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Abstract

The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description
of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail
the elastic distortion and stress regularization at a dislocation core and show how the Burgers vector density can be
directly computed from the topological singularities of the phase-field amplitudes. Distortions arising from these
amplitudes are then supplemented with non-singular displacements to enforce mechanical equilibrium. This allows
for the consistent separation of plastic and elastic time scales in this framework. A finite element method is introduced
to solve the combined amplitude and elasticity equations, which is applied to a few prototypical configurations in two
spatial dimensions for a crystal of triangular lattice symmetry: i) the stress field induced by an edge dislocation with
an analysis of how the amplitude equation regularizes stresses near the dislocation core, ii) the motion of a dislocation
dipole as a result of its internal interaction, and iii) the shrinkage of a rotated grain. We also compare our results with
those given by other extensions of classical elasticity theory, such as strain-gradient elasticity and methods based on
the smoothing of Burgers vector densities near defect cores.
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1. Introduction

Energies and motion of dislocations and grain boundaries play an important role in materials physics as they
determine many material properties and response, especially in polycrystalline and heteroepitaxial systems. A great
deal of research has been devoted to the study of such systems, spanning many relevant length scales (Rollett et al.,
2015, Sethna et al., 2017). Microscopic theories, such as Density Functional Theory and Molecular Dynamics, provide
detailed descriptions at the microscopic scale, but are unfortunately restricted to relatively small length and time
scales. Coarse-grained methods have also been introduced, such as Discrete Dislocation Dynamics (DDD) (Kubin
and Canova, 1992, Devincre et al., 1992), which evolve dislocation lines through Peach-Koehler type forces. These
methods can examine mechanical properties on large length and time scales while treating dislocations explicitly
but rely on the phenomenology involved in dislocation line mobilities and their reconnections. Phase-field (PF)
methods also belong to the class of coarse-grained approaches. They are based on the description of distinct phases via
continuous order parameters, and the implicit description of interfaces between them. Early work on the application
of PF methods to the description of extended defects and, in turn, to their motion, focused on describing elementary
dislocation as an eigenstrain, which is then mapped onto a set of PFs (Wang et al., 2001, Koslowski et al., 2002,
Rodney et al., 2003, Bulatov and Cai, 2006). However, these methods, as all PF approaches, rely on purely dissipative
dynamics driven by minimization of a phenomenological free energy of Ginzburg-Landau type.
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The so-called phase-field crystal (PFC) method (Elder et al., 2002, Elder and Grant, 2004, Emmerich et al., 2012)
is based on the definition of a continuous order parameter ψ that is related to the atomic number density. A free energy
functional of the field is introduced that is minimized by a periodic field of the corresponding lattice symmetry. The
temporal evolution of ψ is assumed to be governed by conserved and dissipative dynamics, hence on effectively
diffusive time scales. The formulation is akin to Classical Density Functional Theory, and it has been justified on
those grounds as well (Elder et al., 2007, van Teeffelen et al., 2009, Archer et al., 2019). Therefore this modeling
is intermediate between fully atomistic and classical continuum theories. Diffusive time scales and atomistic length
scales allow for describing in detail grain boundaries, their motion, and the response of complex polycrystalline
configurations, as these phenomena are well described by energy relaxation alone, without requiring the calculation
of any stress fields in the grains (Li et al., 2018, Wu and Voorhees, 2009, Backofen et al., 2014, Mianroodi and
Svendsen, 2015, Hirvonen et al., 2016, Clayton and Knap, 2016, Köhler et al., 2016). By focusing on the complex
slowly-varying amplitudes of ψ, a spatial coarse-grained version of the PFC model has been introduced (Goldenfeld
et al., 2005, Athreya et al., 2006, Goldenfeld et al., 2006, Yeon et al., 2010). This amplitude expansion (APFC)
approach provides an approximated description of the atomic length scale, while still incorporating elasticity within
the PFC framework (Spatschek and Karma, 2010, Elder et al., 2010, Heinonen et al., 2014, Salvalaglio et al., 2019).
A different methodology but analogous in many respects is the Field Theory of Dislocation motion (Acharya, 2001),
and its more recent nanoscale implementation in the Generalized Disclination Theory (Zhang and Acharya, 2018).

At variance with models explicitly tracking defects and grain boundaries, the (A)PFC model starts from the spec-
ification of the governing free energy from which lattice symmetry, possible defects, and their combination rules, fol-
low. Despite these advantages, a long-standing difficulty associated with the (A)PFC is that the evolution of the field
is diffusive, hence elastic response in the time scale appropriate for plastic motion is incomplete. The first attempt to
overcome this problem was the development of the so-called modified PFC (MPFC) model given in (Stefanovic et al.,
2006), in which a higher-order time derivative was introduced into the equation of motion. While this approach does
lead to faster elastic relaxation, it gives incorrect behavior in the large wavelength limit, as pointed out in Majaniemi
and Grant (2007) and Heinonen et al. (2016). More recently, a complete transport theory has been developed in which
the order parameter that enters the PFC model is included as a constitutive component within the more general laws
of the balance of mass and momentum (Heinonen et al., 2016). While these models do introduce a “fast” time scale
on the order of the speed of sound, they can become computationally expensive when the time scale of mechanical
relaxation is orders of magnitude faster than the time scales for mass diffusion and plastic distortion. An alternative
and computationally convenient method seeks to enforce elastic equilibration through an interpolation scheme in the
PFC designed to achieve fast mechanical relaxation (Zhou et al., 2019). The method, however, is limited to uniaxial
external deformation. Yet another approach in the APFC model (Heinonen et al., 2014) recognizes that the phases of
the complex amplitudes store information about the elastic distortion and that instantaneous mechanical equilibrium
can be achieved by relaxing these fields at a faster rate. Similar to other approaches, this limits the computational
efficiency of the method and lacks transparency. In this work, we consider a more physical approach that retains the
atomic density as constitutively governing plastic slip but adds the elastic distortion caused by lattice incompatibility
as described self-consistently within the PFC model (Skaugen et al., 2018a,b). This latter approach has several ad-
vantages over previous methods in that it is computationally more efficient, and provides insightful connections with
continuum elasticity theory in the presence of dislocations.

In this work, we present a coarse-grained description of deformations in crystals based on the APFC model,
intermediate between atomistic and continuum length scales. Section 2 summarizes the equations governing the
evolution of the PFC model and the associated description based on the slowly varying complex amplitudes, i.e.,
on the amplitude phase-field crystal model (APFC). While the expansion on a slowly varying amplitude assumes
prior knowledge of the lattice structure, the latter simply follows from the minimization of the free energy functional
defining the system of interest. This description is advantageous from a computational point of view as it does not need
to resolve the variation of the order parameter at the scale of the underlying lattice parameter. It is limited, however,
to small distortions away from a reference lattice, not an uncommon restriction in this class of studies, as it focuses on
length scales larger than the atomic spacing. Section 3 addresses how, in the APFC model, stress fields in the presence
of defects are calculated and how mechanical equilibrium for the related elastic distortions is enforced on the time
scale of defect motion. A finite element implementation of the combined system of equations is provided in Sec. 4,
followed by our numerical results in Sec. 5. We begin by studying the stress field created by an isolated, stationary
dislocation in a two-dimensional, large crystal (Sec. 5.1). The computed stress agrees with classical elasticity far
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from the defect core, and also with results provided by either first strain gradient elasticity (Lazar and Maugin, 2005),
or Burgers vector smoothing methods (Cai et al., 2006) near the core. Sections 5.2 and 5.3 present our results on
dislocation dipoles and their motion under each other’s influence. Sec. 5.4 addresses the study of grain shrinkage
along with the analysis of defect distribution achieved within the presented framework.

2. Amplitude Phase-Field Crystal (APFC) Model

The PFC model describes the structure of a crystal lattice by means of a continuous periodic field ψ, the dimen-
sionless atomic probability density difference (Elder et al., 2002, Elder and Grant, 2004, Emmerich et al., 2012). A
phenomenological free energy is introduced as

Fψ =

∫
Ω

[
∆B0

2
ψ2 +

Bx
0

2
ψ(1 + ∇2)2ψ −

t
3
ψ3 +

v
4
ψ4

]
dr, (1)

which describes a first order transition between a disordered/liquid phase, where ψ is constant, and an ordered/crystalline
phase, where ψ is periodic, in the domain Ω. ∆B0, Bx

0, v and t are parameters controlling which phase minimizes the
free energy Fψ (Elder et al., 2007). In the standard approach, the evolution towards equilibrium for out-of-equilibrium
configurations is described by the gradient flow ensuring conservation of ψ

∂ψ

∂t
= M∇2 δFψ

δψ
, (2)

where M is a mobility. In the crystalline state, ψ can be generally approximated as a sum of plane waves, i.e.,

ψ = ψ0 +
∑

q
Aqeiq·r = ψ0 +

N∑
j

A jeiq j·r + c.c., (3)

where ψ0 is the average density, set to zero in the following, A j are the (complex) fields corresponding to the ampli-
tudes of each plane wave and {q j} is the set of N reciprocal lattice vectors representing a specific crystal symmetry.

In the so-called amplitude expansion of the PFC model (APFC) (Goldenfeld et al., 2005, Athreya et al., 2006,
Goldenfeld et al., 2006), the crystal structure is described directly by means of A j. They account for distortions and
rotations of the crystal structure with respect to a reference state accounted for by a proper set of q j vectors. Under
the assumption of slowly varying amplitudes, the free energy of the system expressed in terms of A j reads

FA =

∫
Ω

[
∆B0

2
Φ +

3v
4

Φ2 +

N∑
j=1

(
Bx

0|G jA j|
2 −

3v
2
|A j|

4
)

+ f s({A j}, {A∗j})
]
dr, (4)

where G j = ∇2 +2iq j ·∇ and Φ = 2
∑N

j=1 |A j|
2. The term f s({A j}, {A∗j}) corresponds to a complex polynomial of A j and

A∗j and is determined by the crystalline symmetry of the reference lattice (Elder et al., 2010, Salvalaglio et al., 2017).
Amplitude functions allow for a full description of elastic deformation within the PFC framework, and the associated
energy in Eq. (4) contains the elastic energy associated with deformations (Elder et al., 2010, Heinonen et al., 2014).
The evolution equation of the A j’s can be derived from Eq. (2), and reads

∂A j

∂t
= −|q j|

2 δFA

δA∗j
, (5)

with time rescaled by M. In this work we focus on two-dimensional crystals with triangular symmetry (N = 3)
described by

q1 = k0

(
−
√

3/2,−1/2
)
, q2 = k0(0, 1), q3 = k0

(√
3/2,−1/2

)
, (6)

with k0 = 1, while f s({A j}, {A∗j}) = −2t(A1A2A3 + A∗1A∗2A∗3).
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3. APFC dynamics constrained by mechanical equilibrium

Following (Skaugen et al., 2018a,b), we aim at computing the necessary correction to the density field ψ given by
the solution of (2) so that it remains in mechanical equilibrium at all times. Defects are given by the APFC approach
(position and topological charge, the latter given in the Burgers vector distribution), while we compute an additional
smooth distortion uδ needed to remain in mechanical equilibrium, i.e., ∇ · σ = 0 with σ the total stress field. In the
PFC approach, ψ(r, t) is then replaced by ψ(r− uδ, t) (Skaugen et al., 2018a). For small displacement uδ we can write

ψ′(r − uδ, t) uδ→0
= ψ(r, t) − [∇ψ(r, t)]T · uδ + E(||uδ||2)

=
∑

q

{
Aq(r, t) − [∇Aq(r, t)]T · uδ − iq · uδAq(r, t)

}
eiq·r + E(||uδ||2)

=
∑

q
A′q(r,uδ, t)eiq·r + E(||uδ||2),

(7)

with
A′q(r,uδ, t) = (1 − iq · uδ)Aq(r, t) − [∇Aq(r, t)]T · uδ, (8)

which are the amplitudes corrected by the deformation uδ and need to be computed. Under the assumption of slowly
varying amplitudes, as required by the APFC approach, this quantity is simply given by (Spatschek and Karma, 2010)

A′q(r,uδ, t) = Aq(r, t)e−iq·uδ , (9)

as
Aq(r, t)e−iq·uδ = Aq(r, t)[cos(q · uδ) − i sin(q · uδ)] uδ→0

≈ (1 − iq · uδ)Aq(r, t), (10)

where the last expression corresponds to Eq. (8) for negligible gradients of amplitudes. In the following we will use
Eq. (9). A comparison with approximations (8) and (10) will be given in Sect. 5.4.

As shown in (Skaugen et al., 2018a), uδ can be determined through a Helmholtz decomposition into curl- and
divergence-free parts1,

uδi = ∂iϕ + εi j∂ jα, (11)

with ϕ and α to be determined. ϕ can be computed from a smooth strain εδi j as

∇2ϕ = Tr(εδ). (12)

The same holds for α and read
∇4α = −2εi j∂ikε

δ
jk. (13)

The strain field εδi j is compatible, and the corresponding compatible stress can be computed from the difference

between the total stress, σ, and an incompatible stress computed from the amplitude functions, σψi j, as (Skaugen et al.,
2018b)

σδi j = σi j − σ
ψ
i j = εikε jl∂klχ − σ

ψ
i j, (14)

where χ is the Airy stress function. The stress σψi j can be obtained, as shown in (Skaugen et al., 2018b), by

σ
ψ
i j = 〈σi j〉 = 〈(∂iLψ)∂ jψ − Lψ∂i jψ〉, (15)

whereL ≡ 1+∇2 and 〈· · · 〉 the average over the unit cell. Using Eq. (3) and by integrating over the unit cell we obtain

σ
ψ
i j =

∑
q

{
[(∂i + iqi)(∇2 + 2iq · ∇)Aq][(∂ j − iq j)A−q] − [(∇2 + 2iq · ∇)Aq][(∂i − iqi)(∂ j − iq j)A−q]

}
. (16)

1In this section we use the notation convention on implicit summations over repeated indices.
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In Eq. (14) χ is given by
(1 − κ)∇4χ = 2µεi j∂iB j(r) = (εikε jl∂i jσ

ψ
kl − κ∇

2σ
ψ
kk), (17)

with B(r) the Burgers vector density, and κ = λ/(2(λ + µ)), with λ and µ the two Lamé coefficients. Once σδi j is
computed, the smooth strain to be used in Eqs. (12) and (13) is obtained by

εδi j =
1

2µ
(σδi j − νδi jTr(σδ)), (18)

and, in turn, the smooth deformation uδ is determined from Eqs. (11)–(13). Once uδ is known, Eq. (9) can be used to
update the amplitudes.

4. Finite element implementation

The implementation of the system of partial differential equations (PDEs) reported in Sect. 3 builds on the dis-
cretization of the standard APFC model described in (Salvalaglio et al., 2017, Praetorius et al., 2019), and is based on
the adaptive FEM toolbox AMDiS (Vey and Voigt, 2007, Witkowski et al., 2015). The governing equations are solved
as systems of second-order PDEs with semi-implicit integration schemes. For the sake of clarity, these integration
schemes are reported in the following in matrix form L ·x = R, with x the vector of unknowns. We define an auxiliary
complex field B j = (∇2 + 2iqn · ∇)A j = G jA j and explicitly consider the real and imaginary part of A j and B j such as
A j = AR, j + iAI, j and B j = BR, j + iBI, j. The following system of equations is then used for numerically integrating the
evolution equation (5) for the amplitude A j

L =



−∇2 P 1 0

−P −∇2 0 1

G1({A(n)
i }) 0 K∇2 −KP

0 G2({A(n)
i }) KP K∇2


x =



A(n+1)
R, j

A(n+1)
I, j

B(n+1)
R, j

B(n+1)
I, j


R =



0

0

H1({A(n)
i })

H2({A(n)
i })


(19)

where n is the time step index, τn > 0 is the time stepsize at step n, P = 2q j · ∇, K = |q j|
2Bx

0, and

G1({Ai}) =
1
τn

+ |q j|
2∆B + 3v|q j|

2
(
Φ + A2

R, j − A2
I, j

)
,

G2({Ai}) =
1
τn

+ |q j|
2∆B + 3v|q j|

2
(
Φ + A2

I, j − A2
R, j

)
,

H1({Ai}) =

[
1
τn

+ 6|q j|
2vA2

R, j

]
AR, j − |q j|

2Re

δ f tri

δA∗j

 ,
H2({Ai}) =

[
1
τn

+ 6|q j|
2vA2

I, j

]
AI, j − |q j|

2Im

δ f tri

δA∗j

 .
(20)

{Ai} refers to the entire set of amplitudes Ai with i = 1, ...,N as they enter Φ and f tri. Exploiting the definition of B j

reported above, the components of the stress σψ can be written as

σ
ψ
lm =

∑
j

{
[(∂l + iql)B j][(∂m − iqm)A∗j] − B j[(∂l − iql)(∂m − iqm)A∗j] + c.c.

}
= 2

∑
j

[
∂lBR, j∂mAR, j + ∂lBI, j∂mAI, j + 2q j

l BR, j∂mAI, j − 2q j
l BI, j∂mAR, j − q j

mAI, j∂lBR, j + q j
mAR, j∂lBI, j

+2q j
l q

j
mAR, jBR, j + 2q j

l q
j
mAI, jBI, j − BR, j∂lmAR, j − BI, j∂lmAI, j + q j

mBR, j∂lAI, j − q j
mBI, j∂lAR, j

]
(21)

where the real and imaginary parts of A j and B j have been considered. Note that Eq. (21) contains the variables
numerically computed by the system (19), along with their first and second derivatives. Therefore, the stress can be
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determined directly from the results of the evolution equations at every time step, without explicitly computing the
third-order equation (16). The semi-implicit integration scheme used to solve the fourth-order PDE (17) for χ reads

L =

∇2 −1

0 (1 − κ)∇2

 , x =

χ
η

 , R =

 0

Q − κ∇2σ
ψ
ii

 , (22)

where
Q =

∑
i jkl

εikε jl∂i jσ
ψ
kl

2D
= ∂xxσ

ψ
yy + ∂yyσ

ψ
xx − ∂xyσ

ψ
yx − ∂yxσ

ψ
xy, (23)

and η an auxiliary variable such as η = ∇2χ. The FEM calculation for χ is also exploited to compute the second
derivatives of this field to be used in Eq. (14) (additional auxiliary variables ξi j such as ξi j = ∂i jχ may be added to the
system Eq. (23)). In turn, εδi j can be computed straightforwardly from Eqs. (18). ϕ and α can then be determined from
εδi j. The semi-implicit integration scheme used to solve the fourth-order PDE (13) yielding α reads

L =

∇2 −1

0 ∇2

 , x =

α
ζ

 , R =

0

S

 , (24)

where
S = −

∑
i jk

2εi j∂ikε
δ
jk

2D
= −2∂xxε

δ
yx − 2∂xyε

δ
yy + 2∂yxε

δ
xx + 2∂yyε

δ
xy, (25)

and ζ an auxiliary variable such as ζ = ∇2α. The Poisson equation for ϕ is straightforwardly implemented as a single
second-order equation (12). With values of α and ϕ, uδ can then be computed from Eq. (11) and the amplitudes
updated as reported in Sect. 3, namely by Eq. (9). Vanishing potentials at the boundaries are ensured by Dirichlet
boundary conditions, while both periodic boundary conditions and no-flux Neumann bounday conditions can be used
for amplitudes equations as the systems considered here have constant values for A j at the boundaries. In the FEM
framework, quadratic basis function are used to allow for explicit evaluation of first- and second-order derivatives
when needed. Numerical solutions reported below are performed with time steps in the range of τn = 0.1, . . . , 1, by
using spatial mesh adaptivity (see Salvalaglio et al. (2017), Praetorius et al. (2019) for more information).

5. Numerical results

5.1. Single Dislocation in a finite crystal

We first consider a configuration with a single dislocation. The amplitudes are initialized by considering the
displacement field given by an edge dislocation with Burgers vector parallel to the x-direction, i.e., b = (bx, 0) with
bx = a = 4π/

√
3 and a the lattice spacing. Amplitudes are set by (Spatschek and Karma, 2010, Salvalaglio et al.,

2017)
A j = φ exp

(
iq j · u

)
, (26)

where φ is the real value of amplitudes for a relaxed and unrotated crystal that can be determined through free en-
ergy minimization by assuming constant and real amplitudes (Elder et al., 2010, Salvalaglio et al., 2017), and u the
displacement field. The components of u for an edge dislocation are given by (Anderson et al., 2017)

ux =
b

2π

[
arctan

( y
x

)
+

xy
2(1 − ν)(x2 + y2)

]
,

uy = −
b

2π

[
(1 − 2ν)
4(1 − ν)

log
(
x2 + y2

)
+

x2 − y2

4(1 − ν)(x2 + y2)

]
,

(27)

with ν the Poisson’s ratio. Since the displacement field components in Eq. (27) are singular at the origin, corresponding
to the nominal position of the dislocation core (Anderson et al., 2017), local smoothing of the initial condition is
introduced. The elastic energy of a single dislocation in bulk, namely in an ideally infinite crystal, is not finite in two
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dimensions. Therefore, we embed the amplitudes obtained by Eqs. (26) and (27) in a circular grain with radius R
surrounded by a disordered (liquid) phase. In practice, for r =

√
x2 + y2 > R both the real and the imaginary parts of

the amplitudes are set to zero. The parameters of the (A)PFC free energy are set as Bx = 0.98, v = 1/3, t = 1/2 and, to
allow for the coexistence of the solid and liquid phases, ∆B0 . 8t2/(135v). Having a single dislocation in the system
shifts the free energy of the solid to a slightly higher value; thus ∆B0 should be slightly smaller than that of the ideal,
dislocation-free case. Still, we have verified that a negligible growth velocity of the grain is observed for ∆B0 = 0.042
over the timescale of interest (i.e., during the relaxation of the system).

Figure 1: Computation for a configuration with one edge dislocation in a finite crystal, with b = (a, 0). (a) Real (right) and imaginary (left) parts of
the amplitude A2. (b) Φ = 2

∑N
j |A j |

2. (c) Reconstructed ψ(x) from Eq. (3), with an inset showing a magnification of the small region around the

defect. (d) σxy. Panels (a)–(d) are obtained with R = 60a. (e) Comparison between σxy, σψxy, σNS
xy and σGE

xy along the horizontal line crossing the
defect core, for R = 300a.

The results obtained at t = 100 are shown in Fig. 1(a)–(d): A2 (both real and imaginary parts), Φ (defined in the
figure), ψ(x), and σxy for R = 60a. Figure 1(e) shows the distribution of σψxy, from Eq. (16), and σxy from Eq. (14)
along the horizontal line through the dislocation core. Here we set R = 300a to avoid significant influence of the
solid-liquid interface, and of the finite size of the crystal on the elastic field of the dislocation. Since the configuration
shown is in equilibrium, σψxy and σxy should be identical. Indeed, this system can be considered to be in equilibrium,
and the relaxation of the initial state recovers the corresponding distribution of the elastic field without the amplitude
correction. A very small shift of the stress field is obtained at large distance, which can be ascribed to the presence
of the solid-liquid interface. In terms of dislocation self-energy, computed as

∫
σd : εddx with σd and εd the stress

and strain in the system with a single dislocation, a difference of ∼ 1.5% is found when adding σδ to σψ. It is worth
mentioning that the presence of free surfaces, or in general interfaces in inhomogeneous media, affects some features
of the elastic field far from the core (Head, 1953, Marzegalli et al., 2013, Anderson et al., 2017). However, a close
comparison to this case is beyond the scope of the present investigation.

The stress field given by the APFC model is non-singular at the dislocation core. Our results for the regularized
stress field (Fig. 1(e)) agree with the non-singular theory of Cai et al. (2006), where the components of the stress field
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are argued to be given by,

σNS
xx = −

µbx

2π(1 − ν)
y(3c2 + 3x2 + y2)

(c2 + x2 + y2)2

σNS
yy = −

µbx

2π(1 − ν)
y(c2 − x2 + y2)
(c2 + x2 + y2)2

σNS
xy =

µbx

2π(1 − ν)
x(3c2 + x2 − y2)
(c2 + x2 + y2)2

(28)

with µ the shear modulus and c a regularization parameter related to the dimension of the dislocation core. Good
numerical agreement with our results is found by setting c = 2bx. Therefore, the APFC model naturally includes a
regularization of the elastic fields at the dislocation core, which deviates from the singular behavior expected from
continuum mechanics (Anderson et al., 2017), but without requiring any additional parameters. Eq. (17) shows
how this is accomplished: the right-hand side of this equation corresponds to [∇ × B(r)]z (with z labelling the axis
perpendicular to the considered 2D system) (Skaugen et al., 2018a); that is, for the dislocation considered here ∇ ×
(Bx(r), 0) = −∂Bx(r)/∂y ẑ. This quantity, for the system of Fig. 1, is shown in Fig. 2(a). −∂Bx(r)/∂y is smooth
over a finite size region near the core, indicating the effective spreading of the Burgers vector (instead of the isolated
singularity B(r) = bδ(r− r0), as expected by continuum mechanics). The spreading of the Burgers vector over a small
region around the core is the basic assumption of Cai et al. (2006). The procedure allows regularised continuous fields
at the dislocation core, while still matching the prediction of standard continuum mechanics away from the core (see
Eq. (28)).

Figure 2: Analysis of the spreading of b. ∇ × B(r) is used to illustrate the spreading of the Burgers vector density given by the phase field stress
fields, including results of (a) from APFC simulation of a single dislocation, namely the right-hand side of Eq. (17), and (b) from Eq. (29) with
c = 2bx. A circle with radius c is superposed at the origin of plots in panels (a) and (b). (c) Comparison along the vertical line crossing the
dislocation core in panels (a) and (b). All the quantities are normalized with respect of the (symmetric) maxima and minima.

More specifically, the non singular theory of (Cai et al., 2006) introduces a spreading function s(r) given by,

s(r) =
15

8πc3(r2/c2 + 1)7/2 . (29)

The convolution of this function with non-singular stress-field components leads to Eqs. (28). Therefore, we can
assume a spreading of the Burgers vector density such as BNS(r) = (BNS

x (r), 0) with BNS
x (r) = bxs(r) for an edge

dislocation having b = (bx, 0). Therefore, ∇× BNS
x (r) = −bxẑ∂s(r)/∂y. It is worth mentioning that in Cai et al. (2006),

the starting point is to assume a regularization of the Burgers vector density by a function s̃(r), whose convolution
with itself gives Eq. (29). The latter enters the deformation fields and allows the removal of the singularity at the core
given that

∫
r(x− x′)s(x′)d3x′ = rc with rc =

√
x2 + y2 + z2 + c2. The distribution of ∇×BNS

x (r) is shown in Fig. 2(b)
for c = 2bx. A circle with radius 2bx is superposed on both the maps in Figs. 2(a) and (b). In addition, a comparison
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of the two distributions along the vertical line crossing the defect is shown in Fig. 2(c). The agreement between them
indicates that the assumption of isotropic spreading given in Cai et al. (2006) does capture the main features of the
regularization at the core given by the APFC model. However, it should be noted that the APFC description naturally
incorporates the lattice symmetry and as such will always include any anisotropies in this (or any other) quantity.

Another regularization scheme similar to that discussed above has been introduced by assuming a smooth Burgers
vector distribution (Lothe, 1992), or by elasticity theories including first strain-gradient energy terms (Mindlin, 1964,
Mindlin and Eshel, 1968). In the so-called Helmoltz type gradient elasticity, for an edge dislocation with Burgers
vector oriented along the x-axis (i.e., b = (bx, 0)), the elastic field in an isotropic medium is given by (Lazar and
Maugin, 2005, Lazar, 2017)

σGE
xx = −

µbx

2π(1 − ν)
y
r4

[
(y2 + 3x2) +

4`2

r2 (y2 − 3x2) − 2y2 r
`

K1(r/`) − 2(y2 − 3x2)K2(r/`)
]
,

σGE
yy = −

µbx

2π(1 − ν)
y
r4

[
(y2 − x2) −

4`2

r2 (y2 − 3x2) − 2x2 r
`

K1(r/`) + 2(y2 − 3x2)K2(r/`)
]
,

σGE
xy =

µbx

2π(1 − ν)
x
r4

[
(x2 − y2) −

4`2

r2 (x2 − 3y2) − 2y2 r
`

K1(r/`) + 2(x2 − 3y2)K2(r/`)
]
,

(30)

with Kn(r/`) the modified Bessel function of the second type, and ` a characteristic internal length parameter of the
material. This parameter is usually proportional to the lattice spacing, as has been obtained empirically by comparison
with atomistic calculation (see, e.g., (Po et al., 2014)). The elastic field obtained in this approach is also shown in
Fig. 1 for ` = bx. With this choice of `, σGE

xy ≈ σNS
xy within the core region. In turn, both agree with σxy obtained

from the APFC model. Within first-gradient elasticity, the spreading of the Burgers vector is given by a function
that is singular at the core, K0(r/`) ≈ −

{
log[r/(2`)] + γ

} {
1 + r2/(4`2)

}
− r2/(4`2) + O(r4) with γ = 0.57721... the

Euler-Mascheroni constant (Lazar, 2017). Therefore an analysis analogous to that of Fig. 2 is not possible. Closer
comparisons with this theory will be the subject of future research.

These comparisons shed light on the regularization of stress fields in the (A)PFC framework. Other than the
agreement described above, we note that small deviations and asymmetries are observed, in particular concerning the
highest stress values obtained in the system (see the curves in Fig. 1(e)). This is, however, expected as nonlinearities
are contained in PFC amplitudes (Hüter et al., 2016) which generally capture features on atomic length scales. They
would become relevant for large stresses/strains. It is worth mentioning that regularization of the elastic field at the
core of a dislocation is natural from an atomistic point of view, as the distribution is expected to be non-singular with
vanishing deformation field at the core (see, e.g., (Bonilla et al., 2015)) which intrinsically has a finite size. This was
also the main argument that led to the renowned Peirels-Nabarro model (Peierls, 1940, Nabarro, 1947), although in
this case the resulting elastic fields are discontinuous at the core, even if they do not diverge (Lazar, 2017). Therefore
they deviate from the continuous description given by the APFC model.

5.2. Dislocation dipole

In this section a dislocation dipole is considered. The amplitudes are initialized by considering the displacement
field of two edge dislocations with Burgers vector bx = ±a aligned along the x direction. Eqs. (26) and (27) are
straightforwardly used by considering u(x − x0, y − y0), i.e. shifting the x and y axis to account for the initial position
of each dislocation p = (x0.y0). We focus here in particular on two defects having positions p1,2 = (0,±L) with
L ∼ 10a. Parameters of the (A)PFC free energy are set as those in Sect. 5.1. A square computational domain with
size 200a is used, embedding a grain as in the previous section with radius 140a.

The results obtained at t = 100 are shown in Fig. 3(a)-(d) which include the dependence of A2, Φ, ψ(x), and σyy.
The stress fields σψ and σ, along with the predictions from non-singular continuum elasticity theories as described in
Sect. 5.1 are presented in Fig. 3(e). First, note that the incompatible stress σψ and the total stress σ differ from each
other, even after a relaxation time from the initial condition which was long enough to obtain a substantial agreement
for the case of an isolated dislocation (Sect. 5.1). These APFC results are obtained with parameters corresponding
to coexistence of the liquid and solid phases, for which we expect a good description of the elastic relaxation in
the standard (A)PFC model, different from deep quenches conditions. The system at t = 100 is, however, out of
equilibrium as the defects will move and finally annihilate. Therefore, as discussed in (Skaugen et al., 2018a), the
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Figure 3: Simulation of an edge-dislocation dipole with b1,2 = (±a, 0) and positions p1,2 = (0,±10a). (a) Amplitude A2 illustrated by its real (top)
and imaginary (bottom) parts. (b) Φ = 2

∑N
j |A j |

2. (c) Reconstructed ψ(x) from Eq. (3), with an inset showing a magnification of the small region

around the defect. (d) σyy. (e) Comparison between σyy, σψyy, σNS
yy , and σGE

yy along a vertical line crossing the defects.

correction discussed in Sect. 3 is needed to maintain mechanical equilibrium. Note that in Fig. 3(e) the stress fields
obtained from continuum elasticity theories, namely Eqs. (28)–(30), have been properly shifted to account for the
dislocations forming the dislocation dipole, and are expected to match the PFC elastic field far away from the core
(e.g., when |y| > 20a). Closer to the defects some deviations from continuum elasticity are observed. Such deviations
are shown in the regimes of large deformation near dislocation cores (even in the single-dislocation case of Fig. 1).
They are more evident in between the individual defects, where the contributions of the two dislocations accumulate.
This effect may be ascribed to nonlinearities of elasticity as they are naturally contained in APFC amplitudes and play
an important role at high strains (Hüter et al., 2016). In general, they become relevant when the distortion of the lattice
parameter a compared to the lattice parameter of the reference crystal, abulk, is a/abulk < 0.95 or a/abulk < 1.05. Here,
strains larger than 5% are observed in the region |y| < 20a.

5.3. Motion of a dislocation dipole

The configuration of Sect. 5.2 also allows us to investigate the evolution that satisfies the constrain of mechanical
equilibrium of elastic distortions as discussed in Sect. 3. We consider here a dislocation dipole with dislocations
annihilating by pure glide or climb. We choose as initial conditions two dislocations at p1,2 = (±L, 0) (configuration
G, glide), and p1,2 = (0,±L) (configuration C, climb), with L ∼ 15a. The latter system corresponds to the one analyzed
in Sect. 5.2, shown in Fig. 3(a)–(d), while the former consists of the same defects but aligned along the y direction.

Our results are presented in Fig. 4. Panels Fig. 4(a) and Fig. 4(d) show the stress tensor components σxx and σxy.
Fig. 4(b) and Fig. 4(e) show the position over time of the upper defect for configuration C (yd), and of the defect on
the right for configuration G (xd), respectively. Panels (c) and (f) show the velocity for the two configurations. Model
parameters are the same as in Sect. 5.1 and 5.2, corresponding to solid/liquid coexistence. As a first observation,
a faster dynamics is obtained when enforcing mechanical equilibrium in PFC, in agreement with (Skaugen et al.,
2018b,a). From a macroscopic point of view, the motion of a dislocation can be described in terms of the Peach-
Koehler force (Anderson et al., 2017), that is, f = (σ · b) × ξ with ξ the unit vector oriented along the dislocation
line, b the Burgers vector of the dislocation, and σ the external elastic field (for a recent review see (Lubarda, 2019)).
For the configurations considered here, the force acting on a dislocation is fG = σxyb and fC = σxxb, with σi j the
stress field generated by the other dislocation. Within the (A)PFC framework, the velocity of the dislocations due to
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the action of the Peach-Kohler force is given by (Skaugen et al., 2018b)

vPK
i =

1
4πφ2 εi jσ jkbk. (31)

This velocity is shown in Figs. 4(b) and (d) for configurations C and G, respectively, using equations given in Sect. 5.1
to compute σi j. Notice that it is in good agreement with vG

x = vC
y = b2/(2π2d) (Skaugen et al., 2018b) (they match for

ν = 1/4). Note that the purely diffusive dynamics of the APFC model significantly underestimates the magnitude of
the velocities. By constraining the evolution to remain in mechanical equilibrium, the computed velocity agrees well
with the prediction based on the Peach-Kohler force.

Figure 4: Defect annihilation. For configuration C: (a) σxx, (b) position (yd/a) over time over time, and (c) velocity. For configuration G: (d) σxy,
(e) position (xd/a) over time, and (f) velocity. In this and other figures, OD, ME and PK refer to overdamped dynamics (the original APFC model),
mechanical equilibrium (the present work) and the Peach-Kohler result (Eq. (31)), respectively.

We mention that, from a microscopic point of view, the evolution of configurations C and G are expected to be
significantly different. Glide is the movement of dislocations along their slip planes, whereas climb is the motion
perpendicular to the slip plane. Both are activated processes over different types of barriers. In the former, a layer
of atoms slips over the Peierls-Nabarro barrier, whereas the latter requires the absorption (or emission) of vacancies
(Anderson et al., 2017). The first effect can be captured in the standard PFC model (Boyer and Viñals, 2002, Skaugen
et al., 2018b) which includes atomic scale microscopic features that are not present in the APFC model (Huang, 2013).
Still, at variance with continuum models based solely on mechanics, temperature is included in the APFC approach
in a phenomenological fashion as it enters the energy of the ordered and disordered phases. This can be seen, for
instance, when changing values of ∆B0. We recall that ∆B0 = 8t2/(135v) allows for the coexistence of solid and
liquid phases, ∆B0 ≷ 8t2/(135v) favors the liquid or solid phase, while ∆B0 � 8t2/(135v) corresponds to a deep-
quench condition. We have verified that increasing ∆B0 (up to the solid-liquid coexistence condition) speeds up defect
motion thus capturing, at least qualitatively, the expected change in defect mobility, although no barriers are explicitly
included in the APFC model.
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5.4. Grain shrinkage

We consider here a 2D system with a rotated grain embedded in a crystalline matrix of triangular symmetry. The
grain boundary consists of a series of dislocations that move together. Amplitudes are initialized as (Salvalaglio et al.,
2017)

A j = φ jexp
(
iδq j(θ) · x

)
, (32)

with
δq j(θ) =

[
qx

j(cos θ − 1) − qy
j sin θ

]
x̂ +

[
qx

j sin θ + qy
j(cos θ − 1)

]
ŷ. (33)

θ = 0 at a distance R0 from the center of the rotated inclusion/grain, which is tilted by an angle θ with respect to the
surrounding matrix. The spatial distributions of A2, Φ, ψ(x), and σψxx, corresponding to θ = 5◦ and R0 = 25π, are
shown in Fig.5. The parameters of the APFC model are set to be the same as those in the previous sections. The
circular grain considered here shrinks over time, which is qualitatively well described by the APFC model (Heinonen
et al., 2016, Salvalaglio et al., 2018, 2019). Results of the normalized area R2(t)/R2

ini of the shrinking grain with and
without the correction described in Sect. 3 are shown in Fig. 6.

Figure 5: Defects at a circular low-angle grain boundary between a rotated inclusion and an unrotated crystal matrix of triangular symmetry. (a)
Amplitude A2 illustrated by its real (left) and imaginary (right) parts. (b) Φ = 2

∑N
j |A j |

2. (c) Reconstructed ψ(x) from Eq. (3), with yellow isolines
of Φ highlighting the defects. (d) σxx.

For this configuration, the three expressions of the amplitudes corrected by uδ, namely Eqs. (8), (9) or (10) reported
in Sect. 3, are used. In all the cases considered, R2(t) decreases linearly with time. A significantly faster decrease
is observed when mechanical equilibrium is imposed, as has also been observed for the evolution of dislocation
dipoles in Sect. 5.3 and, for this configuration in particular, in (Heinonen et al., 2016). In agreement with our results,
(Heinonen et al., 2016), in the limit of fast relaxation of elastic excitations, also show that grain-shrinking dynamics is
an order of magnitude faster when accounting for instantaneous mechanical equilibrium. The substantial agreement
between three different approaches for correcting the amplitudes (i.e., Eqs. (8), (9) and (10)) supports the assumption
of small deformations and slowly varying amplitudes.

The analysis of Sect. 5.1 concerning how lattice distortion follows from the Burgers vector density B(r), can
be readily applied to this configuration to gain insights about the crystal defects in the rotated inclusion and, more in
general, in systems with many defects. The spatial distribution [∇×B(r)]z, computed as the right-hand side of Eq. (17)
for a rotated inclusion with θ = 10◦ and R ∼ 20a, is shown in Fig. 7(a). We obtain a localized distribution centered at
defects, as in Fig. 2(a). By looking at the arrangement of positive and negative lobes of the distribution, six different
orientations are obtained, which correspond to multiples of 30◦, consistent with the lattice vectors of the triangular
lattice. Indeed, this quantity fully describes the distribution of b in 2D. Following the arguments of Sect. 5.1, we
can identify the orientation of the Burgers vector as being perpendicular to the line connecting the local minimum
and maximum of [∇ × B(r)]z at defect cores. This is illustrated in Fig. 7(b). The extension of the local non-zero
distributions of [∇×B(r)]z at defects, as well as its maximum and minimum, are then connected to the Burgers vector.
Here they are all equivalent as they should yield |b| = a for symmetry reasons. Fig. 7(c) gives a schematic illustration
of defects with the orientations obtained. Note that the distribution of defects is symmetric, and the sum of all the b’s
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is zero. It is worth mentioning that for this dynamical system, at variance with Sect. 5.1, the number of defects and
the orientation of individual defects are not known a priori. Therefore, this analysis can be used to extract information
on the nature of the defects and their evolution towards equilibrium, which is fully contained in the APFC model.

Figure 6: Time evolution of the normalized area of rotated grain, for the overdamped dynamics (OD) and with the correction to amplitudes for
mechanical equilibrium (ME) as in Eqs. (8)–(10).

Figure 7: Analysis of the lattice deformation for a rotated inclusion with θ = 10◦ and R ∼ 20a. (a) [∇ × B(r)]z. (b) Detail inside the dashed box
of (a), showing the identification of the directions perpendicular (red, dashed arrow) and parallel (blue, solid arrow) to the Burgers vector b. (c)
Schematics reporting the scheme of panel (b), where the grey circles (with radius ∼ 2a) correspond to the positions of individual defects.

6. Conclusions

We have presented a coarse-grained model of lattice distortion as described by the phase-field crystal model in its
amplitude expansion formulation. For systems in equilibrium, we have studied the stress field induced by an isolated
dislocation, including the regularized stress near the dislocation core. Although the APFC approach cannot provide a
detailed description of dislocation cores from an atomistic point of view due to its underlying assumptions (Goldenfeld
et al., 2005, 2006, Yeon et al., 2010), we have shown that the resulting deformation fields near the core are smooth,
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and are generally in agreement with other theories based on continuum elasticity (Lazar and Maugin, 2005, Cai
et al., 2006). The APFC model has been modified to enforce mechanical equilibrium by calculating the strain fields
resulting from the phase field and correcting them with compatible distortions on the time scale of dislocation motion,
so far only demonstrated for the original PFC model (Skaugen et al., 2018b,a). The modified model not only agrees
well with predictions from continuum mechanics, but it can also include lattice symmetry, naturally accounts for the
formation and motion of topological defects, and, computationally, it can access large system sizes and long time
scales (Salvalaglio et al., 2019, Praetorius et al., 2019). Despite the coarse-grained nature of the model, it can provide
information about individual defects and defect distributions directly from APFC model variables. In particular, we
have shown how to compute the Burgers vector density and its motion from the model amplitudes.

Future work will be devoted to deepen the connections with theories based on continuum mechanics, to extend the
results to other lattice symmetries, and to the investigation of three-dimensional systems. The possibility to account
for changes in the local average density of the crystal (which is assumed to be constant here) will also be explored.
It will allow the extension to the study of binary systems (Elder et al., 2010), and to include a better description of
elastic constants (Wang et al., 2018, Ainsworth and Mao, 2019).
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