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ABSTRACT: A mesoscopic model of a diblock copolymer is used to study the stability of a uniform lamellar
phase under a oscillatory shear flow. Approximate viscosity contrast between the microphases is allowed
through a linear dependence of the (Newtonian) shear viscosity on monomer composition. We first show
that viscosity contrast does not affect the composition of the base lamellar phase in an unbounded geometry
and that it only couples weakly to long wavelength perturbations. A perturbative analysis is then presented
to address the stability of uniform lamellar structures under long wavelength perturbations by self-
consistently solving for the composition and velocity fields of the perturbations. Stability boundaries are
obtained as functions of the physical parameters of the polymer, the parameters of the flow, and the
initial orientation of the lamellae. We find that all orientations are linearly stable within specific ranges
of parameters but that the perpendicular orientation is generally stable within a larger range than the
parallel orientation. Secondary instabilities are both of the Eckhaus type (longitudinal) and zigzag type
(transverse). The former is not expected to lead to reorientation of the lamellae, whereas in the second
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case the critical wavenumber is typically found to be along the perpendicular orientation.

1. Introduction

Diblock copolymers are macromolecules comprising
two chemically distinct and mutually incompatible
segments (monomers) that are covalently bonded. The
equilibrium properties are determined by the degree of
polymerization, N (i.e., the length of the polymer chain),
the volume fraction of one of the monomers, f, and the
Flory—Huggins interaction parameter between the dis-
tinct segments, x.12 While the degree of polymerization
and the monomer volume fraction are determined by
the processing conditions, the value of the parameter y
is entirely determined by the choice of monomers and
temperature.

Above the order—disorder transition temperature
Topt, the equilibrium phase is disordered and the
monomer concentration uniform. In mean field theory,
the order—disorder transition takes place at yN = 10,
where the Flory—Huggins parameter and temperature
T are related through y = o/T + 5, where a > 0 and
are two constants.! Below Topr, equilibrium structures
of a wide variety of symmetries have been predicted and
experimentally observed.® Around f = 0.5 (symmetric
mixture), a so-called lamellar phase is observed, in
which nanometer-sized layers of A- and B-rich regions
alternate in space. When the copolymer is quenched
from a high temperature to a temperature T < TopT, @
transient polycrystalline configuration results compris-
ing many lamellar domains (or grains), with lamellar
normals of arbitrary orientations. In practice, full
development of the equilibrium state requires very long
annealing times until substantial long-ranged order at
the scale of the system size can be achieved. However,
the underlying ordering mechanisms and associated
rates that contribute to the large-scale reorientation of
the grains are essentially unknown at present. Not only
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partial ordering is detrimental for some applications,
but it can also lead to aging of the material, as well as
to potentially anomalous response to applied stresses.
We present below our analysis of one of the possible
mechanisms contributing to the Kinetics of large-scale
reorientation of lamellar domains, especially in connec-
tion with the use of oscillatory shears to accelerate grain
coarsening.

Imposing a oscillatory shear is one of the methods
currently in use to achieve long-ranged order of block
copolymer microstructures. Early work on the response
of block copolymer blends to shears*~® aimed at estab-
lishing the dependence of Topr on the shear rate, but
the experiments also revealed that the shear helped
select specific lamellar orientations. These observations
have subsequently led to a large number of groups
attempting to quantify the type and degree of ordering
that can be achieved by oscillatory shears. Early experi-
ments by Koppi et al.>¢ involved the copolymer poly-
(ethylene—propylene)—poly(ethylethylene) (PEP—PEE).
Upon lowering the temperature below TopT, they ob-
served a transition to the so-called parallel lamellae at
moderate shear rates, but also an unexpected transition
to perpendicular lamellae at high frequencies. (In paral-
lel alignment, the layers are normal to the shear
gradient direction, whereas in perpendicular alignment
the layers are normal to the vorticity direction; see a
schematic representation in Figure 1.) It was also
possible to induce the transition from parallel to per-
pendicular by increasing the shear frequency, but this
transformation was not reversible. Koppi et al. inter-
preted the high-frequency behavior as shear disordering
of the original configuration, followed by formation of
the perpendicular orientation. Instead, the parallel
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Figure 1. Schematic representation of the geometry consid-
ered including the shear direction and the three different
lamellar orientations discussed in the text.

Perpendicular

orientation was argued to result from defect-mediated
growth.

This phenomenology is qualitatively consistent with
the most complete theoretical analysis to date due to
Fredrickson,” although one must note that his results
were obtained for steady shears instead. He used the
same model equations that we use below in our study
but explicitly allowed for thermal fluctuations near
Topt, as he was primarily interested in modeling
orientation selection at Topt through anisotropic fluc-
tuation suppression by the shear flow. He approximated
the effect of the flow by introducing a modified order
parameter mobility that depended on the integrated
flow over the volume of the sample. Given the inverse
characteristic decay time of concentration fluctuations,
y*, he showed that for shear rates y < y* the parallel
orientation is preferred. In the opposite limit, the first
transition upon lowering the temperature leads to a
perpendicular orientation. Further decrease in temper-
ature led to transition back to a parallel structure. The
range of existence of the perpendicular orientation was
argued to decrease with increasing viscosity contrast
between the two microphases.

However, the phenomenology just described is exactly
reversed for a poly(styrene)—poly(isoprene) (PS—PI)
copolymer. Here the perpendicular orientation is ob-
served at low frequencies and the parallel orientation
at large frequencies.8® There is disagreement in the
results at low frequencies, as Wiesner and co-workers
find a parallel orientation at low frequency®1! in the
same range investigated by others. The experimental
results have been summarized in ref 12: for frequencies
o < wq a parallel orientation has been found in two out
of four studies. At intermediate frequencies wq < w <
o'c the preferred orientation is perpendicular, whereas
for ® > o'c the observed orientation is parallel. The
frequency wgy is a characteristic inverse time of local
domain deformation, and w'. is a frequency above which
chain relaxation dynamics dominates the storage modu-
lus G'(w).

A different line of theoretical investigation has shifted
the focus of study away from fluctuations at Topt and
into secondary instabilities of a well-developed lamellar
pattern.’3-15 Kodama and Doi'3 used a cell dynamical
model to study possible instabilities of a lamellar
pattern upon shearing. The numerical results obtained
motivated in turn an analytic stability analysis that,
now in the absence of flow, addressed lamellar stability
against a change in wavelength. Shiwa* later investi-
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gated the similarity between the amplitude or envelope
equations describing slow modulations of a lamellar
structure and the same equations describing roll distor-
tions in Rayleigh—Bénard convection. In the limit of
vanishing shear amplitude, he established the equiva-
lence of the stability diagram of both systems and hence
inferred the range of stability of a lamellar phase
against Eckhaus (longitudinal) and zigzag (transverse)
instabilities. We were later able to obtain lamellar
solutions under uniform steady and oscillatory shears
of finite amplitude'® and to study their stability. Stabil-
ity boundaries of the base lamellar phase against both
melting and long wavelength perturbations were ob-
tained for transverse and parallel orientations. How-
ever, we did not address the perpendicular orientation
or the effect of viscosity contrast on the stability
diagram. The considerations of both a full three-
dimensional geometry and viscosity contrast are the
subject matters of this paper.

We finally mention direct numerical calculations of
lamellae formation and coarsening under shear flow,
beginning with the work of Kodama and Doi mentioned
above!® based on a cell dynamical model of the block
copolymer. The same methodology has been used in ref
16 to address the role of topological defects on the
coarsening of the lamellar structure and the amplitudes
of the shear that are required to eliminate them. A
different line of inquiry is based on a density functional
description of the block copolymer.l” Two- and three-
dimensional lamellar structures under an imposed
steady shear were analyzed. In the three-dimensional
case, the spontaneous evolution from a single, initially
disordered structure was seen to lead to long-ranged
order along the perpendicular direction.

The results presented in this paper include a full
three-dimensional stability analysis of a uniform lamel-
lar phase under a oscillatory shear flow with an as-
sumed linear dependence of the shear viscosity on local
monomer composition. We self-consistently determine
the velocity field and monomer composition and study
the growth or decay of long wavelength perturbations
of a base lamellar phase. The stability analysis leads
to a Floquet problem for the perturbation amplitudes,
which we solve numerically. First, we find that viscosity
contrast has a negligible effect on the stability bound-
aries of the lamellar phase. Second, from the actual
computation of these boundaries we find that, in gen-
eral, the region of stability is larger for the perpendicu-
lar rather than the parallel orientation. Third, the
marginal mode for the transverse instability branch is
typically along the perpendicular orientation, so that
the initial decay of both parallel and transverse uniform
states would lead to the appearance of a perpendicular
component. We finally show that the orientation of the
marginal mode of instability can be generally under-
stood from geometrical considerations. At a zigzag
boundary, for example, the marginal mode tends to be
oriented along the direction that causes the largest
decrease in lamellar wavelength by the shear.

These results do not directly address the question of
orientation selection under shear. Instead, they narrow
the range of admissible solutions by showing that a
subset of the existing stationary solutions is in fact
linearly unstable against long wavelength modulation.
We argue that only those orientations that remain
linearly stable can be observed experimentally, although
our analysis cannot predict which orientation among
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those that are stable will be dynamically selected. We
show, however, that under certain conditions the range
of stability of the perpendicular orientation is much
larger than that of the parallel orientation, so that in a
large sample with a wide distribution of orientations
and possibly of lamellar spacings, the orientation with
the widest range of stability might be expected to
become dominant upon coarsening of the structure. We
also show that often the mode of decay of an unstable
orientation involves growth along the perpendicular
direction. While a fully nonlinear analysis is required
to describe the saturation of the perturbation and its
interaction with competing orientations in a large
sample, this result also suggests that the perpendicular
orientation would be selected under the conditions of
our study.

2. Mesoscopic Model Equations and Lamellar
Phases

At a mesoscopic level, a block copolymer melt is
described by an order parameter y(r) which represents
the local density difference between the two monomers
constituting the copolymer. The corresponding free
energy was derived by Leibler!8 in the weak segregation
limit (close to Topt) and later extended by Ohta and
Kawasakil® to the strong segregation regime. If the
temporal evolution of ¥ occurs through advection by a
flow field as well as through local dissipation driven by
free energy reduction, y obeys a time-dependent Gin-
zburg—Landau equation,27

%—’f + (V) = MVA(—ry + uyp® — KV2%) — MBy (1)

with v the velocity, B a parameter that characterizes
the amplitude of the long-ranged interactions arising
from the covalent bond connecting the two subchains,®
and M a phenomenological mobility or Onsager coef-
ficient.2 Other parameters appearing in the equation
can be related to physical properties of the polymer
chains as follows:!® K = b%/3, where b is Kuhn's statisti-
cal length of the chain, r = (2yN — 7.2)/N, and B = 144/
N2b2. The value of the parameter u is difficult to
estimate theoretically but can be estimated, for example,
from the value of the composition contrast between the
microphases.

Under the assumption of Newtonian behavior, the
equation governing the velocity field is an extended
Navier—Stokes equation for an incompressible fluid,

ov
Pogy + Po(VV)V = V(VV + V)] - Vp +

07 _
6ww’ Vv =0 (2)

where pp is the (constant) density, » is the shear
viscosity of the fluid which may depend on v, p is the
pressure, and appropriate boundary conditions for both
1 and v must be introduced. The last term on the right-
hand side of eq 2 is required to ensure that there cannot
be free energy reduction by pure advection of .2t This
term leads to the creation of rotational flow by curved
lamellae that is directed toward their local center of
curvature.

We first introduce dimensionless variables following

ref 15. Lengths are scaled by +K/r, which is propor-
tional to the lamellar wavelength, time by K/Mr?, the
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characteristic monomer diffusion time, and order pa-

rameter y by Vrlu. As described in that reference, only
one dimensionless group remains in eq 1, B' = BK/r2.
In dimensionless units (we also omit the prime in B; it
is assumed to be a dimensionless coefficient in what
follows), eq 1 reads

0
Lt vy = Vi(—p +y° - V) ~By (3

The mean field order—disorder transition occurs at B,

= 1/4 with a critical wavenumber q; = Vi/2.

Equation 2 can be further simplified by noting that
the order parameter diffusivity (proportional to Mr) is
much smaller than the kinematic viscosity #/pg and that
under typical experimental conditions powd/n < 1 as
well, where w is the angular frequency of the oscillatory
shear and d the thickness of the block copolymer layer.
We therefore adopt a creeping flow approximation
according to which the flow field instantaneously relaxes
to that determined by the instantaneous configuration
of the order parameter ¥ (and the no-slip boundary
conditions).

We also neglect in our present study the osmotic
stress (0.710y)Vy on the right-hand side of eq 2. In
dimensionless units, its scale is given by a dimensionless
group C,? which is proportional to an inverse capillary
number Ca = nvo/T', where vq is a characteristic velocity
scale and T" a surface tension parameter (excess free
energy associated with bending of the lamellae). The
surface tension T" goes to zero as ¢ — 0, the weak
segregation limit considered, while the characteristic
velocity scale vp remains finite and is given by the
imposed shear. Therefore, C is expected to be small.

In summary, the only dependence in eq 2 on the order
parameter 3 enters though the shear viscosity n =
n(y), as we focus on the effect of viscosity contrast
between the microphases on the stability of a lamellar
structure.

An important restriction of our calculations is that
the fluid remains Newtonian. This is in line with
previous calculations on this system, but it is an
approximation that needs to be removed in future work,
as already noted in the Introduction. We consider here
a specific linear dependence of the shear viscosity on

P,
N =1+ ny (4)

where 5, does not have to be small compared to 7o.
Within the approximation stated, and in dimensionless
variables, eq 2 reduces to

0=-Vp+ V[ + ) (Vv + W')] (5)

where the dimensionless viscosity correction 7'y =

Vrlu(aino) has been introduced (and the prime re-
moved).

The physical system under consideration is a layer
of block copolymer, unbounded in the x; and x; direc-
tions, and being uniformly sheared along the x3 direction
(Figure 1). The layer is confined between the stationary
xz = 0 plane, and the plane xz = d which is uniformly
displaced parallel to itself with a velocity Vpjane = ydo
cos(wt)X1, where X; is the unit vector in the x; direction.
y is the dimensionless strain amplitude, and o is the
angular frequency of the shear. In what follows, this
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velocity is also expressed in the dimensionless variables
given above. In particular, the dimensionless wall
velocity can be written as V'pane = ' cos(w't’) so
that with the scalings introduced earlier o' =
V2(wtp)(qed)y, with 7o = K/Mr? the (diffusion) time
scale introduced earlier.2® Since for a realistic system
gcd > 1, the relatively small values of " required for
instability (see below) implies that our study addresses
in practice shear frequencies much smaller than the
inverse diffusion time. Again, in what follows we restrict
ourselves to dimensionless variables and drop the
primes.

We first summarize the results of ref 15 in which the
viscosity was assumed uniform. We focused there on the
weak segregation limit ¢ = (B — B)/2B; < 1, in which
the solution for the monomer composition can be
obtained perturbatively in e,

P(r) = 2A(t) cos(g-r) + A, (t) cos(3g:r) + ... (6)

where r = x3X;1 + X2X2 + X3(y sin(wt)X; + X3) so that it
can be thought of as having components in a nonor-
thogonal basis set which follows the imposed shear, and
g = (g1, g2, g3) is the wavevector in the corresponding
reciprocal space basis set {g1 = X1 — y sin(wt)Xs, g2 =
X2, 93 = X3}. Note that in this new coordinate system
perfectly ordered configurations are stationary. Three
orientations relative to the shear can be defined as
follows: g3 = 0, g1 = g2 = 0 is a purely parallel
orientation, g2 = 0, g1 = g3 = 0 is a perpendicular
orientation, and g1 = 0, g2 = g3 = 0 is a transverse
orientation.

In the absence of viscosity contrast, the velocity field
is given by

VP =y cos(wt)xsX, 7)

Furthermore, by substituting eq 6 into eq 3, the lowest
order solution (((eY2)) is given by

y(r) = 2A(t) cos(grr) (8)
where the amplitude A(t) satisfies the equation?®

92— ol (v]A - 3P VA° ©)

with g2(t) = qi2 + [y sin(wt)qy — g3]? + 22 and o(q?) =
g% — g* — B. This equation can be integrated to give
the marginal stability boundaries and the function A(t)
itself.’> From this analysis, a critical strain amplitude
ye, Which depends on g, was identified such that for y
< y. the uniform lamellar structure oscillates with the
imposed shear, but at y > y. A(t) decays to zero; i.e.,
the lamellar structure melts, to use the terminology
used in experiments.

The stability of the base lamellar pattern was then
addressed in two spatial dimensions by a Floquet
analysis. The study was restricted to the (xi, x3) plane
(i.e., g2 = 0) and therefore restricted to transverse (g3
= 0) and parallel (g1 = 0) lamellae only. Briefly, for
sufficiently small y all orientations were seen to retain
a range of stability in wavenumber, a range that
becomes narrower along the diagonal in the (gi, Qs)
plane. The range of stability is further reduced with
increasing frequency. At moderate shear amplitudes
(e.g., y =0.4), only fully parallel or transverse lamellae
remain stable, and there is also a weak frequency
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dependence. We extend below these results to three
spatial dimensions and to a fluid with a nonuniform
shear viscosity, a function of the local monomer com-
position 1. Our aim is to incorporate into the stability
analysis a different effective rheology of the two mi-
crophases.

3. Stability of a Lamellar Phase under Shear

We obtain in this section the flow in the melt that
arises from the nonuniform shear viscosity and the
resulting corrections to the base lamellar solution. We
then perform a self-consistent stability analysis of the
lamellar order parameter and flow field against long
wavelength perturbations.

There is now ample evidence that viscoelastic contrast
between the microphases affects orientation selection.
We wish to investigate here whether such a contrast
substantially affects the stability of a uniform lamellar
phase to shear. This is an initial step in attempting to
understand the experimental phenomenology. For ex-
ample, and as briefly discussed in section 1, the qualita-
tive response to oscillatory shears in a system such as
poly(ethylene—propylene)—poly(ethylethylene) (PEP—
PEE) is qualitatively very different than that of, say,
poly(styrene)—poly(isoprene) (PS—PI). The former pre-
fers the parallel orientation at low frequencies and the
perpendicular orientation at higher frequencies, whereas
the behavior is essentially reversed for the latter. As
emphasized by Fredrickson and Bates,? the microphases
of the PEP—PEE system are well matched mechanically.
However, PS is largely unentangled whereas Pl is
entangled. Therefore, a large contrast in the relaxation
times of the blocks is anticipated. Also, recent experi-
mental evidence by Winey and co-workers?4 suggests
that the response of a parallel configuration to shear
can be qualitatively described by a three-region model.
One central region in the vicinity of the covalent bond
between the A and B chains is relatively stiff and
responds elastically under shear. This region is sur-
rounded by two other regions with a largely viscous
response to the shear as the chains are elongated. Before
addressing the more general case of viscoelastic contrast
between the microphases, we study in this paper a fairly
simplistic situation in which the blend remains a
Newtonian fluid, but one in which the shear viscosity
depends explicitly on the local monomer composition 7
= n(y), and hence the actual flow field inside the melt
depends on the order parameter configuration. We
follow a related study by Fredrickson,” who incorporated
viscosity contrast by computing an averaged, effective
shear rate for a lamellar configuration, which then
renormalized the mobility coefficient in the time-de-
pendent Ginzburg—Landau equation for the order pa-
rameter. We do consider here, however, the full calcu-
lation of the flow field self-consistently, although for
practical convenience we restrict our analysis to the
linear variation given in eq 4. In this case, we can solve
for the base flow field exactly, a fact that considerably
simplifies the stability analysis.

We begin by writing eq 5 in components,

aip — [ + ny)(@v; + vl =0 (10)

and consider periodic boundary conditions along the X;
and X, directions. To facilitate the computation, we
replace no slip boundary conditions in the X3 direction
by sheared periodic boundary conditions (i.e., periodic
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boundary conditions in a frame of reference rigidly
attached to the moving plates; see, e.g., ref 15 for further
details). We then introduce the decomposition

v=V'+u (11)

The governing equation for the velocity u is (with
Y(r) = 2A cos(g-r))

—3py + [ + ) @) + VD] + L + ) (Bu; +
du)] =0 (12)

To solve this equation, we introduce a new set of
coordinates (X', y', z') such that 2' = § (the z' direction
is parallel to the time-dependent wavevector of the
lamellar phase) and ¥’ is perpendicular to the plane (g,
0, gx). Then uy and uy vanish in the lamellar phase, and
the equation for uy, after some algebra, is given by

8,[(1 + 27,A(t) cos q2)3,u,] = yr,A(Maf sin gz’ (13)

with 8 = 2[—(ax® — g,%)? — gy(ax* + g.?))/anx and ny =
I(gz(ax® — Qyz - 0z2), 20x0y0z, — Ox(Qx® + Qy2 —g9)|, where
the wavevector q is a function of time as the orientation
of the base lamellar structure adiabatically follows the
imposed shear flow. Equation 13 can now be integrated
twice to obtain uy. It is important to note that for a
purely perpendicular base state § = 0, and hence the
flow correction u = 0 in this case. This is in agreement
with the results of Fredrickson.”

A general property of the solution for the flow
perturbation u that follows from the linear form of the
viscosity contrast is that the velocity is always perpen-
dicular to q, i.e., parallel to the lamellar planes which
are the planes of constant . Therefore, the advection
term u-Vy = 0 for a lamellar phase and hence the base
field y is unaffected by the flow. Note that this result
is general as long as the order parameter is a function
of one spatial direction only. In the more general cases,
only the functional dependence in cos(z') and sin(z’) in
eq 13 would be different. In short, eq 8 remains the
solution for the order parameter when the viscosity
contrast is given by eq 4. The base flow field can be
obtained from the solution of eqs 13 and 11.

We next address the stability of the solution egs 7
and 8 against long wavelength perturbations at fixed
€.25 We consider solutions of the form

Y=yt 9,
v=v'+u+w

where v, is the base solution given in eq 8, u is the
solution of eq 13, and

Py =1y, €T 4y, @ITIRT Lo (14)
If the wavevector of the perturbation Q is parallel to
the base wavevector q, the perturbation is said to be of
the Eckhaus type. In the case of QUq, we are consider-
ing a zigzag perturbation (see Figure 2 for a schematic
representation of the lamellar distortion that corre-
sponds to each perturbation). Because of our choice of
sheared periodic boundary conditions, and unlike more
standard analyses of long wavelength instabilities, the
perturbation wavevector Q is time-dependent and pe-
riodic with the same periodicity as the shear (the same
is true for Q).

Diblock Copolymers 4187

Zig - zag instability: QL q

/\/
—>/\/
/\/

i

Figure 2. Schematic representation of the two types of
instabilities discussed in the text. If q is the wavevector of
the base pattern and Q is the wavevector of the perturbation,
a transverse modulation of the base state corresponds to a
zigzag perturbation (top), whereas a longitudinal modulation
corresponds to an Eckhaus perturbation (bottom).

Eckhaus instability: Qllq
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The stability of periodic solutions of the current model
in the absence of flow has been extensively studied.1426
There is a range of wavenumbers g within which the
lamellar states are stable. This range of stability
increases with the distance to threshold . At large
wavenumbers, lamellae undergo an Eckhaus instability
which tends to lowers the value of g by eliminating
lamellar layers. On the other hand, at small wavenum-
bers the wavenumber is increased via a zigzag instabil-
ity. As we show below, the imposed oscillatory shear has
important consequences for these two instabilities,
especially for the zigzag case. In particular, we show
that the way in which a zigzag instability leads to a
readjustment of the lamellar wavelength depends
strongly on the relative orientation between the base
lamellae and the shear direction.

To derive an evolution equation for the two ampli-
tudes 2+ and y,—, we need the velocity field w. Since
the convective term in eq 1 is v-Vy = (U + w)-V(y; +
12), we only need to retain Fourier components of the
form e*iar+iQr Therefore, one only needs the Fourier
components e*2iar for u and e*2iar=QT for w. The
governing equation for the second-order velocity w reads

=P, + G[(X + my)(@Ow; + dwy)] + 8[my,(9u; +
qu)] + 3j[’71¢2(3iV19 + ajV?)] =0

This equation is solved by transforming again to the
(X', y', Z') coordinate system. The sum of the third and
fourth terms is the inhomogeneous term in the equa-
tions and is of the form of h(qz')e'®"" + c.c. Therefore,
we write the second-order velocity as

w = e'Q"Ww(qz') + c.c.
p, = €'97p,(qz) + c.c.
which leads to the equations

—3iPo(9z') + (iQ'; + )[1 + nyy,(aZ)](IQ; +
d)w;(az') + (IQ'j + 9)w;(az')] = hi(qz’) (15)
We now solve for the functions w(qz') and p2(qz)

numerically together with the incompressibility condi-
tion,

iQW, +iQW, + (iIQ, + ,)W, =0  (16)

Since the velocity w is proportional to v, and given
the latter's decomposition in its components e2'9'" and
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eiQr we find it useful to express w as
W= (W++e2iq-rw2+ +wh —e—Ziq-rw2+ +
w TeBTyx, +w e Myx, )e' M+ cc.
Also, by considering the Fourier expansion of u,

u=ue" + ue? + . +cc.

we arrive at the (linearized) system of equations obeyed
by the perturbation i,

alwor | _[Hu(®  Hyp®][war
ﬁ[w*z_ ‘[H21(t) sz(t)][w*z_] 17

This is the central result of this section. The matrix
elements are given by

H, () = —1. — 1.2+ B + 6A®®)%l, + iA(hw' g
H,,(t) = 3A@M)°L,. + iAw™ g + iuq(q — Q)
H,,(t) = 3A@M)°L_ — iAW" g — iu(q + Q)

H,,(t) = — 1. — 1.2+ B+ 6A(t)’l_ — iA(hw ™ -q

with l. = —(g £ Q)2 First we note that the matrix
elements are periodic in time, with the same periodicity
as the imposed shear. Given that A(t) is a periodic
function of time, of period T = 27/w, Floquet's theorem
states that the solution of eq 17 is given by

Vor | _ 04
v | T oo

with ¢L(t + T) = ¢.(t) a periodic function of time. The
sign of the exponent o determines whether the pertur-
bation will grow or decay as a function of time and hence
whether the base state is unstable or stable, respec-
tively. With this result, eq 17 is transformed into an
eigenvalue problem within (0, T),

2 o A

which we solve numerically. Briefly, the function A(t)
is evaluated numerically for a given lamellar orientation
and shear flow parameters. The flow correction due to
viscosity contrast u in the base state is known analyti-
cally, but the flow perturbation w is obtained numeri-
cally by solving egs 15 and 16. Once the matrix elements
in eq 17 have been numerically evaluated, the eigen-
value problem defined by eq 18 is solved numerically.
For fixed ¢, y, w, and 7 the stability boundaries are
determined as the loci of g at which the eigenvalue
function ¢(Q) changes from a maximum to a saddle
point at Q = 0.

We finally note that the fact that the Floquet problem
only involves the amplitudes .+ and y,- and not
wTtwt ~w~ T and w~ ~is a direct consequence of the
creeping flow approximation introduced: the velocity
field is slaved to the composition field.

4. Results and Discussion

As illustrated in Figure 1 and discussed in section 1,
the configuration considered is an unbounded layer
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being sheared along the x; direction and with a velocity
gradient in the x3 direction (and hence the vorticity
vector is along the x, direction). Three particular
orientations of the lamellae are of special concern in
relation with the issue of orientation selection under
shear: parallel, perpendicular, and transverse, as in-
dicated schematically in Figure 1. These three special
cases are to be discussed first, although we later present
the results of the stability analysis for an arbitrary
orientation of the lamellae.

We again note that we do not focus on the formation
of a particular orientation from an initially disordered
configuration but rather on the simpler problem of
ascertaining the region of stability of a base lamellar
state of a given orientation as a function of the shear
rate. Of course, linearly unstable orientations are not
expected to be observable in experiments, not even
locally during the transient evolution of polycrystalline
configurations. Our analysis, however, does not address
the determination of the basin of attraction of each
orientation from an initially disordered configuration
and hence cannot completely answer the orientation
selection problem. However, as we will show below, the
regions of stability against long wavelength perturba-
tions are quite small, and therefore our results do
provide some guidance for the orientation selection
problem.

One of the main conclusions from our numerical study
is that velocity field corrections due to the assumed
viscosity contrast between the two microphases phases
have a negligible effects on those stability boundaries
that we consider. We believe that this is due to two
reasons. First, we have shown that viscosity contrast
of the assumed form has no effect on the base state of
perfectly parallel lamellae (cf. eq 13 and the paragraph
that follows). Second, both Eckhaus and zigzag insta-
bilities are long wavelength instabilities. Consider, for
example, a transverse zigzag perturbation of a parallel
state. Since the induced flow u alternates in direction
on consecutive parallel planes, it will distort the zigzag
perturbation, but the effect will be very small for a long
wavelength perturbation. Hence, in what follows we
concentrate the discussion on the effects that follow from
lamellae orientation, keeping in mind that they are
quite independent of the value of #; considered.

The stability of a particular lamellar phase (with a
base wavevector q) is determined by the growth or decay
of perturbations of wavevector g + Q which is in turn
given and by the sign of the corresponding eigenvalues
of the Floquet problem defined by eq 17. Also, the
orientation of the marginally unstable mode Q can be
used as an indicator of the orientation of the emerging
structure. Of course, in an extended sample in which
multiple orientations coexist, possibly with a subset of
them becoming linearly unstable, it will be their non-
linear competition that will determine the asymptoti-
cally selected orientation. Nevertheless, we believe that
it is still useful to catalog the orientation of the marginal
mode in the case of the three basic orientations of the
lamellae: parallel, perpendicular, and transverse.

First consider initially transverse lamellae, i.e., with
g along the x; direction. From Figure 1 it is clear that
the shear flow will tilt the layers and in doing so
decrease their wavelength. The stability diagram for
this case has been obtained by numerical solution of the
Floquet problem for w = 0.01 and € = 0.04 and is shown
in Figure 3 as a function of the shear amplitude y. The
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Figure 3. Neutral stability curve and secondary instability
boundaries for an initially transverse lamella with = 0.01
and ¢ = 0.04. Note that in the limit of no shear y — 0, the
zigzag boundary is close but not equal to its known value q,
= 0.707 derived from the phase equation.?”

outside bounding curves are the neutral stability bound-
aries so that only within this range a nonlinear solution
for y exists, with an amplitude A(t) given by eq 9. The
bending of the curves toward smaller values of q as y
increases can be qualitatively understood by noting that
the oscillatory shear leads to a decrease in the lamellar
wavelength. Thus, at higher values of y, the region of
existence of finite amplitude solutions shifts toward
larger wavelengths to compensate for a larger reduction
in wavelength by the flow. At large enough y, however,
nonlinear solutions cease to exist.

Only nonlinear solutions within the inner region in
Figure 3 are stable against long wavelength secondary
instabilities. Both Eckhaus and zigzag type instabilities
occur as shown in the figure. The Eckhaus instability
is a longitudinal phase instability (Ql|q) so that through
coupling with the amplitude it leads to an amplitude
modulation in the same direction as the base periodicity.
In general, this instability appears in the large wave-
number range of the diagram and is qualitatively
interpreted as an instability that leads to a decrease in
the wavenumber by eliminating lamellar layers through
the amplitude modulation. On the other hand, in the
range of small g, a zigzag instability with Qq can lead
to an increase in g to return the unstable lamella to the
stable range. In the absence of shear, perturbations to
a base state defined by q = gX; along QX, or QX3 are
equivalent. Under shear, however, the degeneracy is
broken, and we find from the numerical Floquet analysis
that the marginal mode for the zigzag instability is QX»,
i.e., along the perpendicular direction. In summary, the
large wavenumber instability is of the Eckhaus type and
does not lead to lamellar reorientation. The small
wavenumber instability is of zigzag type and leads to a
growing component along the perpendicular direction.

The stability boundaries for initially perpendicular
lamellae are shown in Figure 4. The Eckhaus boundary
is unaffected by the shear. This can be understood from
Figure 1 since the perpendicular orientation does not
couple to the flow. An Eckhaus mode is along the
perpendicular direction as well and hence remains
unaffected by the shear. On the other hand, there is a
very weak dependence of the zigzag stability boundary
on the shear amplitude, and we find that the marginal
mode is along the transverse direction.

We also present the stability diagram in full three-
dimensional g space for a base lamellar state of arbi-
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Figure 4. Neutral stability curve and secondary instability
boundaries for initially parallel and perpendicular lamellae
with w = 0.01 and ¢ = 0.04.
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Figure 5. Stability regions in the q;:—q. and g:—qs planes with
o =0.01, y =1, and ¢ = 0.04.

trary orientation relative to the shear. In the absence
of flow, all lamellae with wavenumbers near the mar-
ginal value q. are stable. Hence, the stability region is
a spherical shell in g space. Under shear, any lamella
with a wavevector that has a significant component
along the transverse direction becomes unstable, and
the region of stability becomes compressed along the q;
direction. For sufficiently large y, the stable region
adopts a toroidal shape around the g,—qs plane with a
small projection in the g; direction that depends on y.
Although we have argued earlier that lamellae with a
too small wavenumber will become unstable to a zigzag
mode and evolve into a new state oriented along the
perpendicular direction, this by no means implies that
a stable parallel orientation cannot exist (although
perhaps within a narrow range of wavenumbers).

As an example, Figure 5 shows the complete stability
boundaries along both g,—q; and gsz—q; planes for ¢ =
0.04 and y = 1. Note how the stable region in the q2—q1
plane is significantly larger than in the gz—q: plane.
This is also evidenced in Figure 6 by the asymmetry in
the toroidal stability region which is wide near the gz
axis (the perpendicular direction) but narrow near the
gs direction (the parallel axis). The implication of this
result is that if an initially disordered state is comprised
of many domains locally oriented along arbitrary direc-
tions, one would expect that a larger portion of the
sample would remain in the perpendicular state, as it
corresponds to the one with the largest region of
stability in g space. This argument is distinct from that
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Figure 6. Region of stability of a uniform lamella as a
function of its orientation. The axes correspond to transverse
(q1), perpendicular (g2), and parallel (gs) orientations. The
surface has been determined by numerical solution of the
Floquet problem defined by eq 17 with = 0.01, y = 1, and ¢
=0.04

given above involving the orientation of the marginal
model following a secondary instability of a perfectly
ordered lamellar structure, but it suggests the same
dominant orientation.

A useful interpretation of our stability results can be
given in terms of a simple geometrical construction of
how the imposed shear affects the lamellar wavelength.
If one were to neglect any flow corrections due to
viscosity contrast, and if the lamellar base state were
to follow the base shear flow adiabatically, then a
lamellar phase with initial wavevector q(t=0) = (qa, 92,
gz2) in the Cartesian or laboratory frame of reference
evolves according to

q(t) = (a;, A, —¥d; + 03) (19)

with g1, g2, and gz constant and y = y sin(wt). We show
that in most cases the marginal mode at the zigzag
instability is that which leads to the largest increase in
wavenumber by the shear.

Consider first the case of initially transverse lamellae,
i.e., with q along the x; direction. The marginal wave-
vector for an unstable zigzag perturbation can be either
g+ Q = (q, Q, 0), which leads to growth of a perpen-
dicular component, or g + Q = (g, 0, Q), which leads to
a parallel orientation. The effective wavenumber of the
distortion in each case is given by

perpendicular zigzag:
ja+ QI*M =1(@, Q 7a)I* = (1 + 7)9” + Q*
parallel zigzag:
la+ QI*(t) = (g, 0, 79 + Q)I* = (L + 7)g” +
259Q + Q°

Under oscillatory shear y changes sign, and both cases
lead to a wavenumber increase, although given the sign
change, it is not possible to tell which mode is more
effective at increasing the wavenumber following the
instability. This is the only case in which this geometric
interpretation does not lead to a selected marginal mode
that is consistent with the numerical Floquet analysis.
We note, however, that if the shear were stationary
instead, y increases monotonically, and a zigzag insta-
bility along the parallel direction would provide for a
larger increase in wavenumber.
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Consider now a base lamellar phase oriented parallel
to the shear. Figure 4 shows the stability boundaries
computed numerically. As seen in the figure, secondary
instabilities are again of the Eckhaus type at large q
and of zigzag type at small g. In this case the location
of the boundary is nearly independent of y; i.e., the
shear flow has no effect on the Eckhaus instability. This
can be understood geometrically from Figure 1 since the
parallel orientation is unaffected by the shear, and an
Eckhaus instability of a parallel orientation would also
lead to a growing mode along the parallel orientation.
The zigzag boundary at small wavenumbers also re-
mains constant and unaffected by the shear. Neverthe-
less, shear flow does introduce a distinction between the
two possible zigzag modes along the perpendicular and
transverse directions, respectively. The former, given
by q = (0, Q, q), will not be advected by the shear
according to eq 19. The latter is given by q = (Q, 0, q),
and it has its wavenumber advected as q(t) = (q — 7Q)?
+ Q2 Therefore, the shear leads to a net wavenumber
increase only when the instability is along the trans-
verse direction. The results of the Floquet analysis are
consistent in this case with the orientation that pro-
duces the largest wavenumber increase.

We finally discuss the case of initially perpendicular
lamellae. The stability results obtained are consistent
with our geometric interpretation since an imposed
shear flow will always increase the wavenumber for a
transverse zigzag mode (Q, g, 0) but has no effect on a
parallel zigzag mode (0, g, Q):

transverse zigzag:
la+ Q) = 1(Q, g, yQI* = + (1 + y*)Q”

parallel zigzag: |g + QJ*(t) = |(0, g, Q))* = ¢° + Q?

Therefore, our results for the secondary instabilities
of the three particular lamellar orientations can be
classified according to the orientation of the marginal
mode as follows:

transverse lamellae —
zigzag to perpendicular orientation

parallel lamellae —
zigzag to perpendicular orientation

perpendicular lamellae —
zigzag to perpendicular orientation

If one assumes that the orientation of the marginal
mode sets a preference for the final orientation of the
emerging stable lamellar structure, our results suggest
that the perpendicular alignment is the preferred
orientation under the action of the oscillatory shear,
independent of viscosity contrast (within the Newtonian
viscosity model adopted). Even in the case in which an
instability of a perpendicular orientation leads to a
transverse state, a shear flow of small amplitude would
drive it back to the perpendicular orientation, presum-
ably now with a wavenumber inside the stable region.
We however need to be remain cautious about the
generality of this conclusion as a complex dynamical
evolution could follow the initial decay after a zigzag
instability. For example, our earlier numerical results
in ref 15 showed that a zigzag instability may lead to
kink-band formation and yet to another orientation
change as the bands themselves become unstable.
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In addition to the detailed numerical computation of
the stability region in g space shown in Figure 6, the
relative sizes of the stability regions for parallel and
perpendicular orientations may be estimated from the
geometric interpretation given above. Consider first an
almost perpendicular state with a wavevector of a
magnitude o with a small component Aq in the
transverse direction. Under the action of the shear, eq
19 gives for the time-dependent wavenumber

at) = [AG® + a° + (FAQ)T ~
Aq

of+2a (2]

Therefore, the wavenumber increases with the shear as
(Ag/go)?. On the other hand, an almost parallel state has
a wavenumber

At = A" + (7aq + T ~ a1+ 7 09)
and therefore it increases only linearly with Ag/qo.
These two relations essentially yield the dependence of
the width of the toroidal region in Figure 6 along the
transverse direction and therefore the fact that the
relative extent of the perpendicular region of stability
is larger than the parallel region.

Insofar as our results could be used to infer the
dominant orientation under shear, our conclusions
would differ from those of Fredrickson,” from low-
frequency experimental evidence in PEP—PEE, but
agree with some low-frequency experimental evidence
in PS—PI. One must caution, however, that as discussed
in ref 7 it is not clear which of the two systems PEP—
PEE or PS—PI has a larger value of 1 or how close they
are to the assumed Newtonian behavior. Therefore, we
must consider our results to be a baseline against which
to compare future work involving true viscoelastic
contrast between the microphases.

Finally, it is interesting to address a possible reason
for the qualitative discrepancy between the conclusions
of our work and those of Fredrickson’s concerning the
effect of viscosity contrast. Although he discussed the
case of steady shear, our results are confined to low
frequencies and are only weakly dependent on fre-
qguency. Therefore, the discrepancy in conclusions is not
likely to arise from the time dependence of our solutions.
Briefly, he found a transition from a high-temperature
disordered state to parallel lamellae at low shear rates
and to perpendicular lamellar at high shear rates. In
the latter case, and upon further decrease in tempera-
ture, he predicted another transition to a parallel state.
The location of this second transition line depended on
the viscosity contrast between the microphases. Instead,
we see no discernible effect arising from viscosity
contrast. A possible qualitative explanation can be given
as follows: Our calculation is conducted at an externally
imposed shear rate D = vp/d in dimensional units (here
and in what follows), where v is the velocity of the solid
boundary. Consider a parallel configuration comprised
of only two planar layers with uniform shear viscosity
no + n1 and o — n1. The average shear rate of this
configuration is given by

- v, — V'
o= dv-0,d%

dl2 a2z T2 az|~P
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where V' is the (unknown) speed at the boundary
between the two layers. In this case, the average shear
rate is independent of the viscosity contrast. On the
other hand and following Fredrickson, if the boundary
conditions involve an imposed shear stress o, the
conclusion is different. The shear rate for the base state
is now D = olno, the same as in the previous case.
However, in the creeping flow approximation consid-
ered, the shear stress is uniform in the fluid, but the
shear rate is different in the two layers,

D1(ng — 1) = Dy(170 + 171) = Drpy

where D; (D) is the shear rate in the layer of viscosity
1o — n1 (o + 11). The spatial average over the config-
uration is now

1d_ ,d.1_ D[ 1 1)
EIDE'zol[leJrzDZ]_2(1—é;+1+a_

D+ 6%+ ..)

where 0 = mi/no. Therefore, the average shear rate
across the layer in a parallel configuration always
increases with viscosity contrast. (In both sets of
calculations, the perpendicular base state is not affected
by the shear flow.) Fredrickson’s results are based on
the introduction of a renormalized order parameter
mobility that is assumed to depend on the average shear
rate across the layer. Therefore, his results for a parallel
configuration are affected by the shear, whereas ours
are not. As discussed in section 3, the composition field
of the base parallel configuration is not modified by the
flow correction arising from viscosity contrast. Finally,
although the implications of the choice of boundary
conditions on the dynamical evolution of partially
ordered lamellar configurations are difficult to establish,
we note that Fredrickson’s work focused on fluctuations
near a uniform, disordered state, whereas we have
considered perturbations around a (weakly) nonlinear
state of a finite amplitude, saturated lamellar structure.
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