PATTERN FORMATION IN MESOPHASES

Jorge Vinals

School of Physics and Astronomy and
Minnesota Supercomputing Institute

University of Minnesota

With: Denis Boyer, Zhi-Feng Huang, and Chi-Deuk Yoo

UNIVERSITY OF MINNESOTA



KINETIC EQUATION

O(r t &
S =t g (6 V) 0 =

70

Stationary solution g» = 0
me<0:v=0
m e > 0: (7 t) = /2 Agsin(qo - F) + O(3/?).

Stripe pattern oriented along an arbitrary qo.
Smectic or lamellar phase (1D crystal).

Stationary solution g» # 0
B —lem(@2)| < € < em(g): (7 t)=S°_, Anel®* 4 cc..

Hexagonal pattern. Columnar phase (2D crystal).
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ORDER AT FINITE WAVEVECTOR

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003] [Gido and Thomas, 1994]

[Dalhaimer, Discher, Lubensky, 2007]

[Forster et al. 2001]
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APPLICATIONS IN NANOTECHNOLOGY

[T. Thurn-Albrecht et al., Science 290, 2126 (2000); B. Stipe et al.
Nature Photonics 4, 484 (2010), exceeding 1TB/in?]
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[C.T. Black, APL 2005: PS-PMMA]

[Park, Yoon, and Thomas, Polymer 2003)]




DIFFERENCES WITH q=0 SYSTEMS
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ENERGETICS

Order parameter

w=1
SO
a
Y X pa— pb r
Free energy

m Ohta-Kawasaki
FM:/ ( 0+ +—(vw)) /drdrw(r)c(r FY(r)

with V2G(r —r') = —6(r — r').
m Leibler/Swift-Hohenberg (weak segregation limit)

F[wlz/ ( Y+ ¢+f[(v2 )W)

T is temperature difference with microphase separation
temperature, qp is the characteristic wavenumber. UNIVERSITY OF MINNESOTA



PHASE DIAGRAM
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[K. Yamada, M. Nonomura, and T. Ohta,
Macromolecules 37, 5762 (2004)]. UNIVERSITY OF MINNESOTA



LINEAR STABILITY ANALYSIS

Study the evolution of a perturbation of g:

Exponential growth: exp[oqt]

U—r

51hq(x, t) = 1hqe’d e
«—)=2n/g—>

Re oq gives exponenpal growth or decay. Im oq = —wq gives
oscillations, waves e’(4*x—wat)

Imoq=0 — Stationary Instability

Imoq#0 —  Oscillatory Instability
UNIVERSITY OF MINNESOTA



NONLINEARITY

Parabolic approximation:

A
Re S,

For R near R. and g near qc,

1
Re 0q = To [e — &(a - Qc)z]
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NONLINEARITY

Parabolic approximation:

A
Re S,

R>RC
R=R
R<R

C

For R near R. and g near qc,

1
Reoq = [e — &(q — qc)?]

Recq>0

----------- —band of growing solutions=~-------

Near threshold separation of
scales:

1. |gn— — gn+| ~ /€. Slow
modulations around periodic
solutions with gc.

2. Modulations are slow: grow in a
time scale €

On- q. Ay q

TA



NONLINEARITY

Slightly above threshold (¢ < 1):

m Continuum of modes around m Linear evolution.
ko. R
e Y (k) >
[ Othe.r sym.metrl.es. 5 = [5 —&(k — ko)z] v(k)+...
rotational invariance ...
o gol(Taw)
- 2 Ok ko

&o is the coherence length that
x determines the “rigidity” of the
. Pattern (mean field correlation

ko k length).
@ (b) gth)
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AMPLITUDE EQUATIONS

2n/Q

m Assume weak distortion,
Y =AX,Y, T)e** 4 c.c.
with
AX,Y,T) = A(e/%x, /%y et).

m Ginzburg-Landau equation (in
original variables),

OA_ aved (o, - a2 2A—3\A|2A
ot - 0 x 2ko Y
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SECONDARY INSTABILITIES

Eckhaus
(longitudinal)
instability
Zig-zag (transverse) €
instability N z ///E N
Unstable Stable °
7
s
0 k

“Wavelength selection”
problem
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PATTERN SELECTION - LARGE DOMAIN

Boundary conditions. At small ¢, they reduce the band of
allowable solutions. No sharp selection.

m Dynamical: front propagation. Studied in one dimension.

Set by defects (targets, grain boundaries select wavelength).

m Statistical: initial conditions and domain coarsening.

UNIVERSITY OF MINNESOTA



DOMAIN COARSENING

— e

e Scaling functions are introduced. For
example for the domain size distribution
(R the linear size of a domain),

Disclin. O p(R.t) = G <t5X> I(t) ~ t~.

e Universality classes have been introducec
according to the value of x

e Purely relaxational dynamics,

e A single time dependent length /(t) x=1/2.
emerges, the linear scale of the structure. e Relaxational dynamics with global
e In the self-similar range, t — oo, conservation law, x = 1/3.
I(t) — oo, and all other scales of e Binary fluids (non-variational
microscopic origin become irrelevant (cf. modes), x = 1.

correlation length divergence near a
critical point). UNIVERSITY OF MINNESOTA



CURVATURE SCALING FUNCTION

Scaled curvature distribution

Curvature distribution function function
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MOMENTS OF CURVATURE DISTRIBUTION

Moments of the distribution of domain curvatures,

Ke(t)
mp(t) = /0 dr K"P(k,t) P(k,t) = t*f(kt")

Coarsening mechanism

e Experiments in thin films
(hexagonal) x =1/4

(myty/me™"

10

e Domain wall relaxation, x =1/2
or x =1/4.

e Numerically: no fluctuations
x = 1/5, fluctuations x = 1/4.

e Dislocation or disclination motion
x=1/2.

1
100 1000 10000 100000 . .
What is the mechanism ?

x~1/3 UNIVERSITY OF MINNESOTA



THE ROLE OF DEFECTS

m Large gradients (locally) - not close to equilibrium, but very
slow on a microscopic scale.

m Large numbers of interacting defects: microstructure.

m Defects control slow relaxation. UNIVERSITY OF MINNESOTA



ENVELOPE DESCRIPTION OF DEFECT MOTION

[Siggia and Zippelius, 1981]

Point defect in the envelope field,

b = Aeik% — p(R)e?Re iks

%ve -dl = 2.
Climb velocity is found,

v (k—ko)¥2.

NW T Oy
o

Phase 6 plays the role of the
displacement field w.
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ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

Order parameter expanded
in slowly varying ampli-
tudes:
P = Ae X - B0z 4 ¢ c.
where

A= A(el/2)<7 /4y etz et)

B= B(61/4X, 61/4_)/, /22, et)
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ENVELOPE DESCRIPTION OF GRAIN BOUNDARY

AT B(X.T)
W(x)
kog-lﬂ
A
T —cA+ 2 (0, 2 A— Al?A — 6|BJ?A
88 _ 2 2 2 2 2
E—EB-F&O <8y P ax> B —3|B|>B — 6|A|*B.
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WHY DOES A BOUNDARY MOVE?
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GRAIN BOUNDARY MOTION

m Linear relaxation rate o o< g*.

m Nonlinear uniform translation mode,

(& (€/8)[koox(t)]? Sx(t)2q* K2
ng(t) = (4/(08q > ffooo dx [(0xAo)? + (0xBo)?] ~ e ﬁ

Vgb(t) = Mobility x Time dependent driving force

If this motion dominates aymptotically, x = 1/3.
UNIVERSITY OF MINNESOTA



NON ADIABATIC COUPLING

For small € ~ 0.1, the decoupling between slowly varying amplitudes and the
phase of the lamellae already breaks down.

4

d../hy

0 0.2 04 0.6
3%/ ko IRSITY OF MINNESOTA



NON ADIABATIC EFFECTS

m Seek dominant, non-perturbative corrections to

8A 2 i 2 2 2 2
. /X+/\° C;TX, (A3e2ik0x' T A* 3e—4ik0x’) 7
x 0
8B 2 i 2 2 2 2
X+Ao / o, o,
B 3/ (ii (AQBe2Ik0X LA 2 o —2ikox ) .
x 0

m Assume that A and B may change over a wavelength,

X+
/ +ho d’ ABei2kox _I-e2/'X/\ﬁA287A
i ox

UNIVERSITY OF MINNESOTA



NON ADIABATIC EFFECTS

.9 gb

AX.T)

w(x)

? g7
0

1/2

m As ¢ — 0, interface width &/e/< > Xo.

m Grain boundary velocity contains a dependence on both x and X:

Vb / dx (A{J2 n 352) = Tt Tt de Vo sin(2kox) (Ny + No +...).

< 2 ) cos(2koxgs + ¢)  p(e) ~ 2e/V<

vy — 2 Ple
87 3Kk2D(e) D(e)
UNIVERSITY OF MINNESOTA



CONSEQUENCES OF NON ADIABATICITY

m Grain boundary located at potential minima - decoupling
between grain boundary location and lamellar phase lost.

m Continuous motion in X, T only in the limit € — 0.

m Pinning forces with periodicity 1/kg, even in the absence of
any external fields or impurities.

m Glassy states as € is increased.

m Domain coarsening affected: effective exponents may depend
on € and on the existence of random forces.

UNIVERSITY OF MINNESOTA



EFFECTIVE COARSENING EXPONENTS
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PINNING AND BIFURCATION CHARACTER

DVgp, = —Phex Sin [2koxgp sin(6/2)]
with (Peierls force),

Phex ~ Age_2ak° sin(60/2)¢

Supercritical bifurcation (e.g., lamellar phase)

§’\J1/\/E plamNeil/\/E%O.

v

Subcritical bifurcation (e.g., hexagonal phase)

15X
8v6mgy’
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Phex finite.




REVERSIBLE/HAMILTONIAN MODES
KT

i

Block Copolymers

[Kim, ..., de Pablo, Nealy, 2003] [Gido and Thomas, 1994]

[Dalhaimer, Discher, Lubensky, 2007]

Amphiphilic a - -

[Forster et al. 2001]

systems
Liquid
crystalline
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MESOSCOPIC REVERSIBLE STRESSES

NORMAL FLUID e Local equilibrium in the reztl/frame,
P

s=s(up) TG =5 +p%"
e Conservation laws (e.g., momentum density

g=pv)
Orgi = —0j0jj

o Reversible stress: 05 = pviv; + pdj

UNIVERSITY OF MINNESOTA



MESOSCOPIC REVERSIBLE STRESSES

Local equilibrium in the rest frame,
s=s(up) TE =2 +pd1/p

e Conservation laws (e.g., momentum density
g=pv)

NORMAL FLUID

Orgi = —0j0jj

Reversible stress: af = pv;v; + pdj;

CAHN-HILLIARD FLUID GENERAL CASE
[M. Gurtin, D. Polignone, JV, Math. Models and Reversible motion requires (Maxwell
Meth. Appl. Sci. 6, 816 (1996)] type relation)
s= S(u7 P7¢,3i¢) 8'¢ . ag, é_ . Os
R i a(9&) T 9(9)
o = pvivj + pdjj — a v
( 1/’) If b has a reversible current
needed so that advectllon of 1 does not Db +v-Vip=... % = —9n and
cause entropy production. non classical stresses result.

UNIVERSITY OF MINNESOTA



MESOSCOPIC DISSIPATIVE STRESSES

TS 000 = / d7 {— (49 = viv)) dun+ (o5 — of) 01y}

Broken Symmetry incorporated in dissipative fluxes.
cf. [P. Martin, O. Parodi, P. Pershan, Phys. Rev. A 6, 2401 (1972)]

UNIVERSITY OF MINNESOTA



MESOSCOPIC DISSIPATIVE STRESSES

TS 000 = / d7 {— (49 = viv)) dun+ (o5 — of) 01y}

Broken Symmetry incorporated in dissipative fluxes.
cf. [P. Martin, O. Parodi, P. Pershan, Phys. Rev. A 6, 2401 (1972)]

Lamellar phase: uniaxial fluid

[ — [/\Lq,'qj R /\T(5U - qiqj)] i
oj = 01GiqiqkqiDi + aaDj
+as6 (i Dy + q;Dii) qx

Disclin. @ Dij = 0iv; + 0jvi

Cahn-Hilliard (isotropic) fluid

P = Ao
O','JD = a4D,-j

TA




REVERSIBLE MODES AND LINEAR RESPONSE

Characteristic decay times
determined by decay of
transverse perturbations.

Transverse scattering intensity,

_ keT/¢
= @ 2AQ)0)

S(Q)

For a block copolymer in weak
segregation,

< \ Ry N/
02 0404 2 \/E

[L. Wu, T. Lodge, F. Bates, J. Rheol.
49, 1231 (2005)]

> kot
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ORIENTATION SELECTION UNDER SHEAR

Polycrystalline, defected
structure

St <7

Parallel/Perpendicular Parallel/Transverse

e £ 4 {
[S. Gido, E.L. Thomas, Macro-
molecules 27, 6137 (1994) ] UNIVERSITY OF MINNESOTA



RHEOLOGY AND ORIENTATION SELECTION

>
v q
V,, f

(xyt\

Parallel

(B)

e In this low frequency
formulation, both orientations are
degenerate.

v

e Uniaxial form of dissipative
stress leads to viscosity contrast.
Hydrodynamic instability under
shear.

o. Extended to uniaxial
viscoelasticity. Hydrodynamic
instability under shear when
viscoelastic contrast is
appreciable.

7 TA



SUMMARY

Modulated phases (mesophases) share some of the phenomenology
of pattern formation and phase transition kinetics, but:

m Continuum of degenerate phases (wavelength and orientation)
- wavelength and orientation selection.

m Specific classes of topological defects and motion - beyond
phase boundary motion.

m Pinning, structural glasses, and non universal growth.

m New hydrodynamic models, and rich rheology (complex fluids
and biological materials).
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