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KINETIC EQUATION

τ0
∂ψ(r, t)

∂t
= εψ − ξ20

4k20

(
q20 +∇2

)2
ψ + g2ψ

2 − ψ3

Stationary solution g2 = 0

ε < 0: ψ = 0

ε > 0: ψ(~r , t) = ε1/2A0 sin(~q0 ·~r) +O(ε3/2).

Stripe pattern oriented along an arbitrary ~q0.
Smectic or lamellar phase (1D crystal).

Stationary solution g2 6= 0

−|εm(g2)| < ε < εM(g2): ψ(~r , t) =
∑6

n=1 Ane
i~qn·~x + c.c..

Hexagonal pattern. Columnar phase (2D crystal).



ORDER AT FINITE WAVEVECTOR

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003] [Gido and Thomas, 1994]

[Forster et al. 2001]
Amphiphilic
systems

Liquid
crystalline
elastomers

[Dalhaimer, Discher, Lubensky, 2007]



APPLICATIONS IN NANOTECHNOLOGY

[Park, Yoon, and Thomas, Polymer 2003)]

[T. Thurn-Albrecht et al., Science 290, 2126 (2000); B. Stipe et al.

Nature Photonics 4, 484 (2010), exceeding 1TB/in2]

[C.T. Black, APL 2005: PS-PMMA]



DIFFERENCES WITH q=0 SYSTEMS

Domain coarsening

q

q q

q
x x

yy

Topological defects

Pinning and structural glass Anisotropic rheology



ENERGETICS

Order parameter

ψ ∝ ρa − ρb

Free energy

Ohta-Kawasaki

F [ψ] =

∫
dr

(
−τ
2
ψ2 +

u

4
ψ4 +

K

2
(∇ψ)2

)
+
B

2

∫
drdr ′ψ(r)G(r−r ′)ψ(r ′)

with ∇2G(r − r ′) = −δ(r − r ′).

Leibler/Swift-Hohenberg (weak segregation limit)

F [ψ] =

∫
dr

(
−τ
2
ψ2 +

u

4
ψ4 +

K

2

[(
∇2 + q20

)
ψ
]2)

τ is temperature difference with microphase separation
temperature, q0 is the characteristic wavenumber.



PHASE DIAGRAM

[K. Yamada, M. Nonomura, and T. Ohta,

Macromolecules 37, 5762 (2004)].



LINEAR STABILITY ANALYSIS

Study the evolution of a perturbation of ψ0:

ψ(x, t) = ψ0 + δψ(x, t)

δψq(x, t) = ψqe
iq·xeσqt

Re σq gives exponential growth or decay. Im σq = −ωq gives
oscillations, waves e i(q·x−ωqt)

Im σq = 0 → Stationary Instability
Im σq 6= 0 → Oscillatory Instability



NONLINEARITY

Parabolic approximation:

For R near Rc and q near qc ,

Re σq =
1

τ0

[
ε− ξ20(q − qc)2

]
ε =

R − Rc

Rc

Near threshold separation of
scales:

1. |qN− − qN+| ∼
√
ε. Slow

modulations around periodic
solutions with qc .

2. Modulations are slow: grow in a
time scale ε
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NONLINEARITY

Slightly above threshold (ε� 1):

Continuum of modes around
k0.

Other symmetries:
rotational invariance ...
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Linear evolution.

∂ψ̂(k)

∂t
=
[
ε− ξ20(k − k0)2

]
ψ̂(k)+. . .

ξ20 =
1

2

(
∂2εc(k)

∂k2

)
k0

.

ξ0 is the coherence length that
determines the “rigidity” of the
pattern (mean field correlation
length).



AMPLITUDE EQUATIONS

x

y

π2 /Q

Assume weak distortion,

ψ = A(X ,Y ,T )e ik0x + c.c.

with

A(X ,Y ,T ) = A(ε1/2x , ε1/4y , εt).

Ginzburg-Landau equation (in
original variables),

∂A

∂t
= εA+ξ20

(
∂x −

i

2k0
∂2y

)2

A−3|A|2A,



SECONDARY INSTABILITIES

Zig-zag (transverse)
instability

“Wavelength selection”
problem

Eckhaus
(longitudinal)
instability



PATTERN SELECTION - LARGE DOMAIN

Boundary conditions. At small ε, they reduce the band of
allowable solutions. No sharp selection.

Dynamical: front propagation. Studied in one dimension.

Set by defects (targets, grain boundaries select wavelength).

Statistical: initial conditions and domain coarsening.



DOMAIN COARSENING

• A single time dependent length l(t)
emerges, the linear scale of the structure.

• In the self-similar range, t →∞,
l(t)→∞, and all other scales of
microscopic origin become irrelevant (cf.
correlation length divergence near a
critical point).

• Scaling functions are introduced. For
example for the domain size distribution
(R the linear size of a domain),

p(R, t) = G
(
R

tx

)
l(t) ∼ tx .

• Universality classes have been introduced
according to the value of x

• Purely relaxational dynamics,
x = 1/2.

• Relaxational dynamics with global
conservation law, x = 1/3.

• Binary fluids (non-variational
modes), x = 1.



CURVATURE SCALING FUNCTION

Curvature distribution function
Scaled curvature distribution
function



MOMENTS OF CURVATURE DISTRIBUTION

Moments of the distribution of domain curvatures,

mn(t) =

∫ κc (t)

0
dκ κnP(κ, t) P(κ, t) = tx f (κtx)

1

10

100 1000 10000 100000

t

(mn(t)/m0)-1/n

P(0,t)
γ=0.3

γ=0.5

x ' 1/3

Coarsening mechanism

• Experiments in thin films
(hexagonal) x = 1/4

• Domain wall relaxation, x = 1/2
or x = 1/4.

• Numerically: no fluctuations
x = 1/5, fluctuations x = 1/4.

• Dislocation or disclination motion
x = 1/2.

What is the mechanism ?



THE ROLE OF DEFECTS

Large gradients (locally) - not close to equilibrium, but very
slow on a microscopic scale.

Large numbers of interacting defects: microstructure.

Defects control slow relaxation.



ENVELOPE DESCRIPTION OF DEFECT MOTION

[Siggia and Zippelius, 1981]

Point defect in the envelope field,

ψ = Ae i
~k·~x = ρ(~x)e iθ(~x)e i

~k·~x .∮
∇θ · ~dl = ±2π.

Climb velocity is found,

v ∝ (k − k0)3/2 . Phase θ plays the role of the
displacement field u.



ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

Order parameter expanded
in slowly varying ampli-
tudes:

ψ = Ae ik0x + Be ik0z + c.c.

where

A = A(ε1/2x , ε1/4y , ε1/4z , εt)

B = B(ε1/4x , ε1/4y , ε1/2z , εt)



ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

∂A

∂t
= εA + ξ20

(
∂x −

i

2k0
∂2y

)2

A− 3|A|2A− 6|B|2A,

∂B

∂t
= εB + ξ20

(
∂y −

i

2k0
∂2x

)2

B − 3|B|2B − 6|A|2B.



WHY DOES A BOUNDARY MOVE?

AB

v



GRAIN BOUNDARY MOTION

2π / 0

y

x

δx0 cos(qy)

AB q

k

Linear relaxation rate σ ∝ q4.

Nonlinear uniform translation mode,

vgb(t) =

(
ξ20

4k20
q4
)

(ε/4)[k0δx(t)]2∫∞
−∞ dx [(∂xA0)2 + (∂xB0)2]

∼ δx(t)2q4√
ε

∝ κ2√
ε

vgb(t) = Mobility × Time dependent driving force

If this motion dominates aymptotically, x = 1/3.



NON ADIABATIC COUPLING

For small ε ∼ 0.1, the decoupling between slowly varying amplitudes and the
phase of the lamellae already breaks down.



NON ADIABATIC EFFECTS

Seek dominant, non-perturbative corrections to

∂A

∂t
= εA + ξ20

(
∂x −

i

2k0
∂2
y

)2

A− 3|A|2A− 6|B|2A

−
∫ x+λ0

x

dx ′

λ0

(
A3e2ik0x

′
+ A∗ 3e−4ik0x

′)
,

∂B

∂t
= εB + ξ20

(
∂y −

i

2k0
∂2
x

)2

B − 3|B|2B − 6|A|2B

− 3

∫ x+λ0

x

dx ′

λ0

(
A2Be2ik0x

′
+ A∗ 2Be−2ik0x

′)
.

Assume that A and B may change over a wavelength,∫ x+λ0

x

dx ′A3e i2k0x
′
≈ −ie2iX/

√
εA2 ∂A

∂X



NON ADIABATIC EFFECTS

As ε→ 0, interface width ξ0/ε
1/2 � λ0.

Grain boundary velocity contains a dependence on both x and X :

vgb

∫
dX
(
A′ 20 + B ′ 20

)
= T1+T2+. . .+e−1/

√
ε sin(2k0x) (N1 + N2 + . . .) .

vgb =
ε

3k2
0D(ε)

κ2 − p(ε)

D(ε)
cos(2k0xgb + φ) p(ε) ∼ ε2e−α/

√
ε



CONSEQUENCES OF NON ADIABATICITY

Grain boundary located at potential minima - decoupling
between grain boundary location and lamellar phase lost.

Continuous motion in X ,T only in the limit ε→ 0.

Pinning forces with periodicity 1/k0, even in the absence of
any external fields or impurities.

Glassy states as ε is increased.

Domain coarsening affected: effective exponents may depend
on ε and on the existence of random forces.



EFFECTIVE COARSENING EXPONENTS
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ρ d(t
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ε = 0.4, F = 0.01 ε5/4

ε = 0.4, F = 0.03 ε5/4

ε = 0.15, F = 0.04 ε5/4

ε = 0.04, F = 0.05 ε5/4

ε = 0.4, F = 0
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PINNING AND BIFURCATION CHARACTER

c

Dvgb = −phex sin [2k0xgb sin(θ/2)] ,

with (Peierls force),

phex ∼ A4
0e
−2ak0 sin(θ/2)ξ

Supercritical bifurcation (e.g., lamellar phase)

ξ ∼ 1/
√
ε plam ∼ e−1/

√
ε → 0.

Subcritical bifurcation (e.g., hexagonal phase)

ξ → ξ0 =
15λ0

8
√

6πg2
, phex finite.



REVERSIBLE/HAMILTONIAN MODES

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003] [Gido and Thomas, 1994]

[Forster et al. 2001]

Amphiphilic
systems

Liquid
crystalline
elastomers

[Dalhaimer, Discher, Lubensky, 2007]



MESOSCOPIC REVERSIBLE STRESSES

NORMAL FLUID • Local equilibrium in the rest frame,
s = s(u, ρ) T ds

dt
= du

dt
+ p d1/ρ

dt

• Conservation laws (e.g., momentum density
g = ρv)

∂tgi = −∂jσij

• Reversible stress: σR
ij = ρvivj + pδij

CAHN-HILLIARD FLUID
[M. Gurtin, D. Polignone, JV, Math. Models and

Meth. Appl. Sci. 6, 816 (1996)]

s = s(u, ρ, ψ, ∂iψ)

σR
ij = ρvivj + pδij −

∂s

∂(∂iψ)
∂jψ

needed so that advection of ψ does not

cause entropy production.

GENERAL CASE
Reversible motion requires (Maxwell
type relation)

∂ψ̇

∂vi
=

∂ġi
∂ (∂jξj)

ξj =
∂s

∂(∂jψ)

If ψ has a reversible current

∂tψ + v · ∇ψ = . . . ∂ψ̇
∂vi

= −∂iψ and

non classical stresses result.
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MESOSCOPIC DISSIPATIVE STRESSES

TṠprod =

∫
d~r
{
−
(
Jψi − viψ

)
∂iµ+

(
σij − σRij

)
∂ivj

}
Broken Symmetry incorporated in dissipative fluxes.
cf. [P. Martin, O. Parodi, P. Pershan, Phys. Rev. A 6, 2401 (1972)]

Lamellar phase: uniaxial fluid

Jψ D
i = − [ΛLqiqj + ΛT (δij − qiqj)] ∂jµ

σD
ij = α1qiqjqkqlDkl + α4Dij

+α56 (qiDkj + qjDki ) qk

Dij = ∂ivj + ∂jvi

Cahn-Hilliard (isotropic) fluid

Jψ D
i = −Λq2∂iµ

σD
ij = α4Dij
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REVERSIBLE MODES AND LINEAR RESPONSE

x

y

π2 /Q

[L. Wu, T. Lodge, F. Bates, J. Rheol.

49, 1231 (2005)]

Characteristic decay times
determined by decay of
transverse perturbations.

Transverse scattering intensity,

S(Q) =
kBT/ξ

Q4 + 2(Q/λ)2

For a block copolymer in weak
segregation,

λ ∼ RgN
1/4

√
ε
� k−10



ORIENTATION SELECTION UNDER SHEAR

[S. Gido, E.L. Thomas, Macro-

molecules 27, 6137 (1994).]



RHEOLOGY AND ORIENTATION SELECTION

• In this low frequency
formulation, both orientations are
degenerate.

• Uniaxial form of dissipative
stress leads to viscosity contrast.
Hydrodynamic instability under
shear.

•. Extended to uniaxial
viscoelasticity. Hydrodynamic
instability under shear when
viscoelastic contrast is
appreciable.



SUMMARY

Modulated phases (mesophases) share some of the phenomenology
of pattern formation and phase transition kinetics, but:

Continuum of degenerate phases (wavelength and orientation)
- wavelength and orientation selection.

Specific classes of topological defects and motion - beyond
phase boundary motion.

Pinning, structural glasses, and non universal growth.

New hydrodynamic models, and rich rheology (complex fluids
and biological materials).


