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Abstract

We obtain the location of the Hopf bifurcation threshold for a modified van der Pol oscilla-

tor, parametrically driven by a stochastic source and including delayed feedback in both position

and velocity. We introduce a multiple scale expansion near threshold and solve the resulting

Fokker-Planck equation associated with the evolution at the slowest time scale. We also verify the

asymptotic results by direct numerical integration of the governing equation. We show that the

stochastic bifurcation threshold is shifted relative to the deterministic limit by an amount that

scales with the amplitude of the feedback terms in the model.
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I. INTRODUCTION

The deterministic van der Pol oscillator was introduced by Appleton and van der Pol to

describe triode oscillations in electrical circuits [1]. Since then, the model has been used

as a prototypical equation that describe self-excited stable oscillations. One class of recent

extensions of the model involve delayed feedback and its effect on the stability of the limit

cycle.

The van der Pol model supplemented with delayed feedback plays an important role in

the theory of nonlinear vibration. For example, complex response due to time delay such

as bifurcation, high amplitude vibration, or quasi-periodic motion or chaotic behavior may

cause the failure of an engineered structure subjected to vibration due to its environment.

On the other hand, careful choices of parameters may enhance the control of oscillatory

systems. For instance, it has been shown in a periodically driven van der Pol oscillator with

delay terms in position and velocity, that feedback may control the amplitude of oscillation

and even suppress quasi-periodic motion [2–4]. A similar model but with a cubic nonlinearity

has been investigated via a center manifold reduction together with an averaging method [5]

to show that time delay can act as an effective switch, and control motion either from regular

motion to a chaotic behavior or vice versa. The dynamics of a forced van der Pol-Duffing

with both linear and nonlinear feedback control has also been studied [6, 7] as an example

of a Neimark-Sacker bifurcation to quasi periodic motion.

The bifurcation diagram of the van der Pol oscillator without delayed feedback but para-

metrically driven by a stochastic source is well known. It has been obtained by either a

perturbation analysis of the linear stability problem [8], or by adiabatic reduction [9]. It is

found that the bifurcation point is shifted relative to the deterministic limit by an amount

that is proportional to the intensity of the randomness. This model has also been investi-

gated by using a multiple scales expansion of the solution in order to derive the resulting

slow amplitude or envelope equations near the bifurcation [10–13]. The same multiple scale

method has been used to analyze stochastic differential equations with delayed feedback in

order to derive the stochastic time evolution of the envelope of the oscillation [14, 15] as

well as to determine the location of the bifurcation threshold if the time delay is small [16].

Our focus here is an extension of this latter work, and focuses on a nonlinear oscillator with

delayed feedback that is stochastically driven. We pay especial attention to the interplay
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between the delayed feedback and temporal correlations, and its effect on the stability of

oscillation.

We present in this paper an analytical determination of the bifurcation threshold of

the van der Pol oscillator under stochastic parametric driving and delayed feedback by

a multiple scale expansion method. We find that the threshold is shifted relative to the

deterministic limit by an amount that scales linearly with the time delay and the intensity

of the stochasticity. The method also allows the determination of the Hopf frequency close

to the bifurcation.

II. BIFURCATION DIAGRAM OF THE VAN DER POL OSCILLATOR

Consider an extension of the classical van der Pol oscillator [17] that includes delayed

feedback in position and velocity of the oscillator,

ẍ(t) + ω2
0x(t) + ηx(t − τ) = βẋ(t) + κẋ(t − τ) − bx2(t)ẋ(t) + x(t)ξ(t) , (1)

where ω0, η, β, κ, and b are constants of order O(1), τ > 0 is the time delay, and ξ(t) is

a Gaussian white noise with zero mean ⟨ξ(t)⟩ = 0 and variance ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t − t′),

where D is the intensity of the randomness.

In the deterministic limit of D = 0, and without delayed feedback (η = κ = 0), the oscil-

lator has a fixed point at (x, ẋ) = (0, 0) [18]. The stability of this fixed point is determined

by the eigenvalues λ = β(1±
√

1 − 4ω2
0/β

2)/2. If β < 0, the fixed point is stable. Otherwise,

the fixed point is unstable and the trajectory is a periodic orbit. The Hopf bifurcation is

located at the point where the eigenvalue is zero, which occurs at β = 0.

We next proceed to determine the bifurcation diagram of the full model (1). We begin

by introducing a multiple scale expansion method to determine the asymptotic evolution of

Eq. (1) near threshold. We assume that there are two dominant time scales near threshold:

oscillations that evolve over a fast time scale t and a slow envelope that evolves over a slower

time scale T = ϵ2t, where ϵ > 0 is a small number. Random contributions that are faster

than the oscillation frequency are assumed to average away. We introduce the solutions,

x(t, T ) = ϵA(T ) cos(ωt) − ϵB(T ) sin(ωt) , (2)

ẋ(t, T ) = −ϵωA(T ) sin(ωt) − ϵωB(T ) cos(ωt) , (3)

3



where ω is the frequency of the fast oscillation. The Stratonovich and Ito interpretations

of Eq. (1) are in the case of this equation equivalent. We choose however the Stratonovich

interpretation. Change of variables follows the rules of ordinary calculus under this inter-

pretation [19]. Hence, substitute Eqs. (2) and (3) into Eq. (1) by using ∂t → ∂t + ϵ2∂T ,

ϵ3∂T A(T ) sin(ωt) + ϵ3∂T B(T ) cos(ωt) = − 1

ω
{

(ω2 − ω2
0) [ϵA(T ) cos(ωt) − ϵB(T ) sin(ωt)]

− η
[
ϵA(T − ϵ2τ) cos[ω(t − τ)] − ϵB(T − ϵ2τ) sin[ω(t − τ)]

]
− βω [ϵA(T ) sin(ωt) + ϵB(T ) cos(ωt)]

− κω
[
ϵA(T − ϵ2τ) sin[ω(t − τ)] + ϵB(T − ϵ2τ) cos[ω(t − τ)]

]
+ bω [ϵA(T ) cos(ωt) − ϵB(T ) sin(ωt)]2 [ϵA(T ) sin(ωt) + ϵB(T ) cos(ωt)]

+ [ϵA(T ) cos(ωt) − ϵB(T ) sin(ωt)] ξ(t)} .

(4)

The original time delay τ is finite, and hence small in the slow time scale T . Hence we

have A(T − ϵ2τ) ≈ A(T ) and B(T − ϵ2τ) ≈ B(T ). Define also the parameters µ = βω +

η sin(ωτ) + ωκ cos(ωτ) and ν = ω2 − ω2
0 − η cos(ωτ) + ωκ sin(ωτ) for simplicity.

We next average out the dependence on the fast time scale by integrating over a period of

oscillation. Multiply both sides of Eq. (4) by L−1
∫ L

0
dt sin(ωt), where L = 2π/ω and perform

the integration. We obtain a stochastic differential equation describing the dynamics of the

envelope variable A(T ) over the slow time scale,

ϵ3∂T A(T ) =
1

ω

{
µϵA(T ) + νϵB(T ) − ϵ3 bω

4
A(T )

[
A2(T ) + B2(T )

]
+ϵB(T )

1

L

∫ L

0

ξ(t)dt − ϵB(T )
1

L

∫ L

0

cos(2ωt)ξ(t)dt − ϵA(T )
1

L

∫ L

0

sin(2ωt)ξ(t)dt

}
.

(5)

The stochastic integrals need to be transformed to the slow time scale. We first use the

relation T = ϵ2t to write

ξ(t) = ϵξ0(T ) , (6)

where ξ0(T ) is a Gaussian random variable of mean ⟨ξ0(T )⟩ = 0 and variance ⟨ξ0(T )ξ0(T
′)⟩ =

2Dδ(T − T ′). In order to define the random sources cos(2ωt)ξ(t) and sin(2ωt)ξ(t) over the

slow time scale, we consider their correlations

⟨cos(2ωt)ξ(t) cos(2ωt′)ξ(t′)⟩ = ϵ2⟨cos2(2ωt)⟩⟨ξ1(T )ξ1(T
′)⟩ , (7)

⟨sin(2ωt)ξ(t) sin(2ωt′)ξ(t′)⟩ = ϵ2⟨sin2(2ωt)⟩⟨ξ2(T )ξ2(T
′)⟩ , (8)
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where ξ1(T ) and ξ2(T ) are Gaussian random variables of mean ⟨ξj(T )⟩ = 0 with j = {1, 2}

and correlation ⟨ξj(T )ξk(T
′)⟩ = 2Dδ(T − T ′) if j = k, and 0 otherwise. We further replace

the average of the square of the oscillating functions in Eqs. (7) and (8) by their time

averages over a period ⟨cos2(2ωt)⟩ = ⟨sin2(2ωt)⟩ = 1/2. The resulting random sources over

the slow time scale are,

cos(2ωt)ξ(t) → ϵ√
2
ξ1(T ) , (9)

sin(2ωt)ξ(t) → ϵ√
2
ξ2(T ) . (10)

By substituting Eqs. (6), (9), and (10) into Eq. (5) we obtain a closed stochastic differential

equation describing the slow temporal evolution of A,

ϵ3∂T A(T ) =
1

ω

{
µϵA(T ) + νϵB(T ) − ϵ3 bω

4
A(T )

[
A2(T ) + B2(T )

]
+ϵ2B(T )ξ0(T ) − ϵ2

√
2
B(T )ξ1(T ) − ϵ2

√
2
A(T )ξ2(T )

}
.

(11)

The same procedure is repeated to determine the equation for the envelope variable

B(T ). Multiply both sides of Eq. (4) by L−1
∫ L

0
dt cos(ωt), where L = 2π/ω, and perform

the integration. Together with Eqs. (6), (9), and (10), it leads to

ϵ3∂T B(T ) =
1

ω

{
−νϵA(T ) + µϵB(T ) − ϵ3 bω

4
B(T )[A2(T ) + B2(T )]

−ϵ2A(T )ξ0(T ) − ϵ2

√
2
A(T )ξ1(T ) +

ϵ2

√
2
B(T )ξ2(T )

}
.

(12)

In matrix form, our final result for the Langevin equation for the envelopes is,

d

dT

A

B

 =
1

ω

 µ̃ ν̃

−ν̃ µ̃

A

B

 − b

4

A (A2 + B2)

B (A2 + B2)

 +
1

ϵω

 0 1

−1 0

A

B

 ξ0(T )

+
1√
2ϵω


 0 −1

−1 0

A

B

 ξ1(T ) +

−1 0

0 1

A

B

 ξ2(T )

 .

(13)

We have also assumed the scaling µ = ϵ2µ̃ and ν = ϵ2ν̃ close to the bifurcation (to be verified
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for consistency later). The Fokker-Planck equation associated to Eq. (13) is [19]

∂

∂T
p(A,B, T ) = − 1

ω

∂

∂A

{[
µ̃A + ν̃B − 1

4
bωA(A2 + B2)

]
p(A,B, T )

}
− 1

ω

∂

∂B

{[
−ν̃A + µ̃B − 1

4
bωB(A2 + B2)

]
p(A,B, T )

}
+

D

ω2ϵ2

{[
A2 ∂2

∂B2
− 2AB

∂2

∂A∂B
+ B2 ∂2

∂A2
−

(
A

∂

∂A
+ B

∂

∂B

)]
p(A,B, T )

}
+

D

2ω2ϵ2

{[
A2 ∂2

∂B2
+ 2AB

∂2

∂A∂B
+ B2 ∂2

∂A2
+

(
A

∂

∂A
+ B

∂

∂B

)]
p(A,B, T )

}
+

D

2ω2ϵ2

{[
A2 ∂2

∂A2
− 2AB

∂2

∂A∂B
+ B2 ∂2

∂B2
+

(
A

∂

∂A
+ B

∂

∂B

)]
p(A,B, T )

}
,

(14)

We solve the equation order by order in ϵ. In order to find a stochastic contribution

at lowest order, we assume D = ϵ2D̃. We also introduce polar coordinates A = r cos(θ)

and B = r sin(θ). The probability distribution function in polar coordinates is p̃(r, θ, T ) =

rp(A,B, T ), where r is the Jacobian of the transformation. In these variables, the diffusive

terms of the Fokker-Planck equation [Eq. (14)] that are factors of D̃/2ω2 are

(A2 + B2)

(
∂2

∂A2
+

∂2

∂B2

)
+ 2

(
A

∂

∂A
+ B

∂

∂B

)
= r2 ∂2

∂r2
+ 3r

∂

∂r
+

∂2

∂θ2
, (15)

whereas terms that are proportional to D̃/ω2 transform as

A2 ∂2

∂B2
− 2AB

∂2

∂A∂B
+ B2 ∂2

∂A2
−

(
A

∂

∂A
+ B

∂

∂B

)
=

∂2

∂θ2
. (16)

Furthermore, the drift terms of Eq. (14) are

∂

∂A
[Ap(A,B, T )] +

∂

∂B
[Bp(A,B, T )] =

1

r

∂

∂r
[rp̃(r, θ, T )] , (17)

∂

∂A
[Bp(A,B, T )] − ∂

∂B
[Ap(A,B, T )] = −1

r

∂

∂θ
[p̃(r, θ, T )] , (18)

∂

∂A

{[
A(A2 + B2)

]
p(A,B, T )

}
+

∂

∂B

{[
B(A2 + B2)

]
p(A,B, T )

}
=

1

r

∂

∂r

[
r3p̃(r, θ, T )

]
.

(19)

Use also the following identity,(
r2 ∂2

∂r2
+ 3r

∂

∂r

)
p̃(r, θ, T )

r
=

1

r

{
∂2

∂r2
[r2p̃(r, θ, T )] − 3

∂

∂r
[rp̃(r, θ, T )]

}
. (20)
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Combining Eqs. (15) and (16), together with Eqs. (17), (18), and (19), and by using Eq.

(20), the Fokker-Planck equation in polar coordinate is then,

∂

∂T
p̃(r, θ, T ) =

ν̃

ω

∂

∂θ
p̃(r, θ, T ) +

3D̃

2ω2

∂2

∂θ2
p̃(r, θ, T )

− 1

ω

∂

∂r

[(
µ̃r − bω

4
r3

)
p̃(r, θ, T )

]
+

D̃

2ω2

{
∂2

∂r2
[r2p̃(r, θ, T )] − 3

∂

∂r
[rp̃(r, θ, T )]

}
.

(21)

We find that the radial and angular components of the Fokker-Planck equation [Eq. (21)]

decouple. Let p̃s(r, θ) = ps(r)ps(θ). The stationary probability distribution function of the

angular component satisfies ∂T ps(θ) = 0 or

0 =
ν̃

ω
ps(θ) +

3D̃

2ω2

∂

∂θ
ps(θ) . (22)

Integrating Eq. (22), the stationary probability distribution function of the angular compo-

nent is

ps(θ) = Nθe
− 2ω

3D̃
ν̃θ , (23)

where Nθ is a normalization constant. Furthermore, the stationary probability distribution

function of the radial component satisfies ∂T ps(r) = 0 or

0 = − 1

ω

(
µ̃r − bω

4
r3

)
ps(r) +

D̃

2ω2

{
∂

∂r
[r2ps(r)] − 3rps(r)

}
. (24)

Integrating Eq. (24), the stationary probability distribution function of the radial component

is

ps(r) = Nrr
2ωµ̃

D̃
+1e−

bω2

4D̃
r2

, (25)

where Nr is a normalization constant. The stationary probability distribution function is

normalized so that

1 =

∫ 2π

0

∫ ∞

0

p̃s(r, θ)drdθ =

[∫ 2π

0

ps(θ)dθ

] [∫ ∞

0

ps(r)dr

]
, (26)

and we choose to normalize both terms in square brackets of Eq. (26) to one. The normal-

ization constant of the stationary probability distribution function of the angular component

is

Nθ =

(
ν̃ω

3D̃

)
e

2πν̃ω
3D̃

sinh(2πν̃ω
3D̃

)
. (27)
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The bifurcation threshold is located at the point where ps(θ) is constant. This occurs at

ν̃ = 0 where ps(θ) = 1/(2π). Furthermore, the normalization constant of the stationary

probability distribution function of the radial component is

Nr = 2

(
4D̃

bω2

)−(α+1
2 )

Γ−1

(
α + 1

2

)
, (28)

where the exponent of the power law in Eq. (25) is

α =
2ωµ̃

D̃
+ 1 . (29)

If α < −1, the probability distribution function is negative which is unphysical. We then

define the location of the threshold as the point where the exponent of the power law is -1.

We obtain as a result two conditions at threshold,

ν = ω2 − ω2
0 − η cos(ωτ) + ωκ sin(ωτ) = 0 , (30)

µω + D = βω2 + ηω sin(ωτ) + ω2κ cos(ωτ) + D = 0 . (31)

Equations (30) and (31) validate the consistency of the assumption about the scaling of

the parameters µ, ν, and D close to the bifurcation. These conditions can be further reduced

by expanding Eqs. (30) and (31) up to order τ . One obtains the Hopf frequency from Eq.

(30),

ω =

√
ω2

0 + η

1 + κτ
. (32)

Furthermore, the exponent of the power law in the expression for the radial component of

the probability distribution function is

α =
2

D

(
ω2

0 + η

1 + κτ

)
(β + ητ + κ) + 1 . (33)

We finally define the location of the bifurcation threshold as αc = −1, or

(ω2
0 + η)(β + ητ + κ) = −D(1 + κτ) . (34)

We note that this result reduces when τ = 0 to that given by Lücke [8] and Drolet and

Viñals [9]. However, it disagrees with the results of Mayol et al. [13] by a numerical factor.
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III. NUMERICAL ANALYSIS

We describe here a direct numerical integration of the model to validate the asymptotic

expansion just described. We use the first order algorithm described in [20]. By defining

y(t) = ẋ(t), the numerical solution of Eq. (1) requires the following iteration

x(t + ∆t) = x(t) + y(t)∆t , (35)

y(t + ∆t) = y(t) +
[
−ω2

0x(t) − ηx(t − τ) + βy(t) + κy(t − τ) − bx2(t)y(t)
]
∆t

+x(t)ξ(t) , (36)

where ξ(t) =
√

2D∆tψ1(t), with ψ1(t) a random variable normally distributed with mean 0

and variance 1. We choose as initial condition in [−τ, 0] a random constant drawn from a

Gaussian distribution also of mean 0 and variance 1. The equations are typically integrated

up to tmax = 500, where the solution is believed to have reached a stationary state, by

using an integration step of ∆t = 0.001. The stationary probability density p(x) is then

constructed in the time interval [tmax, tmax + 10]. The overall process is repeated in order

to generate an ensemble average of 106 independent trajectories. A phase portrait showing

the velocity y and the position x of the deterministic delayed oscillator is shown in Fig. 1

for different values of the damping parameter β.

Our results for the stationary probability density are shown in Fig. 2. Below the bifur-

cation threshold (β < βc), the stationary distribution if given by p(x) = δ(x). As expected

([16]), we observe instead a very long transient with p(x) approximately a power law distribu-

tion with an apparent exponent α < −1 at small x. This is a non-normalizable distribution

and hence unphysical. It only appears as a long-lived transient. The probability amplitude

at x = 0 (not shown in the figure) grows with time, signaling the build up of a delta function

distribution. Because of normalization, the growth at x = 0 implies a decaying amplitude

for x > 0 as shown in the figure. For β > βc, we do obtain a time-independent power law

distribution function with exponent −1 < α < 0. This probability distribution function is

normalizable and is the stationary distribution above threshold. We finally show p(x) in the

range of β values where it is bimodal.

The exponent α is estimated in the interval x = {0.01, 0.1}. Figure 3 shows the value

of the exponent α obtained from a power law fit to p(x) as a function of β. Predictions

from Eq. (33) are also included for comparison. We observe a smooth variation of α with
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β, allowing a convenient determination of βc, the value for which α = −1. That method

was used to determine the threshold results shown in Figure 4. For sufficiently small values

of the time delay τ (τ < 0.15 for the set of parameters shown in the figure), the numerical

results are found to be in excellent agreement with predictions from Eq. (34).

Finally, we have numerically computed the Hopf frequency close to the bifurcation thresh-

old of the oscillator. The Hopf frequency corresponds to the frequency at which the am-

plitude of the Fourier transform of the trajectories is maximum. Our numerical results are

shown in Fig. 5 as a function of the time delay, and compared to the analytic result Eq.

(32). Once again, excellent agreement between the two sets of data is found provided the

time delay is sufficiently small.

Acknowledgments

This research has been supported by NSERC Canada. We thank two Compute Canada

sites: CLUMEQ and SciNet for access to supercomputing resources. Compute Canada is

supported by the Canada Foundation for Innovation.

[1] E. V. Appleton and B. van der Pol, Phil. Mag. 43, 177 (1922).

[2] A. Maccari, Nonlinear Dyn. 26, 105 (2001).

[3] A. Maccari, Int. J. Nonlinear Mech. 38, 123 (2003).

[4] A. Maccari, Phys. Scr. 76, 526 (2007).

[5] J. Xu and K. W. Chung, Physica D 180, 17 (2003).

[6] J. C. Ji and C. H. Hansen, Chaos Soliton Fract. 28, 555 (2006).

[7] X. Li, J. C. Ji, C. H. Hansen, and C. Tan, J. Sound Vibrat. 291, 644 (2006).
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FIG. 1: Phase portrait of the deterministic (D = 0) van der Pol oscillator with delayed feedback

for different values of the damping parameter β. The parameters are fixed at ω0 = 1, b = 1, η = 1,

κ = 1, and τ = 1.
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FIG. 2: Numerical determination of the stationary probability distribution function p(x) as a

function of the position x of the stochastic van der Pol oscillator with delayed feedback for which

the upper bound t of the time window used to calculate the probability density is varied. The

parameters are fixed at ω0 = 1, η = 1, b = 1, κ = 1, τ = 0.025, and D = 0.1. The bifurcation

is located at βc ≃ −1.08 for this set of parameters. The distribution is stationary in (a) and (b)

where α ≃ 0.02 (β = −1) and α ≃ −0.39 (β = −1.04) respectively. However, the probability

density is no more stationary below threshold, as shown in (c) (β = −1.1). The solid line extends

the domain used for the determination of the exponent.
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FIG. 3: Exponent of the power law α as a function of the damping parameter β calculated from

the stationary probability distribution function p(x) for the stochastic van der Pol oscillator with

delayed feedback. The parameters are fixed at ω0 = 1, η = 1, b = 1, κ = 1, and D = 0.1. The

calculations are done for three values of the time delay τ . The bifurcation point is located at

α = −1, point at which the distribution function becomes non-normalizable. The symbols are the

results of the numerical simulations whereas the solid lines are the theoretical predictions from Eq.

(33).
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FIG. 4: Bifurcation diagram of Eq. (1). We show the parameter βc evaluated at threshold as

a function of the time delay τ . The parameters are fixed at ω0 = 1, η = 1, b = 1, κ = 1, and

D = 0.1. The symbols are the numerically determined threshold calculated as the point for which

the exponent of the power law of the stationary probability distribution function is -1 whereas the

solid curve corresponds to Eq. (34). The agreement between the two is excellent when the time

delay is small.
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FIG. 5: Frequency ω of the oscillation as a function of the time delay τ for different values of the

intensity of the delayed velocity κ. The parameters are fixed at ω0 = 1, η = 1, b = 1, and D = 0.1.

The damping parameter is chosen to be close and below the bifurcation β = −κ. The symbols are

the numerically determined frequency whereas the solid curve is Eq. (32).
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