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Abstract

Soft modulated phases have been shown to undergo complex morphological transitions, in which

layer remodeling induced by mean and Gaussian curvatures plays a major role. This is the case in

smectic films under thermal treatment, where focal conics can be reshaped into conical pyramids

and concentric ring structures. We build on earlier research on a smectic-isotropic, two phase con-

figuration in which diffusive evolution of the interface was driven by curvature, while mass transport

was neglected. Here, we explicitly consider evaporation-condensation processes in a smectic phase

with mass transport through a coexisting isotropic fluid phase, as well as the hydrodynamic stresses

at the interface and the resulting flows. By employing the Coleman-Noll procedure, we derive a

phase-field model that accounts for a varying density field coupled to smectic layering of the order

parameter. The resulting equations govern the evolution of an interface between a modulated

phase and an isotropic fluid phase with distinct densities, and they capture compressibility effects

in the interfacial region and topological transitions. We first verify a numerical implementation of

the governing equations by examining the dispersion relation for interfacial transverse modes. The

inverse decay rate is shown to scale as Q2 (Q � 1 is the wavenumber of the perturbation) due

to hydrodynamic effects, instead of the Q4 expected for diffusive decay. Then, by integrating the

equations forward in time, we investigate fluid flow on distorted layers and focal conics, and show

how interfacial stresses and density contrast significantly determine the structure of the flow and

the evolution of the configuration.
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I. INTRODUCTION

Soft matter systems are the subject of research in a number of areas due to the versatility

of their ordered phases, and the easy control of morphology, defects and topology, leading

to potential novel applications in both materials science an biology. Among prominent soft

materials we mention modulated phases in block copolymers [1] and smectic liquid crystals

[2]. The latter are formed by anisometric molecules that present collective orientational

order along a director axis, and are organized in periodically spaced layers, so that they

exhibit broken rotational and translational symmetries. While in the longitudinal direction

layers behave rigidly as a solid, the transverse direction (in the two dimensional manifolds

defined by the smectic layers) exhibits fluidity, and hence both elasticity and hydrodynamics

are important when modeling smectics. Both effects have a major role in the orientational

control of smectics, a fact that has prompted many recent experimental studies of meso-

scopic patterning of liquid crystal films by thermal and surface treatments [3–5], and also by

manipulating the geometry of the interface via inclusions [6]. This combination of elasticity

and hydrodynamics becomes key not only to the engineering of surface properties, but also

to controlling the structure of self-induced flows.

Continuum models of liquid crystals, including evolving two phase interfaces, are an im-

portant tool for understanding the rich interplay between hydrodynamics, topology, struc-

ture and curvatures during morphological transitions. Theoretical and numerical efforts in

this direction have been made for nematic liquid crystals, initially for a fixed surface [7] and

more recently for a moving nematic with a minimal continuous surface [8], coupling hydro-

dynamics with interfacial evolution. Particular interest lies in how the fluid flow connects

to the director field and geometry of such systems, and the role played by hydrodynamics

in the interaction of defects. This control is also key in studies of active matter transport,

since active particles and microswimmers, such as bacteria, can be guided by the flow in-

duced by an anisotropic medium [9, 10]. However, a theory for the coupled evolution of

a smectic liquid crystal with a two phase interface and the resulting hydrodynamic flows,

including macroscopic singularities associated to topological defects, is still under active de-

velopment. The periodic nature of smectic phases requires one to distinguish between the

motion of the surfaces defining the modulation in the bulk phase, and the interface sepa-

rating this phase from a neighboring isotropic fluid phase. When studying the evolution of
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such interfaces, the model must also be able to accommodate topological transitions and

dynamically handle macroscopic singularities in the form of defects. Phase-field models, or

Ginzburg-Landau-type equations as used in our work, present a versatile way to describe

complex interfacial morphologies and their evolution, being able to represent a modulated

to disordered transition by a smooth order parameter.

We previously introduced a diffuse interface model of a smectic-isotropic interface [11]

with uniform density, and focused our attention on the resulting thermodynamic relations

and kinetic laws in the macroscopic limit of a thin interface. While the model describes

diffusive evaporation-condensation, a proper study of a smectic film interface requires con-

sideration of mass flow and stresses at the interface as the smectic is in contact with an

isotropic fluid phase of different density. For this, we need a complete model including

conservation of momentum, mass, and a dynamic equation for the order parameter, with a

density dependent free energy. We present here a detailed derivation of a phase-field model

for a system where a smectic phase is in contact with an isotropic phase of different density.

We further consider the quasi-incompressible limit in order to focus on mass transport at

the interface, in an effort to model the experiments on smectic thin films of Refs. [5, 12].

Cahn and Hilliard [13] pioneered the use of phase-fields in the study of interfacial motion

in a binary mixture by assuming a gradient free-energy functional of the concentration. The

method was further developed to study the unstable motion of a two-phase interface by

Allen and Cahn [14]. The model was also extended to include hydrodynamic flows [15, 16]

through a coupled Navier-Stokes and Cahn-Hilliard problem, also known as Model H in the

critical dynamics literature. Lowengrub and Truskinovsky [17] derived a phase-field model

for a binary mixture with phases of different density, and derived a thermodynamically

consistent model that accounts for the effects of such a varying density field. While they

considered both bulk phases of the binary to be incompressible, they show that compressibil-

ity effects take place at the interface, where the velocity becomes non-solenoidal. Since the

density can be calculated by a constitutive equation from any point where the composition is

known, and compressibility is restricted to the interface, their model is known as the quasi-

incompressible Cahn-Hilliard model. Diffuse-interface models for other two-phase flows with

distinct densities have been actively developed since then, with particular interest in large

density ratios [18, 19], for which the stability of the derived numerical schemes becomes a

problem due to nonlinear terms coupled to the density. These latter developments may be
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extended beyond uniform bulk phase binaries. For the case of a modulated-isotropic inter-

face, however, the oscillatory nature of the order parameter introduces challenges that we

explore in the present work. For example, we have an energy density with a dependence on

higher order derivatives, and a less intuitive choice of constitutive equation for the density.

In this case, we need to extract from a non uniform oscillatory order parameter a density

field that is homogeneous in both phases, and carefully define pressure fields.

Here we use a Colemann-Noll procedure [17, 19, 20] to derive a set of governing equations

that couple the phase-field equation for the order parameter representation of a smectic-

isotropic system to a momentum transport equation, and account for a varying density

between the two phases. We specialize our discussion to the analog of quasi-incompressible

smectic-isotropic fluid, motivated by recent experiments in smectic-A thin films [5, 12].

When such films are deposited on treated substrates, antagonistic boundary conditions cause

smectic layers to align perpendicularly to the substrate but parallel to the interface with

the fluid. In this way they induce the smectic layers to bend into focal conics, which are

topological defects that organize throughout the film into periodic arrays. It has also been

observed that when domains of focal conics are formed through morphological transforma-

tions in the nematic-smectic transition, they retain the geometric memory of how boojum

defects in nematics were organized [21, 22]. By thermal annealing, these focal conics are

reshaped into various other structures due to the curvature driven evaporation-condensation

of the smectic layers, leading to a variety of morphologies, including conical pyramids and

concentric rings. These structures present dual scale features, since the scale of the original

defects is usually in micrometers, while the details of the formed layers are nano-sized. For

example, this dual roughness gives them superhydrophobicity, which is an essential ingre-

dient for self-cleaning surfaces [3]. Further, these morphologies can enable the control of

active transport, and expand current applications of focal conic domains in smectics, such

as guides for self-assembly of nanoparticles [23], selective microlens photomasks [24], and

building blocks for soft lithography patterning [25].

In Sec. II we briefly review the model for a smectic-isotropic system of uniform density of

Ref. [11]. A fully compressible model for smectic-isotropic two phase interface is derived in

Sec. III: reversible currents are obtained by imposing zero entropy production in the Second

Law of Thermodynamics, while irreversible currents are derived by asserting the Clausius-

Duhem inequality holds in case of dissipation. We next specialize this model to a quasi-
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incompressible case, in which the density of the modulated phase is given constitutively. The

density is independent of the pressure but depends on the amplitude of the order parameter.

As a consequence, bulk phases are incompressible, but we allow a non-solenoidal velocity in

the interfacial region. Compressibility effects are of importance for fluid flow on the surface

of the smectic in diffuse-interface treatments, which arise from the difference in density

between the two phases. A numerical scheme suitable to study the evolution equation of the

order parameter is introduced in Sec. IV, which is based on existing schemes for phase field

models with varying mobilities. A stability analysis for transverse interfacial perturbations

is presented in Sec. V, which is then used to verify the developed numerical code. Finally,

in Sec. VI we show numerical results concerning flows originating from perturbed smectic

layers, and also for layers bent in a focal conic configuration. We discuss the consequences

of the varying density field on flow structure, and how curvatures determine interfacial flows

through the normal stress balance.

II. ORDER PARAMETER MODEL OF A SMECTIC-ISOTROPIC INTERFACE.

INCOMPRESSIBLE LIMIT

We briefly summarize the model of Ref. [11] for a smectic-isotropic two phase system.

The scalar order parameter ψ(x, t) describes both an isotropic phase with ψ = 0, and a

smectic phase where ψ is a periodic function of space. This function represents the smectic

layered structure, and ψ smoothly changes at the interface between the two phases. A free

energy functional of the order parameter is introduced,

Fs =

∫
1

2

{
εψ2 + α

[(
q2

0 +∇2
)
ψ
]2 − β

2
ψ4 +

γ

3
ψ6

}
dx . (1)

where all parameters are constant, including q0, the wavenumber of the smectic phase.

Relaxational evolution for the order parameter ψ is assumed through minimization of the

free energy

∂tψ + v · ∇ψ = −Γ
δFs
δψ

= −Γµ (2)

where v is the mass velocity, µ is the chemical potential conjugate to ψ, and Γ is a constant

mobility (chosen as Γ = 1 below). Gradient terms in the free energy functional lead to non

classical (reversible) stresses of the form,

T =
δFs
δ∇u

= ∇ψ ⊗∇
(

∂f

∂∇2ψ

)
− ∂f

∂∇2ψ
Dψ (3)
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where Dψ is a shorthand for ∂i∂jψ. The stress is defined as the variation of the energy

with respect to an independent distortion ψ(x) → ψ(x + u). Adding dissipative stresses

appropriate for an isotropic, Newtonian fluid, lead to the following governing system of

equations for an incompressible fluid,

∇ · v = 0 (4)

ρ (∂tv + v · ∇v) = −∇p+∇ ·T + η∇2v (5)

∂tψ + v · ∇ψ = −ε ψ − α (q2
0 +∇2)2ψ + β ψ3 − γ ψ5. (6)

In this system, ρ is the constant density, and ν is the isotropic shear viscosity. It is straight-

forward to replace the Newtonian viscous dissipation introduced with that of an uniaxial

fluid. In the incompressible case, this amounts to considering three independent viscosities.

For simplicity, we restrict our analysis here to isotropic viscous dissipation, while noting that

the reversible part of the stress does contain the uniaxial symmetry of the smectic phase.

Equation (6) as a model of a smectic-isotropic configuration was investigated in Ref. [11],

albeit without advection (v = 0). We analyzed the role of Gaussian curvature on local ther-

modynamics at the two phase interface (the Gibbs-Thomson equation), and on the evolution

of a smectic-isotropic interface, including the effects of local equilibrium thermodynamics

from layer alignment with respect to the interface. By examining focal conic instabilities

under heat treatment, we showed that conical pyramids of smectic layers could be obtained

as observed in experiments [5], and that their formation could be explained through the

interplay between Gaussian curvature, mean curvature and layering alignment. We expect

these results to hold qualitatively for a smectic-isotropic fluid interface in terms of the main

mechanism of smectic evaporation and condensation. However, in order to fully develop a

model that connects to experiments in smectic thin films, we need to account for hydrody-

namics and a varying density field between the phases. This way, one can capture the role of

surface flows and compressibility effects at the interface, which are relevant not only for the

evolution of smectic-isotropic interface, but may also be important for interactions between

topological defects in smectics.
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III. ORDER PARAMETER MODEL OF A SMECTIC-ISOTROPIC INTERFACE.

COMPRESSIBLE PHASES

We derive in this section a diffuse interface model for a smectic phase in contact with

an isotropic fluid when they have different densities. Earlier work by Brand and Pleiner

[26] considered a hydrodynamic theory for smectics and other mesophases exhibiting broken

symmetries. They introduced an energy density e that depends on mass density, momentum,

entropy, and on a variable representing the broken symmetry of the system (e.g. the director

n̂ and its derivatives in nematics). We use the same methodology but focus on a real variable

ψ representing the layering order. Our energy density depends on the Laplacian ∇2ψ, which

leads to layer formation, and accounts for the energy involved in layer distortions. For

completeness, Appendix A gives the derivation of the governing equations of our model

starting from an Oseen-Frank description and a smectic layer variable, and using the same

Coleman-Noll procedure as in this section.

A. Compressible model

We write the internal energy of the system in terms of the energy per unit mass e and

the mass density ρ as

E =

∫
Ω

ρe dx . (7)

We first obtain the local form of the internal energy and entropy balances as given by

Lowengrub and Truskinovsky for the Cahn-Hilliard equation for a binary fluid [17]. The

first law of thermodynamics can be written as,

d

dt
(E +K) =W +R , (8)

where K is the kinetic energy, W is the rate of work done on the surface of the system, and

R is the heat transfer rate. They are defined by the following integrals

K =

∫
Ω

g2

2ρ
dx, R =

∫
Ω

ρrdx, W =

∫
∂Ω

[
T n · v + (t · n)ψ̇

]
dS .

We use the notation ˙( ) = ∂t( ) + v · ( ) to denote the material time derivative. Here, g = ρv

is the momentum density, r is the rate of heat supplied per unit mass, T is the stress tensor,

t is the generalized surface force, and n is the surface normal. The relations we derive
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in this section are obtained in the absence of thermal radiation, so that we neglect R for

the rest of this section. When deriving the governing equations, we set no-flux boundary

conditions: Neumann condition for the order parameter ψ (which forces the smectic planes

to be perpendicular to to the domain outer boundary) and zero normal velocity on the

boundary, such that

∇ψ(x) · n = 0, v(x) · n = 0,x ∈ ∂Ω. (9)

Accounting for the balance of linear momentum ρv̇ = ∇·T and balance of mass ρ̇+ρ∇·v =

0, we obtain the local form of the balance of internal energy [20, 27] as

ρė = T : ∇v +∇ · (t ψ̇) . (10)

In order to derive the balance of entropy for the specific internal entropy s, we assume

e has a dependence not only on ∇ψ, but also on ∇2ψ, so e = e(ρ, s, ψ,∇ψ,∇2ψ). This

dependence on ∇2ψ does not appear for binary systems, but is fundamental to model the

smectic phase. Hence, by the chain rule

ė =
∂e

∂ρ
ρ̇+

∂e

∂s
ṡ+

∂e

∂ψ
ψ̇ +

∂e

∂∇ψ
· ∇̇ψ +

∂e

∂∇2ψ
˙∇2ψ .

Given that the temperature θ = ∂e/∂s, we rewrite Eq. (10) as a local balance of entropy

ρθṡ ={
T + ρ2 ∂e

∂ρ
I + ρ∇ψ ⊗ ∂e

∂∇ψ
−∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
+ ρ

∂e

∂∇2ψ
Dψ

}
: ∇v

+

[
t− ρ ∂e

∂∇ψ
+∇

(
ρ

∂e

∂∇2ψ

)]
· ∇ψ̇ −

[
ρ
∂e

∂ψ
−∇ · t

]
ψ̇ , (11)

where D stands for ∂i∂j, so that Dψ is a second order tensor. In deriving the previous

expression, the boundary conditions from Eq. (9) allow us to write

ρ
∂e

∂∇2ψ
˙∇2ψ = ρ

∂e

∂∇2ψ
∇2ψ̇ − ρ ∂e

∂∇2ψ
∇2v · ∇ψ − 2ρ

∂e

∂∇2ψ
∇v : Dψ

= −∇
(
ρ

∂e

∂∇2ψ

)
· ∇ψ̇ +

[
∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
− ρ ∂e

∂∇2ψ
Dψ

]
: ∇v ,

and also

ρ
∂e

∂∇ψ
· ∇̇ψ = ρ

∂e

∂∇ψ
· ∇ψ̇ − ρ∇ψ ⊗ ∂e

∂∇ψ
: ∇v .
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The terms in square brackets proportional to ψ̇ and ∇ψ̇ in Eq. (11) are both related to

variations of ψ and can be grouped together. By using the boundary conditions, we write

ρθṡ ={
T + ρ2 ∂e

∂ρ
I + ρ∇ψ ⊗ ∂e

∂∇ψ
−∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
+ ρ

∂e

∂∇2ψ
Dψ

}
: ∇v

+

[
− ρ ∂e

∂ψ
+∇ ·

(
ρ
∂e

∂∇ψ

)
−∇2

(
ρ

∂e

∂∇2ψ

)]
ψ̇ . (12)

In order to obtain the required constitutive relations, we use the Coleman-Noll procedure,

which defines necessary conditions for them by imposing a strict requirement on the entropy

production. Based on the Clausius-Duhem inequality, the condition for the specific internal

entropy ṡ ≥ 0 implies that Eq. (12) must be satisfied for every admissible thermomechanical

process. Hence, by splitting the stress into reversible and dissipative parts, T = TR + TD,

we can derive the reversible parts from Eq. (12) in the limit of zero entropy production,

while dissipative parts are obtained by enforcing positive entropy production.

For deriving TR, which is a reversible current for the balance of linear momentum, we

set the terms in brackets associated with the rates ∇v equal to zero, so that

TR = −ρ2 ∂e

∂ρ
I− ρ∇ψ ⊗ ∂e

∂∇ψ
+∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
− ρ ∂e

∂∇2ψ
Dψ . (13)

The expression in square brackets multiplying ψ̇ is the thermodynamic conjugate to ψ,

µ = δE/δψ. That is,

µ = ρ
∂e

∂ψ
−∇ ·

(
ρ
∂e

∂∇ψ

)
+∇2

(
ρ

∂e

∂∇2ψ

)
. (14)

Since ṡ = 0 for reversible motions, and µ is arbitrary, we must have ψ̇ = 0. The order

parameter ψ is a slowly relaxing variable, which is not associated with any conservation law.

Hence, its dynamic equation is of the form

∂tψ + v · ∇ψ + Z = 0 (15)

where Z is a quasi-current (that is, its surface integral is not a flux), which can be decom-

posed into Z = ZR +ZD. Since in the reversible limit ψ̇ = 0, this implies that ZR = 0, and

we are only left with the dissipative part ZD.

To obtain the form of the irreversible currents, we need to impose the condition ṡ > 0 to

Eq. (12) (one can also derive these functions from derivatives of a generalized function with
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respect to thermodynamic forces [28, 29]). This implies that ψ̇ must be proportional to the

negative of the chemical potential times a constant Γ, so that ZD has the form

ZD = Γµ . (16)

Physically, the dissipative contribution to ψ̇ is a permeation mode [30]; it is nonzero when

there is mass transport relative to the smectic layers.

We finally introduce the dissipative contribution to the stress. When ṡ > 0, only TD

remain inside the curly brackets contracted with ∇v in Eq. (12), so that to enforce positive

entropy production we require

TD = ηijkl∂kvl . (17)

For simplicity, we will restrict our study to the case of a Newtonian fluid for both phases,

although the extension to a uniaxial fluid is simple. Therefore, instead of working with the

full viscosity tensor η, we consider only one viscosity coefficient η which is also assumed to

be the same for both phases. Because we account for compressibility effects on the interface,

the velocity is non-solenoidal, which adds a second contribution to the viscous stress

TD = η(∇v +∇vT) + λ(∇ · v)I . (18)

The constant λ is the second coefficient of viscosity. While out of equilibrium the two

viscosities are generally independent, for simplicity we follow below Stokes’ hypothesis and

set the bulk viscosity to zero. That is, we set trace (TD) = 0, which gives λ = −2
3
η.

The equations governing the evolution of the quasi incompressible system now read

ρ̇ = −ρ∇ · v , (19)

ρv̇ = ∇ ·
(
TR + TD

)
, (20)

ψ̇ = −Γµ , (21)

with TR defined in Eq. (13), TD in Eq. (18) and µ in Eq. (14). Boundary conditions on

the outer boundaries are specified by Eqs. (9).

B. Quasi-incompressible model

We next assume that the density does not depend on pressure in the bulk phases (quasi

incompressible assumption), but depends constitutively on ψ, so that ρ = ρ(ψ) in the two
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phase system. Due to the modulated nature of ψ, the choice of constitutive relation is not

as straightforward as in the Cahn-Hilliard model of a binary mixture in which there is a

transition between two regions of uniform composition. We write in the present case ρ as

a function only of the slowly varying envelope of the order parameter, A(x), as defined in

Ref. [11],

ρ[A(x)] = κA(x) + ρa , (22)

where κ is a constant that controls the density ratio between the bulk smectic and isotropic

phases, and ρa is the density of the isotropic phase where A = 0. In practice, we compute the

amplitude by using A = (ψ2 + q−2
0 |∇ψ|2)1/2. For the form of the energy that we introduce

below, we have numerically confirmed that for smectic layers that are not severely distorted

this expression accurately captures the amplitude of ψ.

While both bulk fluids are incompressible, the velocity field becomes non-solenoidal at

the interface. From the balance of mass in Eq. (19), we find that

∇ · v = − ∂ρ
∂A

Ȧ

ρ
= −κȦ

ρ
. (23)

We note that Eq. (23) is similar to that used for the Cahn-Hilliard model of a quasi-

incompressible binary fluid, which becomes more clear by expressing it in terms of ψ. The

material time derivative of A is connected to permeation, that is mass motion relative to

smectic planes, and the divergence of the velocity in a quasi-incompressible diffusive-interface

model is linked to the order parameter chemical potential, as discussed in Refs. [17, 19].

From ρ = ρ(ψ), one can also write

∇ · v = − ∂ρ
∂ψ

ψ̇

ρ
=

∂ρ

∂ψ

Γµ

ρ
. (24)

Finally, we make explicit the dependence of the chemical potential on pressure by de-

composing the velocity gradient ∇v = Sv + 1
3
(∇ · v)I, where Sv is its deviatoric part. We

can rewrite the local balance of entropy from Eq. (12), so that the stress contracts with

the deviatoric tensor Sv. Since I : Sv = 0, any scalar multiplying the identity in the stress

satisfies the Clausius-Duhem inequality. Therefore, we introduce the pressure p, which is

not uniquely defined, and write the reversible part of the stress as

TR = −pI− ρ∇ψ ⊗ ∂e

∂∇ψ
+∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
− ρ ∂e

∂∇2ψ
Dψ . (25)
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When the identity contracts with the stress terms inside the curly brackets from Eq. (12),

we get exactly 3p from the resulting trace. Using this result and substituting ∇·v from Eq.

(24) in the local balance of entropy, we write

ρθṡ =

{
T + ρ∇ψ ⊗ ∂e

∂∇ψ
−∇ψ ⊗∇

(
ρ

∂e

∂∇2ψ

)
+ ρ

∂e

∂∇2ψ
Dψ

}
: Sv

+

[
p ρ−1 ∂ρ

∂ψ
− ρ ∂e

∂ψ
+∇ ·

(
ρ
∂e

∂∇ψ

)
−∇2

(
ρ

∂e

∂∇2ψ

)]
ψ̇ , (26)

Therefore, the order parameter chemical potential per unit volume now exhibits an explicit

dependence on the kinematic pressure, that is

µ = −p ρ−1 ∂ρ

∂ψ
+ ρ

∂e

∂ψ
−∇ ·

(
ρ
∂e

∂∇ψ

)
+∇2

(
ρ

∂e

∂∇2ψ

)
. (27)

The governing equations are given by Eqs. (20) and (21), with the definitions for the

chemical potential and reversible stress as given by Eqs. (27) and (25) respectively.

C. Choice of energy functional

In order to study a system comprising a smectic and an isotropic phase which can achieve

coexistence, we choose [11],

e(ψ,∇2ψ) =
1

2

{
εψ2 + α

[(
q2

0 +∇2
)
ψ
]2 − β

2
ψ4 +

γ

3
ψ6

}
. (28)

The coefficients α, β and γ are three constant, positive parameters, and ε is a bifurcation

parameter that describes the distance away from the smectic-isotropic transition. The values

of the constants β and γ are chosen to give a triple well energy function with minima

representing smectic and isotropic phases [31]. Coexistence occurs at εc = 27β2/160γ, when

both phases present the same energy density. For ε > εc, ψ = 0 becomes the equilibrium

phase, whereas for ε < εc, a modulated phase ψ ≈ 1
2
(Aeiq·x + c.c.) is stable. Here |q| ≈ q0,

with q along an arbitrary direction.

The chemical potential from Eq. (27) is now,

µ = −p ρ−1 ∂ρ

∂ψ
+ ρ
[
εψ + αq2

0(∇2 + q2
0)ψ − βψ3 + γψ5

]
+α∇2

[
ρ(∇2 + q2

0)ψ
]
. (29)

One important remark about computing µ is that ρ in Eq. (22) is given as a function of

the amplitude A, so we do not actually have an expression for ρ(ψ). By the chain rule, a
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simple calculation of ∂ρ/∂ψ from the way we obtain A from a ψ would give κψ/A. Since ρ

is constant in the bulk of the two phases, its derivative with respect to ψ is only nonzero at

the interface. Due to this, ψ that shows in the previous derivative is taken as the average

of the order parameter, 〈ψ〉, computed over a unit cell defined by the wavelength (which

is zero outside the interface). For parallel computations, it becomes costly to perform such

averaging after every iteration, so that an alternative is to approximate 〈ψ〉/A by |∇A|/A,

or similarly |∇ρ|/ρ.

The balance of linear momentum for the choice of energy given by Eq. (28) is

ρv̇ = −∇p+∇2

(
ρ

∂e

∂∇2ψ

)
∇ψ − ρ ∂e

∂∇2ψ
∇2∇ψ + η

[
∇2v +

1

3
∇(∇ · v)

]
(30)

By focusing only on overdamped or Stokes flow, we further assume that the fluid velocity

everywhere satisfies

0 = −∇p+ α∇2
[
ρ(∇2 + q2

0)ψ
]
∇ψ − αρ(∇2 + q2

0)ψ∇2∇ψ

+η

[
∇2v +

1

3
∇(∇ · v)

]
. (31)

Taking the divergence of Eq. (31), once ψ is known, p can be immediately obtained through

a modified pressure Poisson equation.

D. Governing equations in dimensionless form

By using the constitutive law Eq. (22) we summarize here the complete set of governing

equations for the smectic-isotropic fluid system,

∇ · v = −κȦ
ρ
, (32)

0 = −∇p+ α∇2
[
ρ(∇2 + q2

0)ψ
]
∇ψ − αρ(∇2 + q2

0)ψ∇2∇ψ

+η

[
∇2v +

1

3
∇(∇ · v)

]
, (33)

ψ̇ = −Γµ , (34)

ρ = κA+ ρa . (35)

To introduce dimensionless variables, let U and L represent characteristic scales for the

velocity and length, and ρ̃, ψ̃ and µ̃ represent typical values for ρ, ψ and µ in the modulated
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phase. Then, we introduce the dimensionless variables v∗ = v/U , x∗ = x/L, t∗ = Ut/L,

ρ∗ = ρ/ρ̃, ψ∗ = ψ/ψ̃ and µ∗ = µ/µ̃. The resulting equations have the same form as Eqs.

(32)-(35), replacing constants and variables by dimensionless constants and variables. The

dimensionless constants one find are κ̃ = κ/ρ̃, Γ̃ = ΓLµ̃/ψ̃U and η̃ = ηUL3/ρ̃ψ̃2, where

the latter is proportional to the capillary number. In the following discussion, we use the

non-dimensional set of governing equations, dropping the tilde from constants and star from

variables.

IV. NUMERICAL METHOD

We solve Eqs. (32)-(35) numerically, with boundary conditions specified in Eq. (9), by

using a pseudo-spectral method, in which linear and gradient terms are computed in Fourier

space and nonlinear terms in real space. Space discretization depends on nw, the number of

points per base wavelength, and is given by ∆x = 2π/(nwq0). The appropriate choice of time

step will be later analyzed in the context of the scheme stability. We have developed custom

C++ codes based on the parallel FFTW library and the standard MPI passing interface for

parallelization. In order to accommodate the boundary conditions, we use both the Discrete

Cosine Transform of (ψ, ρ) and the Discrete Sine Transform of (∇ψ, v). The source codes

containing the implementation of this model (smaiso-quasi) can be found in Ref. [32], and

the codes for the simpler uniform density model (smaiso-uniform) described in Sec. II are

found in Ref. [33].

In our previous work on the smectic-isotropic (constant density) problem [11], we inte-

grated the dynamic equation for ψ in time employing a Crank-Nicolson algorithm for the

linear part of the equation, and a second order Adams-Bashforth method for the nonlinear

terms. However, we cannot deal with Eq. (34) in the same way (splitting it into linear and

nonlinear parts), as now the right hand side is multiplied by a varying density. Therefore,

we rewrite Eq. (34) as ∂tψ = Γ(ρLψ +N) with

L = −
[
ε+ (∇2 + q2

0)2
]

(36)

N = −2α∇ρ · (∇2 + q2
0)∇ψ − α∇2ρ(∇2 + q2

0)ψ + βψ3 − γψ5 − v · ∇ψ (37)

where L is a linear operator, and N is a collection of nonlinear terms. Note that Γρ plays

the role of a spatially varying mobility (this is why we cannot treat this equation as in Ref.
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[11]). We follow a scheme already introduced for phase-field models with variable mobility

[34, 35]: We split the density as ρ→ ρm+(ρ−ρm), where ρm = 1
2
(ρs+ρa). The idea behind

the split is that the term associated to ρm can be treated implicitly, and (ρ− ρm) explicitly,

with a choice of ρm that satisfies |ρ− ρm| ≤ ρm.

In Fourier space, we use a second order discretization in time, and compute ψ at time

n+ 1 by

3
2
ψn+1
k − 2ψnk + 1

2
ψn−1
k

∆t
= Γ

[
ρmLψ

n+1
k − ρmLψnk + (ρnLψn +Nn)k

]
(38)

The term ρnLψn is nonlinear, so we include it in the definition of N . Instead of solely

accounting for the nonlinear terms N at time n, we treat N with a second order multistep

Adams-Bashforth scheme. In frequency space, ψk for the new time is then obtained by

(3/2−∆t Γ̃ρmL)ψn+1
k = (2−∆t Γ̃ρmL)ψnk −

1

2
ψn−1
k +

∆t

2
(3Nn

k −Nn−1
k ) . (39)

Overall, our model -as well as the physical system- is only concerned with a slowly varying

density, on the scale of variations of the envelope A = (ψ2 + q−2
0 |∇ψ|2)1/2, but not changing

on the the scale of the smectic layers, 1/q0. While this approximation for A gives us an

adequate approximation for the amplitude of ψ in regions where the smectic layers are well

formed and only weakly distorted, it becomes noisier on the interface and also in regions

where layers are highly distorted or break up. Therefore in our numerical calculations

we smooth the computed amplitude with a Gaussian filter in Fourier space, given by the

operator Fζ = exp(−ζ2q2/2), where q is the wavenumber and ζ the filtering radius, chosen

as 1/q0. We also observe numerical instabilities originating from terms containing gradients

of ρ in Eqs. (29) and (33), due to fast oscillatory terms that should be compensated by an

oscillatory pressure. Therefore, while we use a spatially varying density in the numerical

integration, we neglect higher order terms in terms ∇ρ and ∇2ρ from Eqs. (33) and (34).

V. STABILITY ANALYSIS

In order to elucidate the role of hydrodynamics on interfacial motion, as well as to validate

the numerical algorithm, we first address the linear stability of a stack of smectic layers as

shown in Fig. 1, and derive the dispersion relation for transverse perturbations of the

smectic layers as a function of the distortion wavelength. Consider a reference configuration
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FIG. 1: Stack of smectic layers perturbed in the transverse direction. The layers are

extracted from a configuration of the order parameter ψ, which oscillates between ψmax and

ψmin values, defining the red (positive) and blue (negative) layering shown in the figure.

comprising a set of parallel smectic planes that span the whole domain, aligned along a

reference wave vector q. The base solution is ψ0 = A0e
iq·x + c.c., and homogeneous density

ρ = ρs. We introduce a perturbation of wave vector Q while leaving the density constant,

ψ = A0e
iq·x + A1e

i(q+Q)·x + A2e
i(q−Q)·x + c.c. , (40)

where A1, A2 � A0 are small amplitudes. Since the density is constant, the order parameter

equation reduces to

∂tψ + v · ∇ψ = −Γµ = Γρs

[
− εψ − αq2

0(∇2 + q2
0)2ψ + βψ3 − γψ5

]
. (41)

The mobility Γ = 1 in all our simulations. Define

l0 = |q|2 − q2
0, l1 = |q + Q|2 − q2

0, l2 = |q−Q|2 − q2
0

Then, by keeping only modes exp(±iq · x) and exp(±i(q ± Q · x)) when expanding µ in

terms of the perturbation, we find

µρ−1
s = M0e

iq·x +M1e
i(q+Q)·x +M2e

i(q−Q)·x + c.c.

with

M0 = εA0 + l20A0 − 3β|A0|2A0 + 10γ|A0|4A0

M1 = εA1 + l21A1 − 6β|A0|2A1 − 3βA2
0A
∗
2 + 30γ|A0|4A1 + 20γ|A0|2A2

0A
∗
2

M2 = εA2 + l22A2 − 6β|A0|2A2 − 3βA2
0A
∗
1 + 30γ|A0|4A2 + 20γ|A0|2A2

0A
∗
1 .
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Since the density is uniform in the smectic layer, the velocity field is solenoidal. Also,

the pressure in Eq. (33) can be redefined so that the momentum balance equation can be

written in terms of a forcing term f = µ∇ψ,

0 = −∇p̄+ f + η∇2v (42)

p̄ = p+
αρs
2

(q2
0ψ +∇2ψ)2 +

ρsε

2
ψ2 − ρsβ

4
ψ4 +

ρsγ

6
ψ6 . (43)

Since for planar smectic layers the chemical potential µ is zero in equilibrium, the velocity

field v0 for the base ψ solution is also exactly zero.

In order to obtain an expression for the perturbed flow velocity, we set the base state of

the smectic layers to be aligned along z, q = q0ẑ, so that Q is orthogonal to z. By applying

the Fourier transform, we obtain the following terms from f for frequencies Q and 2q, in

Fourier space,

fQ = ρs

[
− iM0(q−Q)A∗2 + iM∗

2 qA0 − iM1qA
∗
0 + iM∗

0 (q + Q)A1

]
f2q = −iρsA0q0

The remaining modes that are required for the leading order expansion of the order param-

eter equation are given by f∗−Q = fQ and f∗−2q = f2q. By taking the divergence of Eq. (42),

we find a pressure Poisson equation, which allows us to calculate the pressure in terms of

the frequency k as

pk =
ik · fk
|k|2

Then, by substituting the pressure into Eq. (42), we obtain an expression for the flow

velocity in terms of the Fourier modes

v =
∑

k=±Q

1

η|k|2

(
I− k⊗ k

|k|2

)
fk e

ik·x , (44)

for which the longitudinal modes, v±2q, drop out, since the velocity is solenoidal in the

smectic. Hence, the flow velocity v will only couple to the transverse part of the perturbation

in ψ. Hydrodynamic effects do not affect the stability of ψ for longitudinal distortions of

the layers.

As we are interested in the transverse stability through modulations of the phase, we

impose a perturbation in the plane orthogonal to the layering normal, say Q = Qx̂. By
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substituting fQ into Eq. (44), we find a velocity in the longitudinal direction ẑ that only

depends on the Fourier transform on the z component of the forcing term, (fz)±Q. Finally,

by substituting this expression for the velocity into Eq. (41) and gathering terms associated

with modes exp(±i(q±Q ·x)), we obtain the amplitude equations that govern the evolution

of A1 and A2,

∂tA1 = (6βA2
0 − 30γA4

0 + ε− l21 −H(l21 − l20))A1

+(H(l22 − l20) + 3βA2
0 − 20γA4

0)A∗2 ,

∂tA2 = (6βA2
0 − 30γA4

0 + ε− l22 −H(l22 − l20))A2

+(H(l21 − l20) + 3βA2
0 − 20γA4

0)A∗1 .

where H is a hydrodynamic coupling coefficient obtained from Eq. (44), and is given by

H =
1

η|Q|2

(
|q|2 − (q ·Q)2

|Q|2

)
A2

0 .

As previously argued, there is no hydrodynamic coupling for longitudinal perturbations,

so that H = 0 when q and Q are parallel. However, for the case of transverse perturbations,

the coupling coefficient can have an significant role in the stability. To derive the dispersion

relation we need a solution for A2
0 (note that A0 is constant and real), found by gathering

terms in the base wavenumber q0,

0 = −εA0 − α l20A0 + 3βA3
0 − 10γA5

0

which gives us

A2
0 =

3β +
√

9β2 − 40εγ

20γ
. (45)

For transverse modulations of the phase, considering a base frequency q = q0ẑ and

perturbation Q = Qx̂, we can write the order parameter is ψ = 2A0cos(q0z + φ sin(Qx)),

where φ is the amplitude of the initial perturbation. In the limit of φ� 1, this is equivalent

to setting A1 = A0φ/2 and A2 = A0φ/2 in Eq. (40). By substituting A0, A1, and A2 into

the amplitude equation for A1 above, we find

∂tφ = −ρs
[

(3β +
√

9β2 − 40εγ)

10ηγ
q2

0Q
2 +Q4

]
φ , (46)

The decay rate for the transverse perturbation is given by σ⊥ = ∂tφ/φ. Therefore, while in

the absence of hydrodynamics the growth rate is proportional to Q4, hydrodynamic effects

lead to a decay proportional to Q2 at low wavenumbers.
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A. Code validation

We compare the numerical solution of the model using the numerical method described

in Sec. IV to the dispersion of Eq. (46). We set the viscosity to be small, η = 0.1, so

that we are able to distinguish the effects from order parameter relaxation and flow. The

parameters of the model used are β = 0.4, γ = 3, and ε = εc = 0.009. The base amplitude

A0 is computed from Eq. (45), and the perturbation amplitude is φ = 0.1. We use N = 5123

and ∆x = 0.7854 (8 grid nodes per wavelength) and ∆t = 5 · 10−4.

0.125 0.25 0.5 1 2

−10
1

−10
0

−10
−1

−10
−2

−10
−3

Q

σ ⊥

 

 

 − Q4

 − (0.6 Q2 + Q4)
Numerical: hydro off
Numerical: hydro on

FIG. 2: Logarithmic plot for the transverse growth rate σ⊥ as a function of the

perturbation frequency Q, showing how numerical results match the analytic predictions.

The solid curve represents the hydrodynamic free case, and the dashed curved the case

when hydrodynamics is turned on, with viscosity η = 0.1. Parameters are ε = 0.009,

β = 0.4, γ = 3 and q0 = 1.

We use an initial condition of the form of Eq. (40) with A1 = A0φ/2, A2 = −A0φ/2,

and set the density of the smectic ρs = 1. The base and perturbation wavenumbers are

q = q0ẑ and Q = Qx̂. Equations (33) and (34) are integrated in time, and the growth rate

is computed after a few time steps (≈ 10). Since we employ the discrete cosine transform

for ψ, the growth rate is obtained from the spectrum of the transformed ψ, by computing

the time derivative of the amplitude associated with the frequency q ±Q and dividing by

the same amplitude. The results are shown in Fig. 2, where we include, as a reference, the
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decay rate in the absence of hydrodynamic coupling.

We observe that in both cases numerical results agree very well with the analytic pre-

diction from Eq. (46). In the hydrodynamic free case, numerical results for the decay rate

follow the −Q4 dependence. When hydrodynamic coupling is included, we also obtain a good

agreement between numerical results and the derived dispersion relation for all values of Q.

The amplitude 0.6 in the figure follows from substitution of the given model parameters into

Eq. (46). There are no adjustable parameters in this figure.

B. Energy relaxation and stability of the algorithm

The stability of the numerical integration with respect to time step is now investigated

by monitoring the decay of the total energy of the a system, Eq. (7), with e as defined in

Eq. (28). The case investigated concerns a slab of distorted smectic planes surrounded by

an isotropic fluid at coexistence. We take the smectic layers aligned along the z direction,

and perturbed along Q = Qx̂ as in Eq. (40), and as shown in Fig. 3a. The density of

the bulk smectic is chosen as ρs ≈ 0.67, and the density of the isotropic fluid ρa = 0.05.

The parameters in the energy are q0 = 1, α = 1, β = 2, γ = 1, ε = εc = 0.675 so that

the two phases have approximately the same energy. Up to a certain finite value of the

perturbation amplitude, we expect the reference planar configuration to be stable so that

and the perturbed smectic planes relax as shown in Fig. 3b.

We set ∆x = 2π/8 = 0.7854 and N = 2563. Time steps are chosen for each of the runs,

and we let the system evolve in time, so that the total energy decay can be monitored.

Results are shown in Fig. 4 for three different time steps: ∆t = 5 · 10−4, ∆t = 1 · 10−3, and

∆t = 5 · 10−3. We observe that the curves match for ∆t = 5 · 10−4 and ∆t = 1 · 10−3, and

both exhibit the expected monotonic decay. We obtain the same curves for smaller values

of ∆t. However, the curve ∆t = 5 · 10−3 diverges from the the previous ones, and fails to

be monotonic. For ∆t ≥ 1 · 10−2, the numerical scheme becomes unstable and numerical

solutions diverge.

These results show that the scheme introduced in Sec. IV for dealing with a dynamic

equation for the order parameter with phases of varying density does not impose overly

severe restrictions on time step. For instance, for a smectic density ρs ≈ 1, the time step

is of the same order as in the semi-implicit scheme employed for purely diffusive decay in
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(a) t = 0 (b) t = 100

FIG. 3: Two dimensional cross section of an initially perturbed stack of smectic layers in

contact with an isotropic fluid relaxing towards a planar configuration while decreasing the

total energy of the system.

Ref. [11]. While ∆t = 1 · 10−3 is an appropriate choice for the time step in this case, some

factors may require this choice to be altered. For example, increasing the resolution to have

more points representing the base wavelength requires ∆t to be decreased. Another factor

is associated with the balance of mass from Eq. (32): by increasing the difference ratio

between the smectic and disordered phase densities, numerical instabilities may arise from

the way ∇v̇ is computed from the material time derivative of the amplitude over the density.

Hence, the appropriate choice of ∆t and ∆x must be done on a case to case basis.

Finally, we conclude this section by mentioning that we have checked that the numerical

method conserves mass. For the same initial condition (i.e., transversely perturbed smectic

layers), parameters as above, and ∆t = 1 · 10−3, we have followed how the mass fraction

m/m0 changes in time, where m0 is the initial mass, and m =
∫
ρdV is computed after every

time step. While there is a slight decay of mass (approx. 2%) at the start due to relaxation

of the imposed initial condition, mass gradually returns towards its initial value. For long

times (t > 60), mass reaches a constant value, at a mass fraction m/m0 of 99.8%.
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FIG. 4: Energy
∫
ρ e dx decay in time for different values of the time step ∆t. The curves

agree for ∆t ≤ 1 · 10−3, while for larger steps the curves deviate.

VI. FLOW STRUCTURE IN SMECTIC-ISOTROPIC FLUID CONFIGURATIONS

The balance of linear momentum can be written in terms of a body force f = µ∇ψ, as

seen in Eq. (42). The force f is zero either for planar smectic layers, or at coexistence with

the isotropic fluid across a planar interface. For curved layers and also at a curved interface,

the chemical potential with respect to planarity δµ becomes a function of the curvatures of

the surfaces of constant ψ, and is given by an extension of the Gibbs-Thomson equation [11]

δµ∆A = 2Hσh + (4H2 − 2G)σb − 2H(3G− 4H2)σt . (47)

where ∆A is the difference in amplitude between the smectic and the isotropic phases,

σh is the surface tension, σb the interface bending coefficient, and σt the interface torsion

coefficient. These three coefficients can be obtained analytically from the model parameters

and the solution for the amplitude A corresponding to a stationary amplitude across a planar

interface [11]. The factor ∇ψ in f ensures that the force is normal to the smectic layers.

At the interface, a positive normal points outwards away from smectic, and the sign of H

is such that it is positive for a sphere. At the interface, given that the amplitude A goes

from its finite value in the bulk smectic to zero in the isotropic phase, to lowest order in

curvature the force f is directed towards (resp. away) from the nearest center of curvature
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when δµ > 0 (resp. δµ < 0), so that at an interface it points towards the smectic phase in

regions of positive H.

With these considerations in mind, we present results on the structure of the flow for two

different configurations: a transversely modulated smectic layer in contact with the isotropic

fluid as in Sec. V B, and a smectic domain in the form of a focal conic. We consider the

following values of the model parameters: κ = 0.5, ρ0 = 0.05 (density ratio above 10:1),

q0 = 1, α = 1, β = 2, γ = 1, ε = εc = 0.675, and viscosity is η = 10. For this value of the

viscosity, the non-solenoidal velocity has a strong contribution to the resulting interfacial

flows. Figure 5 shows the mass flux, vm = ρv, alongside the density field (green for high

density, smectic, and blue for low density fluid), for time t = 2. On the interface, we observe

that mass flows outward from smectic regions of negative mean curvature (growth), while in

regions of positive mean curvature mass flows inwards towards the smectic phase and also

towards regions of negative mean curvature. This is in agreement with our discussion about

the direction of the force f as a function of curvatures.

(a) Perturbed smectic (b) Enlarged

FIG. 5: Mass flow ρv and density field ρ at time for a transversely perturbed smectic at

t = 2. The right image is a magnification of the left one, showing the flow structure near

the interface. We use N = 2563, ∆t = 5 · 10−4, and parameters q0 = 1, η = 10, ε = 0.675,

α = 1, β = 2 and γ = 1.
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One of the main motivations of our study is to udenrstand the stability and evolution of

focal conic domains in smectics films. A focal conic exhibits a macroscopic singularity at

its center, hence the phase field approach is well suited to study this configuration. Three

important effects relevant to focal conics are captured by our model. First, non classical

stresses are present at the interface between the conic and the isotropic fluid that depend on

both mean and Gaussian curvatures. Second, given a density contrast between the smectic

and surrounding fluid, a non-solenoidal velocity field at the interface can introduce significant

changes to mass transport and therefore to flow structure and stability. Finally, as shown

in [11] (but not in the example below), instability of a smectic-fluid interface can result in

exposed smectic layers at the interface. Their local evolution is governed by Wilmore type

flows instead of capillarity driven flows.

We show in Fig. 6 an initial configuration comprising a focal conic domain in three

dimensions surrounded by an isotropic fluid of different density. We use the same model

(a) Focal conic (b) Cross-section

FIG. 6: Smectic layers bent in a focal conic configuration. (a) The color code represents

the order parameter ψ ranging between ψmax (red) and ψmin (blue). (b) Cross-section of

(a) displaying the values the order parameter field.

parameters as in the previous case except that ρa = 0.005, so that we have a density ratio

greater than 100:1 between the smectic and the isotropic fluid. We also set η = 1. Figure

7 shows the velocity field at time t = 5 at the center cross section, alongside the density in
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the background (green for high density, blue for low). The flow pushes the smectic outwards

near the conic center, which is a region of negative mean curvature, while away from the

core it pushes inwards, as it is a region of positive mean curvature. This is in agreement with

the dependency of the force f with respect to Eq. (47) to lowest order in curvatures. Hence

within the incompressible smectic we observe a recirculating toroidal flow. Given the large

density contrast between the phases, the flow velocity exhibits a large variation for most

of the interface (away from the center). For comparison, we also show results for the same

focal conic for a smectic-isotropic interface when the density is uniform, and for the same

dimensionless time t = 5. It is clear that the flow is continuous on the smectic-isotropic

interface since the velocity is solenoidal. While we also observe the flow moving outward

on regions of negative mean curvature, and inward on regions of positive mean curvature, it

does so continuously through the smectic-isotropic transition creating advection rolls that

span the two phases, as expected for this fully incompressible case.

(a) Density ratio 100:1 (b) Uniform density

FIG. 7: Comparison between the fluid flow v on smectic-isotropic fluid system with 100:1

density contrast and on a smectic-isotropic system of homogeneous density, where the

dashed lines mark the location of the interface. The density is represented by the

background color: green for high density and blue for low density.
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VII. CONCLUSIONS

We have derived a compressible phase field model for a two phase smectic-isotropic fluid of

varying density by introducing an energy density functional of the smectic order parameter

and its gradients. Reversible and irreversible currents are derived from the second law of

thermodynamics, leading to the governing dynamical equations. We have specialized our

analysis to the case in which the bulk fluids are incompressible, but compressibility effects

are allowed near the two phase interface. In order to accomplish this, we have introduced

a constitutive relation for the density which depends only on the amplitude of the smectic

order parameter. Therefore the velocity field is non solenoidal only in the interfacial region.

A semi-implicit numerical method was developed to integrate the governing equations

which is based on an earlier scheme for phase-field models with varying mobilities. The

algorithm has been implemented in a parallel code so that we can examine relatively large

three dimensional configurations. We have also conducted a stability analysis of weakly

perturbed smectic planes, and derived the corresponding dispersion relation, Eq. (46),

for transverse modes. At long wavelengths, hydrodynamic effects dominate the dispersion

relation, with a Q2 wavenumber dependence, instead of the Q4 expected for diffusive decay.

We have validated our code against this dispersion relation.

We have presented numerical results concerning fluid flows for a smectic film surrounded

by an isotropic fluid of different density. When the initial configuration comprises a set of

smectic layers that are weakly perturbed along the transverse direction, we observe that in

regions of negative mean curvature at the interface the flow is outward away from the smectic,

while those of positive mean curvature push the flow inward toward the smectic, as expected

from the dependence of the surface stress on curvature. In a focal conic configuration, flow

in the bulk smectic is, for the parameters considered, a convective roll as expected in an

incompressible fluid. In both configurations, there is a large variation in velocity across the

interface due to the density variation associated with the local gradient of order parameter.

We are currently investigating the quantitative effects of higher order curvature terms in the

interfacial stress on fluid flow near the conic center, its stability, and its nonlinear evolution.

Furthermore, hydrodynamic flows are expected to introduce long-range interactions between

focal conics, a subject of considerable interest in applications of arrays of focal conics in

smectic films.
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Appendix A: Derivation of the governing equations in the displacement configura-

tion variable u

In this section, we derive the governing equations for an incompressible smectic based on

the configuration variable u, which accounts for layer displacements. As usual, we assume

that e = e(s,∇u), so that the energy only depends on gradients of u and is invariant

under simple translations of the structure. Since this is an energy based on gradients of the

layer displacement, and does not describe a two-phase interface problem, we define it as a

volumetric energy density. Similarly as before, the balance of internal energy is given by

ė = T : ∇v +∇ · (t u̇) + r .

Following the same steps from Sec. III, we derive the local balance of entropy

θṡ =

(
T +∇u⊗ ∂e

∂∇u

)
: ∇v +

(
t− ∂e

∂∇u

)
· ∇u̇+∇ · t u̇+ r .

Using the Coleman-Noll procedure, we obtain the reversible currents by setting the en-

tropy production rate to zero, so that

TR = −∇u⊗ ∂e

∂∇u
,

tR =
∂e

∂∇u
.

The expression obtained for the reversible part of the generalized force t is the thermody-

namic conjugate to ∇u. This derivative plays the role of a molecular field in smectics, which

is commonly labeled as h, and whose divergence is a thermodynamic force (in nematics, the

molecular field is conjugated to the director n, and at equilibrium n should be at each point

parallel to h [30]).
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Since u is a symmetry variable associated to the translational broken symmetry of the

smectic, its dynamic equation will be of the form

∂tu+ v · ∇u+ Y = 0

where Y is a quasi-current, which we write as Y = Y R + Y D. Since there is no restriction

on tR to be solenoidal, we require u̇ = 0 for reversibility, which implies that Y R = 0. For

deriving the irreversible quasi-current Y D that satisfies ṡ > 0, we propose a dissipation

function R. This is a bilinear expression function, a positive definite form of the thermody-

namic forces, from which irreversible currents (and quasi-currents) can be derived by taking

derivatives. Accounting for restrictions on symmetry [28, 29], using Einstein notation we

find the following bilinear form

R =
1

2
Γ∂ihi∂jhj + cj∂ihi∂jθ +

1

2
κij∂iθ∂jθ +

1

2
ηijkl∂ivj∂kvl .

where h is the molecular field defined by h = ∂f/∂∇u. If the temperature field is kept at a

constant uniform value, we find

Y D = − ∂R

∂∇ · h
= −Γ∇ · h , so that u̇ = Γ∇ ·

(
∂e

∂∇u

)
.

The viscous part of the stress tensor is derived in the same way as in Sec. III, written in

terms of the viscosity tensor as TD = ηijkl∂kvl. From the derived expression, we obtain the

following system of governing equations

ρ̇ = −ρ∇ · v , (A1)

ρv̇ = −∇p+∇ ·
(
−∇u⊗ ∂e

∂∇u

)
+∇ ·TD , (A2)

u̇ = Γ∇ ·
(

∂e

∂∇u

)
. (A3)

The commonly adopted elastic energy in terms of the configuration variable [37], for

weakly distorted smectic layers with normal k̂ in the undistorted configuration, is

Eu =
1

2

∫
Ω

[
B(∂zu)2 +K1(∂2

xu+ ∂2
yu)2

]
dx . (A4)

While we assumed e = e(s,∇u), with this choice of energy we have e = e(s, ∂zu,∇2
⊥u).

Similarly to Chaikin and Lubensky [38], we account for this difference and compute the

molecular field as a functional derivative of Eu with respect to ∇u, so that we find

h =
∂e

∂∇u
= B ∂zu k̂ −K1∇⊥∇2

⊥u . (A5)

28



Therefore, we obtain the following equation for the configuration variable

u̇ = ΓB∂2
zu− ΓK1∇4

⊥u , (A6)

where the first and second terms on the right hand side are associated to the permeation and

undulation modes, respectively. In de Gennes and Prost notation, Γ = λp is the permeation

constant (see Eq. (8.37) in Ref. [30]). Therefore, the balance of linear momentum, dynamic

equation for u and balance of mass obtained in this section agree with established results

from the literature [30, 38].

It is also easily shown that our derived reversible stress is the same one found in the

previous references. For instance, if we have ∇u ∼ k̂, then

TR = −∇u⊗ ∂e

∂∇u
, so that Tzx = K1∂x∇2

⊥u ,

which is the same as in Eq. (8.7) from de Gennes and Prost [30].
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