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Defect Dynamics in Mesophases
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Block copolymer phases are a fertile ground in which to investigate both equilibrium and
nonequilibrium properties of mesophases (phases that exhibit partial broken symmetries, intermediate
between a completely disordered fluid and a perfectly order crystal). We focus here on two particular
phases: a lamellar phase (of smectic symmetry, solid like in one direction and fluid in the two other
directions), and a columnar phase (a hexagonal solid in two dimensions, and fluid in the third dimension).
Starting from a mesoscopic model of the copolymer, we present the amplitude equations of motion for
tilt and twist grain boundaries, and the resulting equations of motion for slightly distorted boundaries. We
also examine the assumptions underlying the separation of scales in the derivation of the amplitude
equations, and analyze corrections to the equations due to the coupling to the Oð1Þ variation of the order
parameter in the vicinity of the boundaries. These corrections can lead to defect pinning. The effect of
pinning on defect motion depends on whether the bifurcation originating the mesophase is super or sub
critical.

KEYWORDS: block copolymer, long range order, topological defect motion, defect pinning, microstructure
coarsening
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1. Introduction

Macromolecular self assembly of block copolymer mes-
ophases is being actively investigated for the development of
a wide variety of nanostructured materials, or as templates,
also at the nanoscale.1) Spontaneous self assembly, for
example, provides an alternative route to conventional
lithography, potentially allowing features in the sub-15 nm
range, while retaining the reliability and mass production
ease that are required in the semiconductor industry.2–4) High
density storage devices that are built on block-copolymer
templates are also being investigated5) by creating small
magnetic wires held by a block copolymer matrix. The
density of wires is high enough that if each post could be
addressed individually, a maximum storage density of 1 Tb/
cm2 of material could be achieved.6) A third different realm
of applications is based on the periodic variation of the index
of refraction in a macroscopically order copolymer, leading
to the production of photonic band gap materials by using
polymer chains of fairly standard length.7,8)

While copolymer self assembly is quite efficient at
creating locally ordered configurations at the nanometer
scale, achieving long range order over macroscopic dis-
tances is very difficult. Macroscopically, samples are
generically disordered because they contain a large number
of defects. Such disordered samples are not suitable for the
applications outlined above. Controlling the long range
microstructure of bulk block copolymer samples or thin
films is therefore the central challenge that needs to be
overcome before widespread use of this material can be
contemplated.9–13)

A number of strategies have been put forward to
accelerate annealing of defects, or to post process poly-
crystalline samples in order to increase the characteristic size
of ordered domains. Steady and oscillatory shear flows have
been applied with some success,14–18) although the mecha-
nisms leading to the selection of a particular orientation of

the copolymer relative to the imposed shear are not yet well
understood.19) Graphoepitaxy is another of the strategies
being used to control long range order of block copolymer
microphases.20,21) Topographic relief on a substrate orients
the subsequent epitaxial growth of a deposited copolymer
film. Very long surface areas (on the mm scale) have been
successfully patterned by this technique. Electric fields (dc)
have also been proven successful in orienting multi domain
or polycrystalline samples in both lamellar and cylindrical
phases.22) Through coupling with the dielectric constant
contrast of the monomers in each microphase domain, both
grain boundary migration (close to the order disorder
temperature) and grain rotation (away from it) are the
mechanisms observed that mediate the establishment of long
range order. Solvent annealing is another promising avenue
to produce long range order in films.23) By externally
controlling the rate of solvent evaporation, a particular
orientation of the growing microdomains can be favored,
and one can even rearrange already formed grains. Large
enough ordered samples can be produced to study structural
transitions in two dimensional films. A similar strategy
involves the controlled use of zone annealing by inducing
localized melting and reordering (along the lines of zone
refinement techniques for crystal growth). The sample is
placed under a uniform temperature gradient, and the
development of microphase separated domains occurs at a
moving front separating cold and hot regions. This con-
trolled ordering process appears to limit the number of
defects that are incorporated into the microphase separated
phase.24) Effort is also being devoted to controlling long
range order through chemically patterning the substrate
on which the block copolymer film will be deposited.25)

Patterns of greatly improved uniformity (lack of defects) as
well as extent have been produced. We finally mention
efforts to address the formation or ordered structures in
mixtures of block copolymers and nanoparticles.26,27) The
propensity of both to form ordered structures, and their
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coupling, has been argued to favor the emergence of
hierarchically ordered structures. Nanoparticles segregate
to the boundaries of ordered grains, and through modifica-
tion of the interfacial energetics, favors the reorientation of
copolymer molecules adjacent to the boundary. The poten-
tial advantage of this method is that it does not require the
use of any external fields.

In parallel to this extensive experimental research pro-
gram into microstructure formation and evolution in block
copolymers, significant progress has been achieved in our
theoretical understanding of defect motion and microstruc-
ture coarsening, both by analytic and numerical means. We
will focus below on a mesoscopic description of the block
copolymer following the pioneering work of Leibler28) and
Ohta and Kawasaki.29) At frequencies low compared with
the inverse relaxation time of the polymer, chain conforma-
tion effects can be adiabatically eliminated, and a meso-
scopic theory in terms of the monomer composition alone
can be developed. Significant effort has been devoted
recently into incorporating more detail into this mesoscopic
theory arising from the architecture of the polymers. This
has led to complex self consistent field theory formulations
in equilibrium,30,31) and to extensions to time dependent
dynamics at the mean field level (dynamic density functional
theory).32)

Early theoretical studies of defect motion from a
mesoscale model include a calculation of dislocation climb
velocities by Siggia and Zippelius,33) and the motion of grain
boundaries in lamellar (or stripe) phases by Tesauro and
Cross.34) A central assumption in these treatments is that
close to onset (the order disorder transition temperature in
the case of a block copolymer), the order parameter field
admits a multiple scale expansion so that the defect can
be treated as a point or line of singularity. If � is the
dimensionless distance away from threshold, the extent of
the defect scales as an inverse power of � in the limit �! 0.
The underlying assumption is that details of the physical
processes near defect cores (not explicitly included in the
mesoscopic description) are unimportant for defect motion,
the latter being controlled by the far field envelope of the
order parameter. These observations form the basis of the
analysis of defect motion presented below. We will also
critically examine the asymptotic methods uses to decouple
short scale phenomena in the defect region from the long
scale motion of the order parameter envelope, and its
contributions to defect pinning and effective coarsening
rates. We will, in particular, argue that non adiabatic effects
(effects arising from the coupling between the two scales)
are asymptotically small at a supercritical bifurcation, but
remain finite in the subcritical case.

A recent comprehensive study of defect motion and
microstructure coarsening has address the emergence of long
range order in a thin film of polystyrene–polyisoprene (PS–
PI) in the cylindrical phase.35) Since the cylinders in this
system lie parallel to the substrate, stripe patters are
observed. A large number of defects are formed early on,
which anneal away as the sample approaches equilibrium.
Disclinations are the longest lived defects observed, and
hence their motion and mutual annihilation controls the
evolution of the system towards macroscopic equilibrium.
The particular mechanism of defect annihilation involves

quadrupolar disclination arrangements so that dimensional
arguments lead to a coarsening rate for the linear scale of
the structure as lðtÞ � t1=4. This behavior has been indeed
observed in the experiments where lðtÞ is proportional to the
orientation correlation length of the cylinders. This study has
been later extended to thin films of PS–PI in the spherical
phase (the ordered structure in this case is of hexagonal
symmetry).36) Whereas growth in orientation correlations
also appears to be a power law with exponent equal 1/4,
other scales measuring defect separations obey slower
growth rates. It is also observed in this case that defect
velocities are strongly dependent on temperature, and related
numerical analysis has revealed that defect motion stops at
very low temperature.37) Anomalous defect motion at low
temperatures in hexagonal phases was already addressed by
Sagui and Desai.38)

Additional research has focused on the short scale
structure and motion of defects. Combined experimental
(scanning force microscopy) and numerical calculations (self
consistent dynamical mean field theory) have revealed the
strong correlation between defect structure and local chain
mobility.39) Chain correlations induced by monomer bonds
affect the details of propagation of structural defects. Similar
microscopic studies have been conducted on twist grain
boundaries,40) also by dynamical mean field theory. In this
particular case, insight is gained into the short scale
mechanics of chain motion that mediate defect motion to
show that only diffusion parallel to the grain boundary is
necessary for its motion. The thickness of the grain boundary
observed is very small, of similar order to the lamellar
spacing. A study that is intermediate between these later
studies and the mesoscale approaches described above
concerns the analysis of the isotropic-smectic A transition41)

in terms of the nematic tensor order parameter. Given that
the symmetry of the high and low temperature phases is the
same as in the case of microphase separation into a lamellar
phase of a block copolymer, this study has also addressed
some of the detailed aspects of defect structure and motion
during coarsening. Generally the results are in agreement
with those found in block copolymers in the lamellar
phase:35) Quadrupolar configurations of disclinations dom-
inate in the coarsening regime. However, different measures
of the linear scale of the structure lðtÞ obey different growth
laws, fact that calls into question the scaling (or dimen-
sional) analyses used to derive these laws.

We focus below on a somewhat simpler problem, and
derive the amplitude or envelope equations governing grain
boundary motion from the Leibler free energy. We include
both tilt and twist grain boundaries. We then reexamine the
derivation of the amplitude equations, and discuss non
adiabatic effects, pinning, and effective equations for defect
motion.

2. Model Equations

For length scales much larger than the monomer persis-
tence length, and time scales long enough compared with
the longest polymer chain relaxation time, the evolution of
a block copolymer melt can be described by an order
parameter field  ðr; tÞ which represents the local density
difference of the constituent monomers, and a local velocity
field vðr; tÞ. Given that relaxation of the concentration field
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 is driven by local dissipation due to free energy
minimization, one normally adopts the following time-
dependent Ginzburg–Landau equation:42)

@ =@t þ v �r ¼ ���F=� ; ð1Þ

where � is an Onsager kinetic operator (with � ¼ �Mr2

reflecting conserved dynamics for the order parameter.
Given that in most cases short range diffusion of polymer
chains is the only kinetic mechanism available in micro-
phase separated samples, � ’ Mq2

0 and constant). In the
cases discussed below, the advection term (v �r ) in eq. (1)
will be neglected. The coarse-grained free energy functional
F is given by the Ohta–Kawasaki energy.29) In the weak
segregation limit, however, (i.e., near the order–disorder
transition point), a block copolymer melt can be described
by a simpler coarse-grained free energy (the Brazovskii or
Leibler energy)28,42)

F ½ �

¼
Z

dr �
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 2 �
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 4 þ
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2
r2 þ q�0

2
� �

 
� �2� �

;

ð2Þ
where the reduced temperature variable � measures the
distance from the order–disorder transition, with � > 0 for
T < TODT, and q�0 is the wavenumber of the periodic
structure. Note that here the order parameter has been
replaced by  !  � �  , the local deviation of the concen-
tration field from its spatial average. Substituting eq. (2) into
the Ginzburg–Landau equation (1), approximating � by
Mq�0

2 which is valid near TODT with negligible long range
diffusion, and rescaling all quantities to be dimensionless,
we obtain the so-called Brazovskii or Swift–Hohenberg
model equation

@ =@t ¼ ½�� ðr2 þ q2
0Þ

2� þ g 2 �  3; ð3Þ

where � ¼ �=�q�0
4 with 0 < �� 1 corresponding to the

weak segregation limit, g ¼ ~gg=
ffiffiffiffiffiffiffiffiffiffiffi
u�q�0

4
p

, and q0 ¼ 1 after
rescaling although we retain the symbol q0 in what follows
for clarity of presentation. For lamellar phases which
correspond to symmetric block copolymers ( �  ¼ 0) we
have g ¼ 0 in eq. (3).

Stationary solutions of eq. (3) are periodic, with wave-
number in the vicinity of q0. Phases of different symmetries
are possible; we focus here on lamellar phases (a single
wave, g ¼ 0), and hexagonal phases (three waves on a plane
at 120�, g 6¼ 0). Existence regions of the various phases,
their stability against long wavelength perturbations, as well
as their bulk relaxation modes have been studied exten-
sively. We focus instead on the equations describing
extended defects, such as grain boundaries, in order to
understand the mechanisms involved in microstructure
coarsening.

2.1 Tilt grain boundary
In the limit of weak segregation (�� 1), a multiple scale

approach can be used to separate fast spatial and temporal
scales [Oð1Þ] in  from slow modulations of its amplitude
and phase.34,43,44) For a three dimensional 90� grain
boundary configuration comprising two lamellar domains
of mutually perpendicular orientations (along x̂x for domain
A and ẑz for domain B), the order parameter field can be

written as the superposition of two base modes expðiq0xÞ and
expðiq0zÞ,

 ¼
1ffiffiffi
3
p ½A expðiq0xÞ þ B expðiq0zÞ þ c.c.�; ð4Þ

with complex amplitudes A and B slowly varying in space
and time:

A ¼ AðX ¼ �1=2x;Y ¼ �1=4y;Z ¼ �1=4z; �tÞ;
B ¼ Bð �XX ¼ �1=4x; �YY ¼ �1=4y; �ZZ ¼ �1=2z; �tÞ:

A standard multiple scale expansion leads to a coupled set of
amplitude equations [at Oð�3=2Þ]44) that when rewritten in the
original set of variables read,

@tA ¼ ½�� ð2iq0@x þ @2y þ @
2
z Þ

2�A� jAj2A� 2jBj2A; ð5Þ

@tB ¼ ½�� ð@2x þ @
2
y þ 2iq0@zÞ2�B� jBj2B� 2jAj2B: ð6Þ

For fixed �, stationary bulk solutions in either domains A
or B are periodic, with wavenumber near q0. In a grain
boundary configuration, on the other hand, the only sta-
tionary solution possible has wavenumber equal to q0

(wavenumber selection). To this order in �, the solutions
for A and B do not depend on the fast scales ðx; y; zÞ. The
stationary configuration is a planar boundary with both A

and B changing quickly in the boundary region of extent
� � ��1=2.

A slightly distorted tilt grain boundary relaxes exponen-
tially back to planarity with a rate � / q4 where q is the
wavenumber of the distortion.43) However, the average
position of the boundary also advances with velocity,

v ¼
�

3q2
0Dð�Þ

�2 /
�2

�
; ð7Þ

where Dð�Þ plays the role of a friction coefficient, and � is
the local mean curvature of the boundary. The motion is
such that modulated stripes parallel to the boundary are
always replaced by advancing perpendicular stripes. This
asymmetry in the direction of motion of the boundary can be
understood as due to the different elasticity of parallel and
perpendicular stripes around the boundary, and the require-
ment that the global energy be minimized. As the boundary
perturbation relaxes, so does the curvature (the driving force
for motion) so that the boundary eventually stops. The total
distance traveled is proportional to ��1=2.

The implications of this result on domain coarsening have
been addressed in.45) If grain boundary motion is a relevant
mechanism for coarsening of a lamellar phase, then eq. (7)
implies a growth law lðtÞ � t1=3. While this is observed in
a direct numerical solution of the governing equation for
sufficiently small �,45) it disagrees with the experiments of
Harrison et al.35)

2.2 Twist grain boundary
A twist grain boundary can be constructed by rotating two

lamellar domains with respect to an axis perpendicular to the
grain boundary plane, with lamellar normals of the two joint
domains staying in a plane that is parallel to the boundary
plane,

 ¼
1ffiffiffi
3
p ½A expðiq1 � rÞ þ B expðiq2 � rÞ þ c.c.�; ð8Þ

where, for example, q1 ¼ q0x̂x and q2 ¼ q0ðcos	x̂xþ sin	ŷyÞ
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xxxxxx-3 80809



J
P
S
J
P
R
O
O
F

(with 	 the twist angle) are the orientations of two domains
adjacent the twist boundary. The evolution of the complex
amplitudes A and B is governed by [to leading order in
Oð�3=2Þ]46)

@tA ¼ ½�� ðr2
k1 þ 2iq0@n1

Þ2�A� jAj2A� 2jBj2A; ð9Þ

@tB ¼ ½�� ðr2
k2 þ 2iq0@n2

Þ2�B� jBj2B� 2jAj2B; ð10Þ
where n1;n2 are the normals to the lamellar planes in
domains A and B respectively, r2

k1 is the the Laplacian
operator on the lamellar plane of domain A, and r2

k2
represents the Laplacian operator on the lamellar plane of
domain B. For instance, if n1 ¼ x̂x (i.e., q1 ¼ q0x̂x), r2

k1 ¼
@2y þ @2z and @n1

¼ @x. The difference between these ampli-
tude equations and those for tilt grain boundaries given in
eqs. (5) and (6) is due to the different relationship between
domain orientations and the boundary plane in the two types
of grain boundaries.

A simple dimensional analysis of eqs. (9) and (10) along
the direction normal to the boundary yields � � ��1=4 in
contrast to the ��1=2 result for a tilt grain boundary. Thus, in
the limit of �! 0, i.e., close to the order–disorder threshold,
the width of a twist boundary region is much smaller than
that of tilt boundary.

3. Scale Coupling and Non Adiabatic Corrections

The separation between scales of order one (x; y; z; t), and
the slow scale of the modulation ðX;Y ;Z;TÞ is made explicit
in developing the amplitude equations though assumptions
such as A ¼ AðX ¼ �1=2x; Y ¼ �1=4y;Z ¼ �1=4z; �tÞ. Of
course, the expansion is checked for self-consistency order
by order in �. However, and following the original approach
of Malomed et al.,47) it is possible to estimate possible
corrections to the amplitude equations if the amplitudes are
assumed to retain a dependence in the fast variables ðx; y; zÞ.
For the case of a tilt grain boundary separating two lamellar
phases we find

@tA ¼ ½�� ð2iq0@x þ @2y þ @
2
z Þ

2�A� jAj2A� 2jBj2A

�
Z xþ
0

x

dx0


0

ðA3e2iq0x
0
þ A�3e�4iq0x

0
Þ; ð11Þ

@tB ¼ ½�� ð@2x þ @
2
y þ 2iq0@zÞ2�B� jBj2B� 2jAj2B

�
Z xþ
0

x

dx0


0

ðA2Be2iq0x
0
þ A�2Be�2iq0x

0
Þ; ð12Þ

where 
0 ¼ 2�=q0. Because the reference interface is planar
and perpendicular to x, the undistorted envelopes A and B

are only a function of x, and hence all terms in the solvability
condition proportional to eiq0y integrate to zero. Note that the
integrals in the right hand side would be zero if the
amplitude is slow (constant) in the Oð1Þ scale,48) but it is
possible to estimate their contribution otherwise. For
example, the local normal velocity of a slightly perturbed
grain boundary v is given by a double series expansion of the
form,

Dð�Þv ¼ T1 þ T2 þ � � � þ e�1=
ffiffi
�
p

sinð2q0xÞðN1 þ N2 þ � � �Þ;
ð13Þ

where the terms Ti and Ni are proportional to powers of �.
Note that it is not possible in this case to obtain a solution
in power series of � alone, but rather there appear terms
proportional to e�1=

ffiffi
�
p

. These terms vanish as �! 0, but can

be quite large when � is small but finite. In other words, if
the amplitudes A and B are not exactly constant over the fast
scale (say, over the thickness of the boundary), exponen-
tially small terms appear in the amplitude equations. In
essence, the equation for the slowly varying amplitudes
cannot be decoupled from the phase of the defect. These new
terms in the amplitude equation are called non adiabatic
corrections as they originate in deviations from the adiabatic
elimination of fast scales from the amplitude equation.
Keeping only the lowest order terms (in �) of both Ti and Ni,
eq. (13) reads.

v ¼
�

3q2
0Dð�Þ

�2 �
pLð�Þ
Dð�Þ

cosð2q0xgb þ �Þ: ð14Þ

where xgb is the average location of the reference, unper-
turbed boundary, v its local normal velocity, and

pLð�Þ � �2e�	=
ffiffi
�
p
; ð15Þ

with 	 a numerical constant. By comparing this equation to
eq. (7) we notice that non adiabatic corrections add a new
force to eq. (15) of amplitude pL, and periodic as a function
of the average location of the boundary xgb. The pinning
force depends on relative location of the phase of the defect
and the Oð1Þ variation of the order parameter.

Of course the dependence of pL on � follows immediately
from the scaling of lengths with �. A dependence that is
proportional to ��1=2 is generically expected near a super-
critical bifurcation, as is the case considered involving a
lamellar phase. It is possible to extend this calculation to
the subcritical bifurcation that leads to a hexagonal phase49)

by considering g 6¼ 0 in eq. (3). If one considers a grain
boundary separating two domains of hexagonal symmetry
with relative misorientation 
, one can show that the non
adiabatic contribution to the motion of the boundary is
similar to the lamellar case, but with a different exponential
term than that of eq. (15):

pH � e�2	q0 sinð
=2Þ�; ð16Þ

where � is the spatial thickness of the boundary. The force on
the defect implied by this term is the analog of the Peierls
force acting on a dislocation in a crystalline solid. In that
case, the energy of the dislocation oscillates as a function of
its position relative to the lattice so that it can glide only if
a force of finite amplitude (the Peierls’ force) acts on the
defect. In the present context, this force can be interpreted as
a pinning force acting on the grain boundary the depends on
the relative location of the phase of the envelope of the
defect relative to the underlying periodic variation of the
order parameter. It vanishes when the thickness of the defect
is much larger than the wavelength of the pattern.

Equations (15) and (16) are formally analogous in their
exponential dependence on the extent of the defect. There is
however an important difference: The extent of the defect
diverges at a supercritical bifurcation, but remains finite
in the subcritical bifurcation to a hexagonal phase [� ¼
15
0=ð8

ffiffiffi
6
p
�gÞ for the equation considered here]. As a

consequence, a pinning potential cannot be avoided in defect
motion in a modulated phase of hexagonal symmetry.
Pinning effects leading to glassy states have been observed
in numerical calculations in the hexagonal phase of systems
with competing interactions,38) in cell dynamical calcula-
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tions of the model considered here,37) in numerical simu-
lations of this model leading to the formation in labyrinth
patterns,50) and also in grain boundary dynamics of colloidal
crystals.51) Both for subcritical bifurcations, and supercritical
bifurcations with small but finite � pinning effects will
complicate the determination of the laws of motion of
defects and hence of coarsening laws. In addition, effective
growth rates will be expected to depend on temperature, as
has been shown by Boyer and Viñals.49)

In conclusion, there is now a fairly complete picture on
the slow scale motion of dislocations, disclinations, and
grain boundaries in lamellar and hexagonal mesophases.
However, there is still no agreement on the resulting
coarsening law in extended samples that contain, at least
at early times, an ensemble of defects. Chief among the
difficulties reported by many authors is the fact that different
coarsening laws are obtained for different linear scales of the
structure lðtÞ (e.g., derived from an orientation correlation
function, or from a defect density). This is in violation of
a scale invariant description implicit in the power law
dependence of lðtÞ, and is an issue that needs to be
investigated further. It is possible that pinning effects, either
because of finite �, or because a hexagonal phase is being
investigated, introduce non generic corrections to the motion
of each defect, and complicate the interpretation of the
results.
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