PATTERN FORMATION IN MESOPHASES

Jorge Viñals

School of Physics and Astronomy and Minnesota Supercomputing Institute

University of Minnesota

With: Denis Boyer, Zhi-Feng Huang, and Chi-Deuk Yoo

KINETIC EQUATION

$$\tau_0 \frac{\partial \psi(\mathbf{r}, t)}{\partial t} = \epsilon \psi - \frac{\xi_0^2}{4k_0^2} \left(q_0^2 + \nabla^2\right)^2 \psi + g_2 \psi^2 - \psi^3$$

Stationary solution $g_2 = 0$

•
$$\epsilon < 0: \psi = 0$$

•
$$\epsilon > 0$$
: $\psi(\vec{r}, t) = \epsilon^{1/2} A_0 \sin(\vec{q_0} \cdot \vec{r}) + \mathcal{O}(\epsilon^{3/2}).$

Stripe pattern oriented along an arbitrary $\vec{q_0}$. Smectic or lamellar phase (1D crystal).

Stationary solution $g_2 \neq 0$

$$\bullet -|\epsilon_m(g_2)| < \epsilon < \epsilon_M(g_2): \ \psi(\vec{r},t) = \sum_{n=1}^6 A_n e^{i\vec{q}_n \cdot \vec{x}} + \text{c.c.}.$$

Hexagonal pattern. Columnar phase (2D crystal).

ORDER AT FINITE WAVEVECTOR

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003]

Amphiphilic systems

Liquid crystalline elastomers

APPLICATIONS IN NANOTECHNOLOGY

DIFFERENCES WITH q=0 SYSTEMS

Topological defects

Pinning and structural glass

Anisotropic rheology

ENERGETICS

Order parameter

$$\psi \propto \rho_{a} - \rho_{b}$$

Free energy

Ohta-Kawasaki

$$F[\psi] = \int dr \left(\frac{-\tau}{2}\psi^2 + \frac{u}{4}\psi^4 + \frac{K}{2}(\nabla\psi)^2\right) + \frac{B}{2}\int dr dr'\psi(r)G(r-r')\psi(r')$$

with $\nabla^2 G(r-r') = -\delta(r-r')$.

Leibler/Swift-Hohenberg (weak segregation limit)

$$F\left[\psi\right] = \int dr \left(\frac{-\tau}{2}\psi^2 + \frac{u}{4}\psi^4 + \frac{K}{2}\left[\left(\nabla^2 + q_0^2\right)\psi\right]^2\right)$$

 τ is temperature difference with microphase separation temperature, q_0 is the characteristic wavenumber. UNIVERSITY OF MINNESOTA

PHASE DIAGRAM

[K. Yamada, M. Nonomura, and T. Ohta, Macromolecules **37**, 5762 (2004)].

University of Minnesota

LINEAR STABILITY ANALYSIS

Study the evolution of a perturbation of ψ_0 :

Re $\sigma_{\bf q}$ gives exponential growth or decay. Im $\sigma_{\bf q} = -\omega_{\bf q}$ gives oscillations, waves $e^{i({\bf q}\cdot{\bf x}-\omega_{\bf q}t)}$

NONLINEARITY

Parabolic approximation:

For R near R_c and q near q_c ,

Re
$$\sigma_{\mathbf{q}} = \frac{1}{\tau_0} \left[\epsilon - \xi_0^2 (q - q_c)^2 \right]$$

 $\epsilon = \frac{R - R_c}{R_c}$

NONLINEARITY

For R near R_c and q near q_c ,

$$\operatorname{Re} \sigma_{\mathbf{q}} = \frac{1}{\tau_0} \left[\epsilon - \xi_0^2 (q - q_c)^2 \right]$$
$$\epsilon = \frac{R - R_c}{R_c}$$

Near threshold separation of scales:

- 1. $|q_{N-} q_{N+}| \sim \sqrt{\epsilon}$. Slow modulations around periodic solutions with q_c .
- 2. Modulations are slow: grow in a time scale ϵ

NONLINEARITY

Slightly above threshold ($\varepsilon \ll 1$):

- Continuum of modes around k₀.
- Other symmetries: rotational invariance ...

$$rac{\partial \hat{\psi}(k)}{\partial t} = \left[arepsilon - \xi_0^2 (k - k_0)^2
ight] \hat{\psi}(k) + \dots$$

 $\xi_0^2 = rac{1}{2} \left(rac{\partial^2 arepsilon_c(k)}{\partial k^2}
ight)_{k_0}.$

 ξ_0 is the coherence length that determines the "rigidity" of the pattern (mean field correlation length).

AMPLITUDE EQUATIONS

Assume weak distortion,

$$\psi = A(X, Y, T)e^{ik_0x} + \text{c.c.}$$

with

$$A(X, Y, T) = A(\epsilon^{1/2}x, \epsilon^{1/4}y, \epsilon t).$$

Ginzburg-Landau equation (in original variables),

$$\frac{\partial A}{\partial t} = \epsilon A + \xi_0^2 \left(\partial_x - \frac{i}{2k_0} \partial_y^2 \right)^2 A - 3|A|^2 A$$

SECONDARY INSTABILITIES

PATTERN SELECTION - LARGE DOMAIN

- Boundary conditions. At small \(\epsilon\), they reduce the band of allowable solutions. No sharp selection.
- Dynamical: front propagation. Studied in one dimension.
- Set by defects (targets, grain boundaries select wavelength).
- Statistical: initial conditions and domain coarsening.

DOMAIN COARSENING

- A single time dependent length *l*(*t*) emerges, the linear scale of the structure.
- In the self-similar range, t → ∞, *l*(t) → ∞, and all other scales of microscopic origin become irrelevant (cf. correlation length divergence near a critical point).

• Scaling functions are introduced. For example for the domain size distribution (*R* the linear size of a domain),

$$p(R,t) = \mathcal{G}\left(rac{R}{t^{ imes}}
ight) \quad I(t) \sim t^{ imes}.$$

- Universality classes have been introduced according to the value of x
 - Purely relaxational dynamics, x = 1/2.
 - Relaxational dynamics with global conservation law, x = 1/3.
 - Binary fluids (non-variational modes), *x* = 1.

CURVATURE SCALING FUNCTION

Scaled curvature distribution

MOMENTS OF CURVATURE DISTRIBUTION

Moments of the distribution of domain curvatures,

$$m_n(t) = \int_0^{\kappa_c(t)} d\kappa \ \kappa^n P(\kappa, t) \quad P(\kappa, t) = t^x f(\kappa t^x)$$

Coarsening mechanism

- Experiments in thin films (hexagonal) x = 1/4
- Domain wall relaxation, x = 1/2 or x = 1/4.
- Numerically: no fluctuations x = 1/5, fluctuations x = 1/4.
- Dislocation or disclination motion x = 1/2.

What is the mechanism ?

UNIVERSITY OF MINNESOTA

 $x \simeq 1/3$

THE ROLE OF DEFECTS

- Large gradients (locally) not close to equilibrium, but very slow on a microscopic scale.
- Large numbers of interacting defects: microstructure.
- Defects control slow relaxation.

ENVELOPE DESCRIPTION OF DEFECT MOTION

[Siggia and Zippelius, 1981]

Point defect in the envelope field,

$$\psi = Ae^{iec{k}\cdotec{x}} =
ho(ec{x})e^{i heta(ec{x})}e^{iec{k}\cdotec{x}}$$
 $\oint
abla heta \cdot ec{dl} = \pm 2\pi.$

Climb velocity is found,

$$v \propto (k-k_0)^{3/2}$$

Phase θ plays the role of the displacement field u.

ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

Order parameter expanded in slowly varying amplitudes:

$$\psi = \mathbf{A}e^{ik_0x} + \mathbf{B}e^{ik_0z} + \mathrm{c.c.}$$

where

$$A = A(\epsilon^{1/2}x, \epsilon^{1/4}y, \epsilon^{1/4}z, \epsilon t)$$
$$B = B(\epsilon^{1/4}x, \epsilon^{1/4}y, \epsilon^{1/2}z, \epsilon t)$$

ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

WHY DOES A BOUNDARY MOVE?

GRAIN BOUNDARY MOTION

- Linear relaxation rate $\sigma \propto q^4$.
- Nonlinear uniform translation mode,

$$v_{gb}(t) = \left(\frac{\xi_0^2}{4k_0^2}q^4\right) \frac{(\epsilon/4)[k_0\delta x(t)]^2}{\int_{-\infty}^{\infty} dx \left[(\partial_x A_0)^2 + (\partial_x B_0)^2\right]} \sim \frac{\delta x(t)^2 q^4}{\sqrt{\epsilon}} \propto \frac{\kappa^2}{\sqrt{\epsilon}}$$

 $v_{gb}(t) = Mobility \times Time dependent driving force$

If this motion dominates aymptotically, x = 1/3.

NON ADIABATIC COUPLING

For small $\epsilon \sim$ 0.1, the decoupling between slowly varying amplitudes and the phase of the lamellae already breaks down.

RSITY OF MINNESOTA

NON ADIABATIC EFFECTS

Seek dominant, non-perturbative corrections to

$$\begin{aligned} \frac{\partial A}{\partial t} &= \epsilon A + \xi_0^2 \left(\partial_x - \frac{i}{2k_0} \partial_y^2 \right)^2 A - 3|A|^2 A - 6|B|^2 A \\ &- \int_x^{x+\lambda_0} \frac{dx'}{\lambda_0} \left(A^3 e^{2ik_0 x'} + A^{*3} e^{-4ik_0 x'} \right), \end{aligned}$$

$$\frac{\partial B}{\partial t} = \epsilon B + \xi_0^2 \left(\partial_y - \frac{i}{2k_0} \partial_x^2 \right)^2 B - 3|B|^2 B - 6|A|^2 B$$
$$- 3 \int_x^{x+\lambda_0} \frac{dx'}{\lambda_0} \left(A^2 B e^{2ik_0 x'} + A^{*2} B e^{-2ik_0 x'} \right).$$

Assume that A and B may change over a wavelength,

$$\int_{x}^{x+\lambda_{0}} dx' A^{3} e^{i2k_{0}x'} \approx -i e^{2iX/\sqrt{\epsilon}} A^{2} \frac{\partial A}{\partial X}$$

NON ADIABATIC EFFECTS

- As $\epsilon \to 0$, interface width $\xi_0/\epsilon^{1/2} \gg \lambda_0$.
- Grain boundary velocity contains a dependence on both x and X:

$$v_{gb} \int dX \left(A_0'^2 + B_0'^2 \right) = T_1 + T_2 + \ldots + e^{-1/\sqrt{\epsilon}} \sin(2k_0 x) \left(N_1 + N_2 + \ldots \right).$$
$$v_{gb} = \frac{\epsilon}{3k_0^2 D(\epsilon)} \kappa^2 - \frac{p(\epsilon)}{D(\epsilon)} \cos(2k_0 x_{gb} + \phi) \quad p(\epsilon) \sim \epsilon^2 e^{-\alpha/\sqrt{\epsilon}}$$
UNIVERSITY OF MINNESOTA

CONSEQUENCES OF NON ADIABATICITY

- Grain boundary located at potential minima decoupling between grain boundary location and lamellar phase lost.
- Continuous motion in X, T only in the limit $\epsilon \rightarrow 0$.
- Pinning forces with periodicity 1/k₀, even in the absence of any external fields or impurities.
- Glassy states as ϵ is increased.
- Domain coarsening affected: effective exponents may depend on
 e and on the existence of random forces.

EFFECTIVE COARSENING EXPONENTS

ÍINNESOTA

PINNING AND BIFURCATION CHARACTER

$$Dv_{gb} = -p_{hex} \sin \left[2k_0 x_{gb} \sin(\theta/2)\right],$$

with (Peierls force),

$$p_{hex} \sim A_0^4 e^{-2ak_0\sin(heta/2)\xi}$$

Supercritical bifurcation (e.g., lamellar phase)

$$\xi \sim 1/\sqrt{\epsilon} \quad p_{\textit{lam}} \sim e^{-1/\sqrt{\epsilon}}
ightarrow 0.$$

Subcritical bifurcation (e.g., hexagonal phase)

$$\xi \rightarrow \xi_0 = \frac{15\lambda_0}{8\sqrt{6}\pi g_2}, \quad p_{hex} \mbox{ finite.}$$

REVERSIBLE/HAMILTONIAN MODES

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003]

[Gido and Thomas, 1994]

Amphiphilic systems

Liquid crystalline elastomers

MESOSCOPIC REVERSIBLE STRESSES

NORMAL FLUID

- Local equilibrium in the rest frame, $s = s(u, \rho)$ $T \frac{ds}{dt} = \frac{du}{dt} + p \frac{d1/\rho}{dt}$
- Conservation laws (e.g., momentum density $\mathbf{g}=\rho\mathbf{v})$

$$\partial_t g_i = -\partial_j \sigma_{ij}$$

• Reversible stress: $\sigma_{ij}^{R} = \rho v_i v_j + p \delta_{ij}$

MESOSCOPIC REVERSIBLE STRESSES

NORMAL FLUID

- Local equilibrium in the rest frame, $s = s(u, \rho)$ $T \frac{ds}{dt} = \frac{du}{dt} + p \frac{d1/\rho}{dt}$
- Conservation laws (e.g., momentum density $\mathbf{g} = \rho \mathbf{v}$)

$$\partial_t g_i = -\partial_j \sigma_{ij}$$

• Reversible stress: $\sigma_{ij}^{R} = \rho v_i v_j + p \delta_{ij}$

CAHN-HILLIARD FLUID

[M. Gurtin, D. Polignone, JV, Math. Models and Meth. Appl. Sci. 6, 816 (1996)]

$$s = s(u, \rho, \psi, \partial_i \psi)$$

$$\sigma_{ij}^{R} = \rho \mathbf{v}_{i} \mathbf{v}_{j} + p \delta_{ij} - \frac{\partial \mathbf{s}}{\partial (\partial_{i} \psi)} \partial_{j} \psi$$

needed so that advection of ψ does not cause entropy production.

GENERAL CASE

Reversible motion requires (Maxwell type relation)

$$rac{\partial \dot{\psi}}{\partial v_i} = rac{\partial \dot{g}_i}{\partial \left(\partial_j \xi_j
ight)} \quad \xi_j = rac{\partial s}{\partial \left(\partial_j \psi
ight)}$$

If ψ has a reversible current $\partial_t \psi + \mathbf{v} \cdot \nabla \psi = \dots \frac{\partial \dot{\psi}}{\partial v_i} = -\partial_i \psi$ and non classical stresses result.

MESOSCOPIC DISSIPATIVE STRESSES

$$T\dot{S}_{prod} = \int d\vec{r} \left\{ - \left(J_i^{\psi} - v_i \psi \right) \partial_i \mu + \left(\sigma_{ij} - \sigma_{ij}^{R} \right) \partial_i v_j \right\}$$

Broken Symmetry incorporated in dissipative fluxes. cf. [P. Martin, O. Parodi, P. Pershan, Phys. Rev. A 6, 2401 (1972)]

MESOSCOPIC DISSIPATIVE STRESSES

$$T\dot{S}_{prod} = \int d\vec{r} \left\{ -\left(J_{i}^{\psi} - v_{i}\psi\right)\partial_{i}\mu + \left(\sigma_{ij} - \sigma_{ij}^{R}\right)\partial_{i}v_{j}\right\}$$

Broken Symmetry incorporated in dissipative fluxes. cf. [P. Martin, O. Parodi, P. Pershan, Phys. Rev. A 6, 2401 (1972)]

Lamellar phase: uniaxial fluid

$$J_{i}^{\psi D} = -[\Lambda_{L}q_{i}q_{j} + \Lambda_{T}(\delta_{ij} - q_{i}q_{j})]\partial_{j}\mu$$

$$\sigma_{ij}^{D} = \alpha_{1}q_{i}q_{k}q_{k}D_{kl} + \alpha_{4}D_{ij}$$

$$+\alpha_{56}(q_{i}D_{kj} + q_{j}D_{ki})q_{k}$$

$$D_{ij} = \partial_{i}v_{j} + \partial_{j}v_{i}$$

Cahn-Hilliard (isotropic) fluid

$$egin{array}{rcl} f_i^{\psi \ D} &=& -\Lambda q^2 \partial_i \mu \ \sigma_{ij}^D &=& lpha_4 D_{ij} \end{array}$$

TA

REVERSIBLE MODES AND LINEAR RESPONSE

Characteristic decay times determined by decay of transverse perturbations.

Transverse scattering intensity,

$$S(Q) = rac{k_B T/\xi}{Q^4 + 2(Q/\lambda)^2}$$

For a block copolymer in weak segregation,

$$\lambda \sim \frac{R_g N^{1/4}}{\sqrt{\epsilon}} \gg k_0^{-1}$$

ORIENTATION SELECTION UNDER SHEAR

RHEOLOGY AND ORIENTATION SELECTION

• In this low frequency formulation, both orientations are degenerate.

• Uniaxial form of dissipative stress leads to viscosity contrast. Hydrodynamic instability under shear.

•. Extended to uniaxial viscoelasticity. Hydrodynamic instability under shear when viscoelastic contrast is appreciable.

SUMMARY

Modulated phases (mesophases) share some of the phenomenology of pattern formation and phase transition kinetics, but:

- Continuum of degenerate phases (wavelength and orientation)
 wavelength and orientation selection.
- Specific classes of topological defects and motion beyond phase boundary motion.
- Pinning, structural glasses, and non universal growth.
- New hydrodynamic models, and rich rheology (complex fluids and biological materials).