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A numerical solution of a generalized Swift-Hohenberg equation in two dimensions reveals the
existence of a spatiotemporal chaotic state comprised of a large number of rotating spirals. This
state is observed for a reduced Rayleigh number € = 0.25. The power spectrum of the pattern is
isotropic, and the spatial correlation function decays exponentially, with an estimated decay length
& = 2.5\, where . is the critical wavelength near the onset of convection. Our study suggests that
this spiral defect state occurs for low Prandtl numbers and large aspect ratios.

PACS numbers: 47.20.Bp, 47.27.Te

The spatiotemporal chaotic behavior of spatially ex-
tended, dissipative systems has been intensively stud-
ied in recent years [1]. The transition to spatiotemporal
chaos has been observed in various physical systems such
as Rayleigh-Bénard convection [2], optical instabilities
[3], flames [4], and chemical reactions [5]. Spatiotempo-
ral chaos manifests itself through a breakdown of global
spatial coherence. However, a macroscopic coherence
length—a length scale below which the pattern appears
coherent—may still be observed. This form of chaos is
often referred to as weak turbulence. Recently, a chaotic
spiral defect pattern (which we will refer to loosely as spi-
ral chaos below) has been observed in Rayleigh-Bénard
convection in a non-Boussinesq fluid (CO; gas) [6], for a
large aspect ratio and at moderate Rayleigh numbers. In
previous experiments on convection in COy gas [7], the
spontaneous formation of a stable rotating spiral pattern
was observed at a lower Rayleigh number. The chaotic
state observed more recently [6] is comprised of a large
number of rotating spirals. Spirals nucleate, interact,
and annihilate yielding a macroscopically disordered pat-
tern. In this paper, we show that a generalized Swift-
Hohenberg equation which includes a quadratic nonlin-
earity and coupling to mean flow can account for the
formation of this chaotic spiral pattern. We find that
chaotic spiral patterns are spontaneously formed during
the transition from the conduction state to rolls, in agree-
ment with the experimental observations.

In order to distinguish among temporal chaos (for sys-
tems with a few spatial degrees of freedom), spatiotem-
poral chaos (for systems with many spatial degrees of
freedom) and fully developed turbulence, we summarize a
scenario proposed by Hohenberg and Shraiman [8]. Con-
sider the following length scales for a system: the linear
system size L, the correlation length £, the excitation
length lg (the characteristic length at which energy is

2030

introduced into the system), and the dissipation length
Ip [9] (the characteristic length below which the modes
are damped). For example, near the onset of Rayleigh-
Bénard convection in an infinite system, Ip ~ k!, where
k. is the critical wave number. The excitation length
lp~d=~ kc_l, where d is the thickness of the fluid layer.
Temporal chaos then corresponds to the case of a small
aspect ratio and moderate values of the reduced Rayleigh
number R/R. (where R, is the critical Rayleigh number),
where L = Ip = lg, so that only a few degrees of free-
dom are relevant. Fully developed turbulence, on the
other hand, occurs for R/R. > 1, for which Ip < Ig.
Spatiotemporal chaos occurs at moderate R/R., for a
large aspect ratio system, with L > lg =~ Ip = d, and
L > £. In this case the system may exhibit spatiotem-
poral chaos, where one has to deal with many spatial
degrees of freedom with local order on a length scale &.

We model convection in a non-Boussinesq fluid by
a two-dimensional generalized Swift-Hohenberg model
[10,11], defined by Egs. (1)-(4) below, which we solve
by numerical integration. The Swift-Hohenberg equation
and various generalizations of it have proven to be quite
successful in explaining many of the features of convec-
tive flow in fluids, particularly near onset [12-16]. As we
show in this paper, the same holds true for the formation
of spiral chaos in non-Boussinesq fluids. Our model is
defined in dimensionless units by

WED | g0 W= ¢ — (V2 + 1% — g9 — 9%,
1)
0

5 Pr(V? — CQ)} Vi = [V(V2) x VY] - &, (2)

where U is the mean flow velocity,
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U= (ayg)éa: - (aa:C)éy (3)

The boundary conditions are
Ylp="0-Vy|p=(lp=10-V(p=0, (4)

where 1 is the unit normal to the boundary of the domain
of integration, B. Equation (1) with g5 = g,, = 0 reduces
to the Swift-Hohenberg (SH) equation. The scalar order
parameter ¥(r,t) is related to the fluid temperature in
the midplane of the convective cell and ¢(r, t) is the verti-
cal vorticity potential. Mean flow arises when the vertical
vorticity is driven by roll curvature and amplitude mod-
ulations. Coupling to mean flow has been shown to play
a key role, for example, in the onset of weak turbulence
in Boussinesq fluids [11,17,18]. The quantity € is the
scaled control parameter, ¢ = (Ff’—g-g)e, where € = R% -1
is the reduced Rayleigh number. ‘Here R is the Rayleigh
number, R, is the critical Rayleigh number for an infinite
system, k. is the critical wave number, & is the charac-
teristic length scale, Pr is the Prandtl number, and ¢? is
an unknown constant.

The values of the parameters that enter the equation
have been chosen in the range appropriate for the earlier
experiments of Bodenschatz et al. on CO2 [7]. In order
to estimate them in terms of experimentally measurable
quantities, we have derived a three mode amplitude equa-
tion from the generalized Swift-Hohenberg equation [15].
From the experiments described in [7], we have estimated
g2 ~ 0.35 and g,, =~ 50. The value of ¢’ used in the nu-
merical simulation is 0.7, which is related to the experi-
mental value € in Ref. [7] by € = 0.3594¢' = 0.2516. We
have chosen ¢? = 2 to simulate approximately the experi-
mental rigid-rigid boundary condition. (Note that ¢ = 0
corresponds to a free-free boundary condition.) We note
that for these values of the parameters, the classical work
of Busse [19] on the stability of various convective states
in an infinite fluid predicts that the stable pattern is a
set of parallel rolls.

In the numerical calculations we consider a circular cell
of radius R = 327, which corresponds to an aspect ratio
I' = R/m = 32. A square grid with N2 nodes has been
used with spacing Az = Ay = 64n/N, and N = 512.
We approximate the boundary conditions on 1 by taking
(r,t) = 0 for ||r|| > R, where r is the location of a node
with respect to the center of the domain of integration. In
order to study the formation of the chaotic spiral pattern
from the conducting state, we choose as initial condition
¥(r,t = 0) a random variable, Gaussianly distributed
with zero mean and a variance 0.001.

Our main result is that this model exhibits a spa-
tiotemporal chaotic spiral pattern which is remarkably
similar to that observed experimentally [6] (there the sys-
tem was quenched from the conduction state as well).
Figure 1 shows a typical configuration that we have ob-
tained exhibiting spiral chaos. Dark regions correspond
to hot rising fluid and white regions to cold descending

FIG. 1. Typical configuration of a spiral chaos pattern.
The field 4 is shown. Dark regions correspond to ¢ > 0 and
light regions to ¥ < 0. The configuration shown has evolved
from random initial conditions in a cylindrical cell with as-
pect ratio I' = 32. The values of the parameters used are
g2 = 0.35, gm = 50, and ¢ = 2. The parameter ¢ is quenched
from 0 to 0.7 in the simulation. The configuration shown is
at t =900 =~ tp.

fluid. Initially, after the control parameter is quenched
into the regime in which spiral chaos arises, the random-
ness in the initial configuration is rapidly lost. On a time
scale t ~ 600, the system self-organizes into a regular
structure comprising locally rotating spirals that fill the
entire cell.

The two dimensional power spectrum (P (k)) of ¢(r,t)
for spiral chaos is shown in Fig. 2(a), where { ) denotes
a time average over one horizontal-diffusion time [20].
The most interesting feature is that the intensity of the
spectrum appears to be isotropic. Figure 2(b) shows the
circularly averaged power spectrum P(k). We see that
P(k) is broad, skewed, and peaked at a wave number
kmax < ke = 1. In order to estimate the width of P(k) we
have fitted it to a function of the form A/[1+&*(k2—kE)?].
The fit obtained is shown in Fig. 2(b) as well, and corre-
sponds to A =~ 7.0, £ = 2.4, and ko = 0.8. The function
P(k) is more sensitive to position correlations than ori-
entation correlations in the pattern. The dependence of a
correlation function that would measure orientation cor-
relations on the distance need not be the same as that of
C(r) [21], which is the inverse transform of (P(k)).

We finally show in Fig. 3 the field ¢ that corresponds
to the configuration shown in Fig. 1. White and dark
regions correspond to clockwise and counterclockwise ro-
tations, respectively. The Fourier transform of this field
shows, as expected, that it is peaked around k£ = 0 and
is isotropic.

Our numerical investigation indicates that both large
scale mean flow and large aspect ratio play a crucial role
in the spontaneous formation of a spiral chaos state. In
the absence of the mean flow field, we do not observe it.
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FIG. 2. (a) Power spectrum in k space. The intensity of the
spectra is approximately isotropic. (b) Circularly averaged
power spectrum. The wave number k is in units of k., where
k. = 1 is the critical wave number. The solid line is the fit
discussed in the text.

To study how the spiral chaos state depends on the size of
the system, a run was conducted in a small cell of aspect
ratio 16. We observed a globally ordered pattern con-
sisting of one two-armed spiral, which demonstrates that
a large aspect ratio is critical to the existence of spiral
chaos. We have also studied the role of non-Boussinesq
effects on the formation of the spiral chaos state. If the
non-Boussinesq coupling constant g = 0, and we start
with the same random initial condition and use the same
parameters (¢/ = 0.7, g, = 50, Pr = 1.0, and ¢? = 2.0),
we observe a similar spiral chaos state, demonstrating
that the term that models non-Boussinesq effects is not
necessary for spiral chaos. We have also carried out ad-
ditional calculations to study the effect of the Prandtl
number. Starting with exactly the same initial conditions
and parameters as in Fig. 1, but with a larger value of
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FIG. 3. Vorticity potential field ¢ corresponding to the con-
figuration shown in Fig. 1. White and dark regions corre-
spond to clockwise and counterclockwise rotations, respec-
tively.

the Prandtl number (Pr = 6), no spiral chaos pattern is
observed, showing that a low Prandtl number is essential
for spiral chaos. The resulting pattern has a labyrinthine
aspect. Finally, in order to study how generic the spiral
chaos states is, we have studied the case in which the
system was ramped slowly from a conduction state to a
convection state. We used exactly the same initial con-
ditions and the same parameters in Fig. 1, but increased
€ very slowly up to € = 0.7: € = 1073¢ for 0 < ¢t < 700
and € = 0.7 for t > 700. A similar spiral chaos is ob-
served to form as time increases, although rolls tend to
persist near the cell boundary. These results suggest that
only the low Prandtl number and large aspect ratio are
relevant for the existence of spiral chaos.
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