fs =

∫
dx

1

2

{
εψ2 + α

[(
q2

0 +∇2
)
ψ
]2 − β

2
ψ4 +

γ

3
ψ6

}
. (1)

In this energy, q0 is the layer wavenumber, α, β and γ are three constant, positive parameters,

and ε is a small bifurcation parameter that describes the distance away from the SmA-

isotropic transition temperature. The term proportional to ψ6 is necessary for coexistence

between isotropic and smectic phases, which occurs at the coexistence point εc = 27β2/160γ

[25]. For ε > εc, the equilibrium phase is isotropic, ψ = 0, whereas for ε < εc, the smectic

phase ψ ≈ 1
2
[Aeiq·x + c.c.] is in equilibrium. Here ‖q‖ ≈ q0 of arbitrary orientation.

Spatially localized and periodic states are found not only exactly at εc, but in a neighbor-

hood of this point which grows as εc increases [25]. This is due to a frustration effect [26], as

for ε just above εc there is compression of the localized states with respect to the wavelength

at εc, while for ε just bellow εc there is a stretching of the localized states. Beyond this

neighborhood, the front between the two solutions will move towards either the isotropic or

smectic phase.

We consider relaxational evolution of the order parameter away from equilibrium to be

solely driven by free energy minimization,

∂tψ = −δFs
δψ

= −ε ψ − α (q2
0 +∇2)2ψ + β ψ3 − γ ψ5. (2)

The model defined by Eqs. (1) and (2) forms the basis of our analytic and numerical

analyses described below. It is rotationally invariant, and allows tracking of arbitrarily

distorted smectic planes, as well as isotropic-smectic fronts.

The more common description of weakly distorted smectic phases is in terms of the layer

displacement field away from a reference planar configuration u(x, t). The order parameter

and displacement field descriptions coincide when there is a preferred direction of the smectic

planes, and for weak distortions away from planarity. This is accomplished by defining

smectic layers as the surfaces of constant phase of ψ. For reference layers perpendicular to

the z direction, a weakly distorted smectic plane is ψ = 1
2
(Aeiq0(z−u(x,t)) + c.c). In this limit,

the free energy follows from the Oseen-Frank energy and is given by [27–30]

Fd =

∫
dx

{
K

2
(c1 + c2)2 + K̄c1c2 +

B

2
(∂zu)2

}
, (3)

where c1 and c2 are the two principal curvatures of the layer surface of constant φ(x) =

z − u(x) = (π/q0)m, with m being an integer that orders the layering. This surface has
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a normal n = (−∂xu,−∂yu, 1) to first order in the distortion. The constant K is the

splay modulus of the liquid crystal, K̄ is the so called saddle-splay modulus, and B is the

compressibility modulus. Note that the splay term is associated with an energy contribution

coming from the mean curvature H = 1
2
(c1 + c2), while the saddle-splay is connected to the

contribution from the Gaussian curvature G = c1c2 to the energy.

It is possible to relate parameters in Eq. (1) to the Oseen-Frank constants of Eq. (3)

[31]. Consider a longitudinal distortion field u(x) = δz, with δ � 1. From Eq. (3), the

resulting Oseen-Frank free energy density is fd = 1
2
Bδ2. Then, by computing the change in

free energy through Eq. (1), where we take f ′s to be the free energy density for a distorted

ψ(x′) = A cos[q0(z + δz)] and subtracting the undistorted free energy fs, one finds ∆fs =

δ2αq4
0A

2. Therefore B = 2αq4
0A

2. Similarly, by considering a transverse distortion field

u(x) = δcos(Qx) and u(x) = δ[cos(Qxx) + cos(Qyy)], one can compute the change in free

energy density according to Oseen-Frank and to the phase field model. In the limit of small

distortions, one finds that K = 1
2
αq2

0A
2 and K̄ = 0. Even though it would be required to

consider higher order distortions to find an expression connecting K̄ to the phase field model

parameters, we note that the saddle-splay term in Eq. (3) is a null Lagrangian, and from

the Gauss-Bonnet theorem it follows that the energy contribution of this term depends only

on the topology of the smectic domain and boundary conditions [32].

III. LOCAL EQUILIBRIUM THERMODYNAMICS AND KINETICS OF WEAKLY

PERTURBED SMECTIC LAYERS

Before presenting a fully numerical study of the evolution of toroidal focal domains in

Sec. IV, we discuss in this section the equilibrium conditions at a weakly curved smectic-

isotropic front (the Gibbs-Thomson equation), and the equation of motion for the front.

Both can be derived from an asymptotic expansion of Eqs. (1) and (2) about the isotropic

to smectic transition point. Our analysis serves to both generalize the classical Gibbs-

Thomson equation, and to verify the numerical calculations of Sec. IV for regions of fronts

that have small curvature and are away from singularities. We also seek to understand how

the orientation of the smectic layers with respect to the interface affects these equilibrium

conditions, and how this is related to the experimentally observed nonequilibrium structures

[17]. We first use a multiple scale expansion to derive an amplitude equation for Eq. (2)
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near two phase coexistence, such that we can describe the interface between the two phases

without the oscillatory behavior of the order parameter. We then obtain a particular solution

of the amplitude equation that corresponds to a planar and stationary front connecting bulk

regions of smectic and isotropic phases. Third, we extend this calculation to curved fronts

by projecting the amplitude equation into a local frame on the curved front, and derive both

its chemical potential and law of motion as a function of front curvatures alone.

A. Weakly nonlinear analysis

A weakly nonlinear expansion valid near the smectic-isotropic transition is introduced to

describe the slow relaxation of modulated configurations. We set ε to be a small expansion

parameter, and conduct a standard multiple scale analysis [33, 34]. Here ε > 0 since our

study lies in the region where both ψ = 0 and periodic ψ solutions are linearly stable.

The order parameter ψ is expanded in powers of ε as ψ(x, t) = ε1/4ψ1 + ε3/4ψ2 + ε5/4ψ3 . . .,

and slow spatial and temporal variables are introduced according to X = ε1/4x, Y = ε1/4y,

Z = ε1/2z and T = ε t. The weakly nonlinear analysis will capture smectic-isotropic fronts

when the amplitude of the order parameter in the smectic phase is small. From the value

of ε at coexistence, εc, we assume that β ∼ O(ε1/2) and γ ∼ O(1). The resulting expansion

of Eq. (2) is solved order by order in ε. At O(ε1/4) we obtain the equation defining the

stationary and one dimensional solution in the bulk smectic phase, ψ1 = 1
2

[Aeiq0z + c.c.].

At order ε5/4 a solvability condition appears that leads to an equation for the amplitude A,

which when written in the original x and t variables, reads (details are given in Appendix

A),

∂tA = −εA+ 4αq2
0∂

2
zA− 4 i αq0∂z∇2

xyA− α∇4
xyA+

3

4
β|A|2A− 5

8
γ|A|4A (4)

where ∇2
xy = ∂2

x + ∂2
y and ∇4

xy = ∇2
xy · ∇2

xy. This amplitude equation is accurate up to

terms of O(ε5/4). Even though this equation was derived for small ε, we will later show

numerically that it remains accurate for finite values of this parameter. In our simulations

we use εc & 0.5 in order to have a coexistence region of finite width, sufficient for stable

numerical computation [25], and also to have a sufficiently large range of ε to perform thermal

treatment studies.

The amplitude equation can be written in variational form as ∂tA = −δFA/δA∗, where
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A∗ is the complex conjugate of A, and the associated free energy is,

FA [A,A∗] =

∫
dx

[
α|(2q0∂z − i∇2

xy)A|2 + ε|A|2 − 3

8
β|A|4 +

5

24
γ|A|6

]
. (5)

Equation (5) describes up to O(ε5/4) the relaxation of slowly varying bulk smectic modu-

lations. The relationship between the parameters of the phase field and Oseen-Frank free

energies can be obtained from the energy FA as well. In terms of a small displacement u,

we can write A = 1
2
|A|e−iq0u and similarly for the complex conjugate A∗. By substituting

into Eq. (5), we obtain the compressibility term as αq4
0|A|2|∂zu|2, which when compared to

the Oseen-Frank free energy leads to B = 2αq4
0|A|2. Also from this substitution we obtain

1
4
αq2

0|A|2|∂2
xu+ ∂2

yu|2 for the splay part, and hence K = 1
2
αq2

0|A|2.

B. Stationary, one dimensional, smectic-isotropic front

The amplitude equation, Eq. (4), describes the relaxation of weakly distorted smectic

planes. Near coexistence, however, it can also be used to describe a continuous front solution

connecting smectic and isotropic regions. In order to find such a one dimensional solution

A = A(z) for a planar front perpendicular to the z direction, we substitute A = |A|eiφ into

Eq. (4), where φ is the phase of the complex amplitude. The equation for the imaginary

part leads to

∂z(|A|2∂zφ) = 0, so that |A|2∂zφ = constant.

Since |A| = 0 for the isotropic phase (at z →∞) and |A| has a constant value in the smectic

phase (z → −∞), this implies that ∂zφ = 0. The equation for the real part (A for simplicity)

becomes independent of the phase and is given by,

−εA+ 4αq2
0∂

2
zA+

3

4
βA3 − 5

8
γA5 = 0 (6)

The constant amplitude A in the smectic phase is

A2 =
3β +

√
9β2 − 40εγ

5γ
(7)

By denoting A = Ap(z), Eq. (6) can be solved to yield a planar smectic-isotropic front

exactly at ε = εc, given by,

Ap(z) =

√
18β

5γ

[
4 + exp

(
± z − z0

2
√
αs/3

)]−1/2

. (8)
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The front is centered around z0 (arbitrary) and has width proportional to αs = 40αγ/9β2.

If the smectic-isotropic interface is not planar, the amplitude A will deviate from Eq. (8).

We expect, however, that for weakly curved interfaces, Eq. (8) will be a good approximation

when z is replaced by the coordinate along the local normal to the interface. For example,

Fig. 1 shows Ap and the order parameter ψ found from direct numerical solution of Eq. (2),

plotted along the local normal direction for the cyclide shown in Fig. 2 at time t = 2.

Other than the location of the front, z0, there are no adjustable parameters. The agreement

between the two is excellent despite the fact that εc = 0.675 is of order one. We also observed

numerically that for values of ε up to 0.85 the front solution from Eq. 8 still agrees with the

interface obtained from the order parameter, even though it is no longer stationary.

FIG. 1: Phase field order parameter profile ψ along the normal direction λ in a

SmA-isotropic phase curved interface compared with the amplitude solution Ap for t = 2.

We have chosen εc = 0.675. Further numerical details are given in Sec. IV. The function

Ap accurately captures the envelope of the field ψ.

Note that Ap is not symmetric around z0. In what follows, we will refer to the “smectic-

isotropic interface” as the locus of points of constant Ap, or, equivalently, of constant phase

of ψ in the front region. Appendix D discusses in detail how the location of the interface is

obtained numerically from the order parameter ψ, and how the curvatures on the interface

are computed.
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C. Local equilibrium at at curved front and kinetic law of motion

Consider then an idealized surface that corresponds to the smectic-isotropic interface, and

let p = (s1, s2) be a point on the surface parametrized by s1 and s2. If λ is the coordinate

along the local normal to the surface (λ = 0 on the surface), the coordinates of a point r

near the surface can be written as r(λ, s1, s2) = p(s1, s2) + λn (s1, s2), where n is the local

normal at p. The coordinates s1 and s2 are aligned with the principal directions, associated

with the principal curvatures c1 and c2. We now seek solutions of Eq. (4) of the form

A(r) = Ap(λ(r, t)).

We first compute the difference in chemical potential between a planar SmA-isotropic

interface and a configuration with a weakly distorted interface, where the smectic layers

remain parallel to the interface (perpendicular to the λ direction). As previously noted, the

phase φ of the amplitude is a constant near εc, and the amplitude is a real quantity. The

chemical potential µ in terms of the slowly varying amplitude A, is given by µ = δFA/δA,

and so

µ = εA− 4αq2
0∂

2
zA+ α∇4

xyA−
3

4
βA3 +

5

8
γA5. (9)

The chemical potential µf for flat interface perpendicular to the z direction can be directly

obtained for a front A aligned with z. In order to obtain the chemical potential µc associated

with a curved interface, it is necessary to solve the corresponding amplitude equation. The

scaling in ε introduced for the coordinates transverse to the smectic-isotropic interface is

X = ε1/4x and Y = ε1/4y. We assume that the same scaling applies to s1 and s2. The

induced scaling of the principal curvatures is c1, c2 ∼ O(ε1/2), which follows from the fact

that for small curvatures the mean curvature is half the trace of the Hessian matrix. The

second derivative in the z direction in Eq. (9) generalizes to a second derivative in the

normal direction λ. Additional contributions come from the curvatures, and are obtained

by expanding the differential operators on local interface coordinates (Appendix B details

their expansion in terms of mean H and Gaussian G curvatures). We find,

µc = εA− 4αq2
0

[
∂λ − 2H − (4H2 − 2G)λ+ 2H(G−B)λ2

]
∂λA−

3

4
βA3 +

5

8
γA5 .

For consistency, we have retained curvature terms below order ε7/4, the same order used

in the derivation of Eq. (4). Here, B = c2
1 + c2

2 is the bending curvature. By multiplying

both sides by ∂λAp, integrating over λ, and subtracting the chemical potential for a planar
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surface (Appendix C) we find,

δµ∆A = 2Hσh + (4H2 − 2G)σb − 2H(G−B)σt. (10)

This equation is the condition of local equilibrium, or the generalized Gibbs-Thomson equa-

tion in our model. The chemical potential difference between a curved and a planar surface

δµ is given as a function of the surface curvatures, the discontinuity in amplitude between

bulk smectic and isotropic phases, ∆A, and three coefficients that depend explicitly on the

one dimensional planar front solution Ap:

σh = 4αq2
0

∫ ∞
−∞

dλ (∂λAp)
2

σb = 4αq2
0

∫ ∞
−∞

dλ (∂λAp)
2λ

σt = 4αq2
0

∫ ∞
−∞

dλ (∂λAp)
2λ2 . (11)

The first coefficient σh is the standard surface tension coefficient that relates the change in

chemical potential to the mean curvature of the surface. For weakly curved surfaces, this is

the dominant term as it is inversely proportional to the radii of curvature. The second and

third terms are of second and third order in the inverse radii of curvature respectively, and

describe deviations from the classical form of the Gibbs-Thomson equation. They represent

interface bending (σb) and torsion (σt) contributions respectively, and are usually neglected.

We retain all three terms in the expansion of the chemical potential in what follows because

domains bounded by toroidal focal conics include regions in which the mean curvature

vanishes, as well as regions of large curvature near the conic center. We will investigate

numerically the accuracy of Eq. (10) in those regions. More generally, surface curvatures

become large near regions of morphological singularities, and our result may extend the

range of validity of the Gibbs-Thomson equation in the vicinity of the singularities. Finally,

we stress that all three coefficients can be obtained from Ap given in Eq. (8), and therefore

are completely determined by the parameters of the model, Eq. (1). Note in particular that

σb 6= 0 because the solution Ap is not symmetric around z0. A generalized Gibbs-Thomson

equation similar to Eq. (10) has been previously given by Buff [35] and Murphy [36] in the

context of curved fluid interfaces, albeit using different methods [37]. The curvature terms

in Eq. (10) coincide with theirs, except we have 2H(G − B) = −(c3
1 + c3

2) instead of 2HG

alongside the interface torsion. Also, their curvature terms are associated with similarly

11



defined coefficients σh, σb and σt (in fact, the terminology comes from the work of Murphy

[36]).

A kinetic equation for the smectic-isotropic surface can be derived with a similar projec-

tion operation. The left hand side of Eq. (4) is given by by ∂tA = ∂λ(Ap)Vn, where Vn is

the local normal velocity of the surface of constant Ap. The expansion of the right hand

side of Eq. (4) is the same as the right hand side of Eq. (9). Multiplication by ∂λAp and

integration over λ (Appendix C) gives the kinetic law of motion for the interface,

Vn = −4αq2
0

{
2H + (4H2 − 2G)

σb
σh
− 2H(G−B)

σt
σh

}
. (12)

The lowest order term is the classical law relating the normal velocity to the local mean

curvature, while the remaining terms are the higher order contributions (below ε7/4). As is

the case with Eq. (10), all coefficients are determined by the parameters of the model.

The generalized Gibbs-Thomson equation (10), and the kinetic law, Eq. (12), have been

derived under the assumption that the smectic layers are parallel to the smectic-isotropic

interface. However, some of the configurations observed out of equilibrium in the experiments

of Kim et al. [17] involve pyramidal structures in which smectic layers are exposed, so that

they are aligned perpendicularly to the interface. In this case, for a planar interface the

smectic layers are perpendicular to z whereas the front normal is along x (or y). The

equation describing the planar front for this configuration is,

−εA− α ∂4
xA+

3

4
βA3 − 5

8
γA5 = 0. (13)

We cannot find an analytic solution for this front analogous to Eq. (8), but it can be

obtained numerically. For a weakly curved interface, a similar analysis to the previous case

can be carried out, where the biharmonic from the amplitude equation (4) is expanded when

perturbations off coexistence are introduced in the weakly curved surface description (details

given in Appendix B). This calculation gives the change in chemical potential at a curved

interface relative to planarity as,

δµ∆A =

[
1

2
∇2
sH + 2H(H2 −G)

]
σh
q2

0

. (14)

The coefficient σh is again given by Eq. (11), although in this case it can only be computed

approximately from the numerically determined solution of Eq. (13). Importantly, however,

the coefficient σh/q
2
0 is not a surface tension (energy per unit surface) due to the fact that the
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smectic layers are perpendicular to the interface in this configuration. In order to compute

σh for specific parameter values so as to carry out comparisons with the numerical solutions

of the full phase field model (that we present in Sec. IV), we have obtained a numerical

solution of A in Eq. (13) through a finite difference relaxation method. For the parameter

values of the model used (q0 = 1, α = 1, β = 2, ε = 0.675 and γ = 1) we find that

(σh)
⊥/(σh)

‖ ≈ 2.28, which means that the effective tension for layers perpendicular to the

interface is more than 100% larger than for layers parallel to the interface (see also ref. [17]).

In analogy to the case with layers parallel to the interface, we can derive a kinetic law

for the perpendicular interface. We find,

Vn = −4α

[
1

2
∇2
sH + 2H(H2 −G)

]
. (15)

One remark about the derivation of Eqs. (14) and (15) is that integrals across the interface

of the form σh2 = 4αq2
0

∫
dλ (∂2

λAp)(∂λAp) and σh3 = 4αq2
0

∫
dλ (∂3

λAp)(∂λAp) that appear in

the derivation vanish in the limit of small ε since σh2/σh and σh3/σh scale as ε1/4 and ε1/2

respectively. The kinetic equation (15) that results has a form similar to that of a Willmore

flow [38], although it differs by a factor of 1/2 in the surface Laplacian. Similar kinetic

laws (also called fourth order flows) in which the biharmonic operator plays a role in the

dynamics [39, 40] have been examined in connection with the biharmonic heat equation and

the Willmore flow [41].

IV. NUMERICAL STUDY OF TOROIDAL FOCAL CONIC INSTABILITIES

We use the phase field model given by Eqs. (1) and (2) to study the evolution of a single

focal conic domain of a smectic phase in contact with an isotropic phase. The computa-

tional cell is a three dimensional cubic mesh of size 5123 or 10243. Boundary conditions of

the computational domain are zero normal derivatives of ψ, and zero normal derivative of

the Laplacian of ψ. Focal conic domains, when present, are compatible with these boundary

conditions, since they favor parallel alignment of the molecules with respect to the bound-

aries. Unless otherwise noted, we use α = 1, β = 2 and γ = 1 in our calculations. These

parameters yield a coexistence value of εc = 0.675. We also use q0 = 1 as the reference

wavenumber. The focal conic configuration used for initial conditions (e.g., Fig. 2) is de-

fined by ψ(λ) = A cos(q0λ) in the smectic, where λ is the normal direction, q0 = 1, and then
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amplitude A is given by Eq. (6). This phase is in contact with an isotropic phase ψ = 0.

Equation (2) is solved numerically by a pseudo-spectral method, in which gradient terms

are computed in Fourier space and nonlinear terms in real space. Space discretization is

∆x = 2π/(16q0). Integration in time is of second order with a Crank-Nicholson algorithm

for the linear part of the equation, and a second order Adams-Bashforth method for the

nonlinear terms. The time step used is ∆t = 5 · 10−4. We have developed a custom

C++ code based on the parallel FFTW library and the standard MPI passing interface

for parallelization. In order to accommodate the stated boundary conditions, we use the

Discrete Cosine Transform. Further details on the computational method, tracking of the

the smectic-isotropic surface, and calculation of the interfacial curvatures can be found in

Appendix D.

A. Stationary Clifford torus

In order to verify the accuracy of the numerical scheme, we first consider a toroidal

configuration at coexistence ε = εc, and examine smectic planes bent in the shape of a focal

conic. Friedel [42] was the first to associate focal conic domains with Dupin cyclides, arguing

that smectic molecular layers would bend in this geometrical fashion while remaining parallel

to the interface. Later, these cyclides were also shown to be stable configurations of a SmA

via energy minimization of the Oseen-Frank energy given by Eq. (3) [28, 43, 44]. If the layer

spacing of the smectic in equilibrium is assumed to remain approximately constant, and given

that the term proportional to the Gaussian curvature is a null Lagrangian, minimization of

Eq. (3) reduces to the minimization of
∫
dx(K/2)H2, where K is the splay elastic modulus.

This is the classical Willmore problem. Surfaces that minimize this energy are Willmore

surfaces, which include minimal surfaces, spheres, and Dupin cyclides (in particular, the

axially symmetric Clifford torus), and are obtained by an evolution that follows the Willmore

flow [38].

We have verified that stationary solutions of the phase field model agree with this result.

We consider an initial condition with layers bent in a cyclide configuration, such that there

is a disk of isotropic phase in contact with the substrate. We then compute the evolution

of this configuration by integrating Eq. (2). The evolution leads to the stationary Clifford

torus shown in Fig. 2. Every cross section along the radial direction will display two sections
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of the torus. We show our numerical results in Fig. 3 for both mean and Gaussian curvatures

of a cross section of the surface. They agree very well with the curvatures obtained from an

analytic Clifford torus of the same size.

The circular arrangement of the planes seen from a cross section in the radial direction

is known as a target pattern in the phase field literature [45], such that we can observe two

quarter circle targets in a cross section, one on each side of the center hole. The target

pattern is a stationary solution of Eq. (2) in two dimensions. This can be seen by writing

Eq. (4) in polar coordinates, with r the radial coordinate and r = 0 at the center of the

target. The solution for r � 1 is A(r) =
√

1− 1/r2As, where As is the solution for the

polynomial part of the amplitude equation given by Eq. (7). Since the Clifford torus is an

axially symmetric cyclide, this observation about the target patterns implies that such a

torus should also be a solution for Eq. (2), as verified in Fig. 2.

FIG. 2: Clifford torus configuration as represented by the phase field (left). For reference,

we show internal segments for a family of Clifford tori (right).

B. Evolution of focal conic domains at coexistence

We consider a focal conic at coexistence involving a macroscopic cusp where smectic

layers self intersect. This initial configuration is no longer stationary, and the evolution of

the order parameter is shown in Fig. 4. Near the cusp, where the mean curvature is negative,

a small smectic region nucleates, whereas in the outer region of positive mean curvature,

smectic layers near the interface evaporate. A stationary configuration is reached which is

shown in the figure. Smectic condensation at the cusp like depression is also observed by
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FIG. 3: Stationary values of the mean (above) and Gaussian (bellow) curvatures computed

for the SmA surface from the phase field in Fig. 2. They are plotted along the radial

direction, and compared with the analytic curvatures of a Clifford Torus (middle cross

section). We use N = 5123 and coexistence parameters, with α = 1, β = 2, γ = 1 and

ε = 0.675.

experiments, where material transfers along the interface owing to the variation of the local

vapor pressure at the interface [17].

FIG. 4: Three dimensional phase field (left) and middle cross section (right) for a focal

conic which is unstable at its core, extracted from time t = 150. Parameters are set within

the coexistence region (α = 1, β = 2, γ = 1 and ε = εc = 0.675).

Figure 5 shows results for a similar initial configuration, but with a larger number of

smectic layers. This configuration is closer to the focal conics observed in SmA films, and

16



illustrates the instability of the layer cusps deep inside the smectic domain. Curvatures

are smaller in magnitude when compared to the previous case, in particular close to the

singularity, which slows down the dynamics. We still observe some condensation at the core

under coexistence, but no evaporation is seen near the boundaries. This chevron pattern

has also been observed in phase field models of low angle grain boundaries [46].

FIG. 5: Cross section of the phase field order parameter representation for a TFCD at

coexistence (α = 1, β = 2, γ = 1 and ε = 0.675). Left: starting stage of the simulation.

Right: later stage, time t = 50, we see some deposition at the core of the defect.

C. Evolution of focal conic domains away from coexistence

We next study the evolution of a toroidal focal conic initial condition away from coexis-

tence. We take ε > εc, which corresponds to a thermal treatment to the region in which the

isotropic phase has lower free energy than the smectic. The initial configuration is similar to

one considered in Fig. 5, but with more smectic layers. We observe that smectic layers in the

outer region evaporate, leading to a conical pyramid in the center, as shown in Fig. 6. The

evaporation of each layer stops once the layer border aligns with the one above, creating an

interface of stacked layers. The pyramid has positive Gaussian curvature, in contrast to the

initial layers of negative Gaussian curvature. Similar pyramidal morphologies are observed

experimentally [17].

During the evaporation of the smectic film, we compare the numerically computed inter-

face normal velocity, given by Vn = ∂tψ/|∇ψ| with the asymptotic predictions of Eqs. (12)
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FIG. 6: Conical pyramids that appear due to the localized evaporation of smectic layers

around the edges, for time t = 50. Parameters are set such that the isotropic phase is

thermodynamically favored (α = 1, β = 2.0, γ = 1.0 and ε = 0.8).

and (15). We consider first the case of smectic layers parallel to the interface, with velocity

described by Eq. (6). The initial configuration adopted is the same as the one used to gener-

ate Fig. 5. We take ε = 0.75, and all numerical data shown corresponds to the initial stages

of evolution (t = 5) so that the SmA layers remain parallel to the interface across the entire

surface outside a small neighborhood around the cusp. The values of the coefficients σh, σb

and σt used are given in Eq. (11) with Ap defined in Eq. (8). Local mean and Gaussian

curvatures are directly obtained from the evolving phase field as discussed in Appendix D.

Figure 7 shows the normal velocity computed from the full phase field model, the normal

velocity predicted by Eq. (12), and the normal velocity that follows from mean curvature

motion alone (i.e., with σb = σt = 0). The system size is N = 10243 so that 0 < x < 401.

The interface singularity is located at x ≈ 200 in the figure. While there is good agreement

among all three results away from the center, differences appear in the high curvature region

towards the center of the domain. Specifically, motion driven by mean curvature alone near

the focal conic center deviates from the computed interface velocity, including its sign. On

the other hand, the normal velocity predicted by the higher-order velocity equation agrees

with the numerical value until very close to the center of the focal conic. We note that there

are no adjustable parameters in the results shown in Fig. 7, except for a uniform velocity

shift owing to the lower energy of the isotropic phase, as ε > εc. We observe that the region

in which mean curvature driven growth deviates from the full numerical calculation is rather
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small. We estimate that the radius of this region would be on the order of 30 nm in the

experiments of Ref. [17], and hence below the resolution of optical detectors. Nevertheless,

our calculation is consistent with the experimental observation that pyramids form due to

smectic layer evaporation away from the focal conic center, not nucleation of new smectic

layers at the center.
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FIG. 7: Local normal velocity of SmA-isotropic interface, extracted from a focal conic

under sintering (ε = 0.75 > εc). The numerically determined surface velocity is plotted

against the generalized velocity prediction for planes parallel to the interface, and

compared to the classical prediction of mean curvature driven motion. N = 10243, defect

core at x ≈ 200.

As mentioned previously, the results shown in Fig. 7 were taken early in the evolution, so

that the pyramidal structure was just beginning to form. As the pyramidal structure grows

to macroscopic size, as in Fig. 6, the smectic planes in the pyramid are perpendicular, not

parallel, to the smectic-air interface. This agrees with the observed morphological recon-

struction of smectic films during thermal sintering [17]. As a consequence, the local normal

velocity in this case should be given by Eq. (15). Consider a large pyramidal structure,

shown in Fig. 8, taken from a calculation with N = 5123, ε = 0.8 and after a fairly long

time of t = 200. The corresponding interfacial velocity is shown in Fig. 9(a). We find that

the normal velocity is approximately constant and slightly negative over the entire pyramid,
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meaning that the structure shown is uniformly evaporating, albeit slowly. The curvatures

of the moving interface are shown in Fig. 9(b). The mean curvature squared H2 is almost

identical to the Gaussian curvature G, which, given the interfacial kinetic equation Eq. (15),

accounts for the small and almost constant normal velocity over the entire pyramid interface.

The constant rate of evaporation is due to the difference in bulk energy between the two

phases when ε > εc, and does not depend on local curvatures.

FIG. 8: Pyramidal morphology obtained from a focal conic under thermal sintering for a

long time (t = 200). Middle cross-section (right) and the SmA surface (left) are shown for

N = 5123. Initial condition was composed of a focal conic with layers reaching almost the

top (z = 200) of the domain. Parameters: α = 1, β = 2.0, γ = 1.0 and ε = 0.8

We conclude by presenting numerical results for a larger system (N = 10243), with

ε = 0.8, so that we can examine the different interface orientations within a single simulation.

The initial configuration is a focal conic domain. As the configuration evolves, smectic layers

away from the middle (and parallel to the interface) evaporate while a pyramid (with layers

perpendicular to the interface) forms at the center. The transient morphology obtained at

t = 50 is shown in Fig. 10. The local normal velocity in the outer region is given by Eq. (12),

whereas the inner region local normal velocity is given by Eq. (15). As was the case in the

experiments of Ref. [17], the conical pyramid forms due to curvature induced evaporation

of layers in the outer region, whereas evaporation is essentially negligible in the pyramidal

region owing to the balance of mean and Gaussian curvatures. Our numerically obtained

normal velocities for this interface are shown in Fig. 11(a). As before, there is a constant

20



FIG. 9: Interface velocity and curvature comparison for the pyramid, with ε = 0.8. Left:

The numerically determined surface velocity is plotted against the generalized kinetic law

for planes perpendicular to the interface. Right: mean curvature squared H2

approximately matches the Gaussian curvature G for this morphology.

background shift of both curves arising from the the constant energy difference between the

bulk phases, but there are otherwise no adjustable parameters. The agreement between the

numerical solution and the predictions of the asymptotic analysis is excellent.

FIG. 10: Focal conic during thermal sintering, presenting a pyramid of appreciable size at

its core (t = 50), using N = 10243. Left: SmA smoothed surface. Right: Middle

cross-section blow up, revealing the pyramidal structure being formed at the core.

Finally, we show in Fig. 11(b) the interfacial normal velocity that would result from mean
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FIG. 11: Interface velocity for a middle cross-section. Left: The numerically determined

surface velocity is plotted against the two generalized kinetic laws, one for each region.

Right: The evolution by mean curvature velocity prediction is completely off for the

central pyramidal region.

curvature driven growth alone. The agreement with the numerical result is quite good in the

outer region of small curvature, where the effects of bending and torsion are negligible. Near

the center, however, mean curvature driven growth fails to describe the numerical results.

V. CONCLUSIONS AND DISCUSSION

The computational challenges of tracking a complex and moving smectic-isotropic phase

boundary have been addressed by using a phase field model. We have presented an asymp-

totic analysis of the solutions of the model, valid near smectic-isotropic coexistence, and

for weakly curved interfaces. A generalized Gibbs-Thomson equation has been derived that

captures the role of Gaussian curvature on the thermodynamics and kinetics of the smectic-

isotropic interface. Configurations with smectic layers both parallel and perpendicular to

the interface have been investigated. In the former case, three surface energy coefficients are

necessary to describe local equilibrium thermodynamics and kinetics to the order of approx-

imation considered. These coefficients can be computed analytically within the model. In

the latter case, the chemical potential at a curved interface is not proportional to the local

mean curvature, but rather a Willmore type problem emerges.
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We have used direct numerical integration of the phase field model to compare full numer-

ical results to the predictions of the asymptotic analysis. We consider an initial configuration

comprising smectic layers bent into a toroidal focal conic domain. We have shown that this

domain is stable when the smectic phase is in equilibrium with the isotropic phase, though

there is some relaxation when the smectic layers intersect at the center of the domain.

Away from coexistence, we can numerically track the local curvatures and front velocity of

the smectic-isotropic interface. We observe that when the isotropic phase is favored, focal

conic domains evolve such that smectic planes away from the conic center evaporate due to

excess chemical potential, exposing a central region with a pyramidal shape. This obser-

vation is in agreement with recent sintering experiments in smectic films. Front velocities

obtained from the phase field are in good agreement with the asymptotic analysis. In par-

ticular, higher-order contribution to the Gibbs-Thomson equation are important in regions

of high curvature near the center of the focal conic, and in pyramidal region where smectic

planes are perpendicular to the interface. In both cases, the observed velocity cannot be

described by the classical law of interfacial motion by mean curvature only. This is partic-

ularly noticeable in the motion of the pyramidal structures, where the contributions from

mean curvature squared and the Gaussian curvature cancel in the velocity law, Eq. (15).

We mention finally that our analysis focuses on the smectic-isotropic interface, whereas

the experiments in thin films concern a smectic-air interface instead. Therefore our analysis

does not contain any hydrodynamic stresses at the smectic-air boundary, or any resulting

flows. Although velocity fields were not measured in the experiments, and the results were

interpreted in terms of the same evaporation-condensation mechanisms that we have exam-

ined here, the excess energies that introduce corrections to the Gibbs-Thomson equation will

also lead to normal stresses at the boundary. Work that includes these stresses is currently

in progress.
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Appendix A: Amplitude equation

The phase field order parameter introduced in Sec. II is driven by energy minimization,

with the following dynamical equation

∂tψ = −ε ψ − α (q2
0 +∇2)2ψ + β ψ3 − γ ψ5.

Our goal is to derive an amplitude equation [26, 33, 34] describing the motion of the envelope

that describes the SmA-isotropic front without the oscillatory behavior of the phase field.

We perform this analysis for small positive values of ε, ε� 1 such that the amplitude of the

order parameter is also small. Assuming the SmA layers are perpendicular to the z direction,

the solution representing this phase is approximately ψ(x, t) ≈ 1
2
(Aeiq0z + c.c.). Space and

time can be separated in fast and slow scales, where the fast variables are {x, y, z, t}, and the

slow variables are {X, Y, Z, T}. If we consider this amplitude to be slowly modulated along

the perpendicular direction to the layers, we can set a distinction between the fast varying

carrier exp(iq0z), and the slowly varying the amplitude A(X, Y, Z, T ). By introducing small

perturbations in x, y and z to the wavenumber in Eq. (A1), the following scaling is obtained

X = ε1/4x, Y = ε1/4y, Z = ε1/2z, T = εt. (A1)

Note that β ∼ ε1/2, since at the coexistence point εc = 27β2/160γ. Also, one can show

that both ψ = 0 and the non-trivial solution are stable for ε > 0 up to the turning point

εtp = 9β2/40. For larger ε only the trivial solutions exists and is stable. For small values of ε

these two points become very close, and they are also within the range of small perturbations

from the bifurcation point ε = 0.

From the proposed scaling and the chain rule, the derivatives from Eq. (2) can be recast

as

∂z → ∂z + ε1/2∂Z , ∂x → ε1/4∂X , ∂y → ε1/4∂Y , ∂t → ε∂T

The dynamical equation for the order parameter can then be expanded in terms of these
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fast and slow variables. By writing its linear part as the operator L, we have that

L− ∂t = −ε− α(∇2 + q2
0)2 − ∂t

= −ε− α((∂z + ε1/2∂Z)(∂z + ε1/2∂Z) + ε1/2∂2
X + ε1/2∂2

Y + q2
0)2 − ε∂T

= Lc + ε1/2L1 + εL2 + ε3/2L3 + ε2L4 .

The phase field order parameter ψ can be expanded in terms of ψ about the zero solution

as

ψ = ε1/4ψ1 + ε3/4ψ2 + ε5/4ψ3 + . . .

Plugging this expansions back into the phase field dynamical equation, we collect the differ-

ent terms according to their order in ε. Starting with order ε1/4, we have

Lcψ1 = 0⇒ ψ1(x, t) =
1

2

[
A11 e

iq0z + c.c.
]
.

For order ε3/4, the following is satisfied

Lcψ2 + L1ψ1 = 0⇒ ψ2(x, t) =
1

2

[
A21 e

iq0z + c.c.
]
.

Finally, for order ε5/4 we find extra contributions owing to the nonlinear terms in Eq. (A1),

Lcψ3 = −L1ψ2 − L2ψ1 − βψ3
1|±iq0 + γψ5

1|±iq0

= −
[
− ε+ 4αq2

0∂
2
Z − i4αq0∂Z(∂2

X + ∂2
Y )− α(∂4

X + 2∂2
X∂

2
Y + ∂4

Y )

+
3

4
β|A11|2 −

5

8
γ|A11|4 − ∂T

] (
A11 e

iq0z + c.c.
)
.

From the solvability condition (Fredholm’s Alternative), this equation has a solution if

∂TA11 = −εA11 + 4αq2
0∂

2
ZA11 − i4αq0∂Z(∂2

X + ∂2
Y )A11

+
3

4
β|A11|2A11 − α(∂4

X + 2∂2
X∂

2
Y + ∂4

Y )A11 −
5

8
γ|A11|4A11 .

Since the fast-varying carrier is now removed from this equation, we can reescale it back

to the original variables {x, y, z, , t}. Expanding A as

A = ε1/4A11 + ε3/4A21 + . . .

and going back to the original variables, we find the amplitude equation for A in complex

form,

∂tA = −εA+ 4αq2
0∂

2
zA− 4 i αq0∂z∇2

x;yA− α∇4
x,yA+

3

4
β|A|2A− 5

8
γ|A|4A.
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Although the current analysis was performed around small positive values of ε, we observe

numerically that this amplitude equation and its stationary solutions (discussed in Sec. III)

accurately describe the two phases and the front between them at least up to εc ≈ 1.

Appendix B: The Laplace-Beltrami operator for a curved surface

Let S ⊂ IR3 be a regular orientable surface, where Tp(S) is the tangent plane to S at

p ∈ S. Define the following sets of orthogonal frames

{t1,n,b1} , t1 ∈ Tp(S)

{t2,n,b2} , t2 6= t1, t2 ∈ Tp(S) .

The differential dNp : Tp(S)→ Tp(S) of the Gauss map N : S → S2 of S, where n ∈ N(S),

is a self-adjoint linear map. Therefore, for each p ∈ S there exists an orthonormal basis

{t1, t2} of Tp(S) such that

dNp(t1) = −c1t1 , dNp(t2) = −c2t2 .

See Do Carmo [48] for a proof of this theorem. Hence, t1 and t2 in our frames are defined as

the eigenvectors at p, with eigenvalues (principal curvatures) c1 and c2. Since t1 and t2 are

orthonormal, we can simply set an orthonormal frame aligned with the principal directions

{t1(p), t2(p),n(p)} , p ∈ S.

Writing the surface coordinates as s1 and s2, we have p = (s1, s2) ∈ S. For a point near the

surface S, we write the position vector as

r(λ, s1, s2) = p(s1, s2) + λn(s1, s2)

where λ is the normal coordinate. Therefore, we obtain the following set of derivatives

dr

ds1

=
dp

ds1

+ λ
dn

ds1

= (1− λc1)t1

dr

ds2

=
dp

ds2

+ λ
dn

ds2

= (1− λc2)t2

dr

dλ
= n
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The covariant metric tensor (first fundamental form) can now be computed by

gij = < ri, rj > =


1 0 0

0 (1− λ c1)2 0

0 0 (1− λ c2)2

 .
From the orthogonality of the covariant and contravariant metric tensors, the contravariant

form is

gijg
ij = δij ⇒ gij =


1 0 0

0 (1− λ c1)−2 0

0 0 (1− λ c2)−2

 .
For this principal coordinate system (λ, s1, s2), the infinitesimal distance with respect to

a point on the surface is

dr =
∂r

∂λ
dλ+

∂r

∂s1

ds1 +
∂r

∂s2

ds2 = n dλ+ (1− λc1)t1ds1 + (1− λc2)t2ds2.

With the metric tensor at our disposal, it is possible to obtain the Laplace-Beltrami operator

for the Riemannian manifold associated with the coordinate system (λ, s1, s2). The operator

has the following form

∇2 =
1

g1/2
∂i
(
g1/2gij∂j

)
.

where g = det(g) = (1− λ c1)2(1− λ c2)2. We expand further as

∇2 = gij∂ij + ∂i(g
ij)∂j +

1

g1/2
∂i(g

1/2)gij∂j

gij∂ij = ∂2
λ + (1− λ c1)−2∂2

s1
+ (1− λ c2)−2∂2

s2

∂i(g
ij)∂j =

2λ∂s1c1

(1− λ c1)3
∂s1 +

2λ∂s2c2

(1− λ c2)3
∂s2

1

g1/2
∂i(g

1/2)gij∂j =
1

g1/2

{
[−(c1 + c2) + 2λ c1c2]∂λ

+ [−λ∂s1(c1 + c2) + λ2∂s1(c1c2)](1− λc1)−2 ∂s1

+ [−λ∂s2(c1 + c2) + λ2∂s2(c1c2)](1− λc2)−2 ∂s2

}
For a weakly distorted interface, derivatives in the normal and the tangential direction

scale differently in terms of curvatures: ∂λ ∼ 1, ∂s1 ∼ c1 and ∂s2 ∼ c2. Hence, by neglecting
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the higher order curvature contributions for tangential derivatives, the Laplace-Beltrami

operator can be reduced to

∇2 ≈ ∂2
λ + ∂2

s1
+ ∂2

s2
+
−(c1 + c2) + 2λ c1c2

1− λ(c1 + c2) + λ2c1c2

∂λ

= ∂2
λ + ∂2

s1
+ ∂2

s2
+ ∂λ(ln(1− λ(c1 + c2) + λ2c1c2))∂λ.

By expanding ln(1 + x) = x − (1/2)x2 + (1/3)x3 + ... with x = (−2λH + λ2G), where

H = 1
2
(c1 + c2) is the mean curvature and G = c1c2 the Gaussian curvature, the previous

equation becomes

∇2 = ∂2
λ + ∂2

s1
+ ∂2

s2
+ ∂λ

[
− 2λH + λ2G

−1

2
(4λ2H2 − 4λ3GH + λ4G2) +

1

3
(−8λ3H3 + ...)

]
∂λ + h.o.t. (B1)

Since we can write H3 = (1/4)H(B+2G), where B = 4H2−2G is the bending curvature,

Eq. (B1) may be cast with respect to its leading order terms as

∇2 ≈ ∂2
λ +∇2

s + (−2H − (4H2 − 2G)λ+ 2H(G−B)λ2)∂λ

where ∇2
s = ∂2

s1
+∂2

s2
. Note that 2H(G−B) = −(c3

1 + c3
2). We don’t substitute B for second

order curvature term to leave the Gaussian curvature explicit in it.

The biharmonic ∇4 can similarly be expanded in curved coordinates from the Laplace-

Beltrami operator in Eq. (B1). This operator is needed to derive the Gibbs-Thomson equa-

tion for the case of layers perpendicular to the interface. We collect all terms up to third

order in curvatures. We find the term (∂2
λ+∂2

s1
+∂2

s2
)2 as well as additional terms associated

with the first, second and third derivatives with respect to λ. As we are unable to say

anything about the possible order and role of derivatives in λ, we keep all of these terms;

however we keep only the lowest order term in curvature associated with each of them. This

yields,

∇4 ≈ (∂2
λ + ∂2

s1 + ∂2
s2)2 − (2∇2

sH + 4H(2H2 − 2G))∂λ

−4(H2 −G)∂2
λ − 4H(∂3

λ + ∂2
s1
∂λ + ∂2

s2
∂λ)− 4(∂s1H∂s1∂λ + ∂s2H∂s2∂λ) .

Appendix C: Generalized Gibbs-Thomson

In this section, we derive a generalized Gibbs-Thomson relation for the case where smectic

layers are parallel to the interface. The case where layers are perpendicular to the interface
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is analogous, as described in Sec. III. The amplitude equation is described by Eq. (4), and

has an analytical stationary solution given by Eq. (8) in coexistence. Our procedure for

deriving a a generalized Gibbs-Thomson relation is based on the analysis by Langer for the

Cahn-Hilliard model [49] .

The chemical potential is derived from the variational derivative of Eq. (5) with respect

to the amplitude A, and with ε = εc. Consider flat SmA planes with normal aligned to the z

direction, and take the front solution to be A = Ap(z), as in Eq. (8). From the discussion in

Sec. III, the phase of the amplitude is a constant, and the amplitude reduces to real values.

Then, the chemical potential associated with a flat interface is

−µf = −εA+ 4αq2
0∂

2
zA+

3

4
βA3 − 5

8
γA5.

For a curved interface situated at λ0 = 0, the chemical potential is derived from the ampli-

tude equation describing the evolution of a weakly curved front, in the {λ, s1, s2} coordinate

system, as detailed in Sec. III. As the interface in the normal direction conserves the shape

of the solution Ap when the SmA layers are curved (see Fig. 1), we consider the front to

be described by A = Ap(λ). Hence, the amplitude is aligned with the normal direction λ to

the interface. The chemical potential for the curved interface is

−µc = −εA+ 4αq2
0

[
∂λ − 2H − (4H2 − 2G)λ+ 2H(G−B)λ2

]
∂λA+

3

4
βA3 − 5

8
γA5 .

By multiplying both sides by the derivative of the amplitude A with respect to λ and

integrating the result from a point before the transition zone (say, the smectic region) to

another one after the transition zone (say, the isotropic region), we obtain

−
∫ ∞
−∞

dλµc ∂λA =

∫ ∞
−∞

dλ

{
− εA+

3

4
βA3 − 5

8
γA5

+4αq2
0

[
∂λ − 2H − (4H2 − 2G)λ+ 2H(G−B)λ2

]
∂λA

}
∂λA .

Hence, the difference between the chemical potentials of a curved and flat interface is given

by

−
∫ ∞
−∞

dλ ∂λ(µcA− µfA) = 4αq2
0

{
−2H

∫ ∞
−∞

dλ (∂λA)2 − (4H2 − 2G)

∫ ∞
−∞

dλ (∂λA)2 λ

+2H(G−B)

∫ ∞
−∞

dλ (∂λA)2 λ2

}
.
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The integrals on the right hand side have been defined in Sec. III, Eq. (11), see also

[36]. They are the interfacial tension σh, the bending stress σb and the torsion stress σt,

respectively. We now write the generalized Gibbs-Thomson equation as,

δµ∆A = 2Hσh + (4H2 − 2G)σb − 2H(G−B)σt .

In a similar fashion, we can derive the interface velocity equation. For this, we assume that

the kinetic equation of the envelope Eq. (4) describes a motion predominantly aligned with

the normal direction n. Recall that the interface in the normal direction conserves the shape

of the solution Ap for curved SmA layers (with a constant phase φ), so, by the chain rule,

∂λA∂tr · n = εA+
3

4
βA3 − 5

8
γA5

+4αq2
0

[
∂λ − 2H − (4H2 − 2G)λ+ 2H(G−B)λ2

]
∂λA .

Since A ≈ Ap, the right hand side of the previous equation reduces to

∂λA∂tr · n = 4αq2
0

{
− 2H − (4H2 − 2G)λ+ 2H(G−B)λ2

}
∂λA . (C1)

Since the interface velocity Vn is taken as positive when the SmA surface moves in the

direction of the isotropic phase (and negative otherwise), Vn = ∂tr · n . Then, multiplying

both sides of Eq. (C1) by ∂λA and integrating, we obtain∫ ∞
−∞

dλ (∂λA)2 Vn = 4αq2
0

{
−2H

∫ ∞
−∞

dλ (∂λA)2 − (4H2 − 2G)

∫ ∞
−∞

dλ (∂λA)2 λ

+2H(G−B)

∫ ∞
−∞

dλ (∂λA)2 λ2

}
.

Recalling the definitions for σh, σb and σt, the interfacial velocity is

Vn = 4αq2
0

{
− 2H − (4H2 − 2G)

σb
σh

+ 2H(G−B)
σt
σh

}
.

Appendix D: Computational methodology

We employ a hybrid spectral-finite difference scheme in space owing to the fourth-order

spatial derivatives in Eq. (2). All gradient terms are computed in Fourier space. Unstable

or nonlinearly active modes in this model are contained in a finite band around q0, which

is an input parameter for the model. Therefore it is possible to use controlled Fourier
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filtering to ensure stability of the high q Fourier modes in the decomposition, and thus avoid

subharmonic instability arising from modes that are strongly damped in the physical model.

All nonlinear terms are computed in real space. By using real space operations we avoid

having to compute Fourier mode convolutions. We employ a second order accurate scheme in

time. Because both characteristic spatial and temporal scales derive from model parameters,

it is relatively easy to maintain accuracy and stability. This is in marked contrast with the

difficulties inherent in evolving macroscopic singular distributions.

Our FFT based code solves the evolution equation for the order parameter through an in-

house developed C++ code (PFSmA) which relies on the FFTW library [50, 51] and standard

MPI libraries for parallelization. Each core receives one to several two-dimensional slabs of

real (DP) three-dimensional data sets when computing forward and inverse FFTs. The main

performance bottleneck in FFT computation is communication, so the global transposition

of post-processed data is a downside that compromises the parallel performance.

The PFSmA code computes the order parameter after each time step using a combination

of Crank-Nicolson and Adams-Bashforth schemes in Fourier space. For such task, we define

the linear operator Lq and the Fourier transform Nq of the nonlinear terms as

Lq = ωψq = −
[
ε+ (q2 − q2

0)2)
]
ψq

Nq =
(
βψ3 − γψ5

)
q

We then use a combination of the implicit Crank-Nicolson scheme for the linear terms with

an explicit, second order Adams-Bashforth scheme for the non-linear terms in Fourier space

to integrate Eq. (2) and obtain ψ for the new time,

ψq(t+ ∆t) =
(1 + ∆t

2
ω(t))ψq(t) + ∆t

2
(3Nq(t−Nq(t−∆t))

1− ∆t
2
ω(t+ ∆t)

.

For all simulations shown in this work, we use Neumann and zero normal third order

derivatives as boundary conditions for the order parameter field, in order to make contact

with the focal conic domains of [17]. In this case we use the cosine Fourier transform

(DCT) for the even order derivatives of the order parameter. Our computational domain

is Ω = [0, L]3, where L is the domain length. We fix q0 = 1 in all simulations, such that

the grid spacing is h = 2π/16q0, N is the number of nodes (generally 5123 or 10243) and

L = (N1/3 − 1)h.
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1. Surface tracking and curvatures computation

The surface is tracked by searching for points where ψ(x) = const. and |∇ψ(x)| 6= 0 in

the transition region. Since we acquire the curvatures from this rapidly varying phase field,

we need to implement an algorithm to smoothly and accurately compute them. Here, based

on Megrabov’s work [52], we use the following implicit expressions

H =
1

2
∇ ·
(
∇ψ
|∇ψ|

)

G = −1

2
∇ ·
[
∇(ln|ψ|)−∇2ψ

∇ψ
|∇ψ|2

]
.

Since at each node on the mesh we are able to compute the order parameter derivatives,

we rework the previous expressions to better accommodate them in the algorithm. By

writing first and second derivatives of ψ as ψi and ψij respectively, where i, j = {x, y, z}, we

can numerically obtain the mean and Gaussian curvatures through

H = (2|∇ψ|3)−1
[
(ψ2

y + ψ2
z)ψxx + (ψ2

x + ψ2
z)ψyy + (ψ2

x + ψ2
y)ψzz

−2(ψxψyψxy + ψxψzψxz + ψyψzψyz)
]

(D1)

and

G = |∇ψ|−4
{
ψ2
z(ψxxψyy − ψ2

xy) + ψ2
y(ψxxψzz − ψ2

xz) + ψ2
x(ψyyψzz − ψ2

yz)

+2[ψyψxy(ψzψxz − ψxψzz) + ψxψxz(ψyψyz − ψzψyy)

+ψzψyz(ψxψxy − ψyψxx)]
}
. (D2)
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