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Linear bubble model of abnormal grain growth
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Abstract

A linear bubble model of grain growth is introduced to study the conditions under which an isolated grain can grow
to a size much larger than the surrounding matrix average (abnormal growth). We first consider the case of bubbles
of two different types such that the permeability of links joining unlike bubbles is larger than that of like bubbles (a
simple model of grain boundary anisotropy). Stable abnormal growth is found both by mean field analysis and direct
numerical solution. We next study the role of grain boundary pinning (e.g., due to impurities or precipitate phases) by
introducing a linear bubble model that includes lower and upper thresholds in the driving force for bubble growth. The
link permeability is assumed finite for driving forces above the upper threshold, zero below the lower threshold, and
hysteretic in between. Abnormal growth is also observed in this case. 2002 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

We use a linear bubble model of grain growth,
originally developed to study self-similar particle
coarsening or the development of texture, to inves-
tigate possible causes of abnormal grain growth.
While the bubble model is a simple idealization of
grain growth, it has the advantage that the results
obtained are not limited by the mean field approxi-
mation inherent to other existing treatments of
abnormal growth.

In normal grain growth thermal annealing of a
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polycrystalline material results in self-similar
coarsening driven by excess free energy reduction.
An invariant distribution of scaled grain sizes
develops, with an average grain size that grows as
a power law of time with a characteristic exponent
of 1/2 [1,2,3,4,5]. In abnormal grain growth, on the
other hand, a subset of the ensemble of grains
grows faster than the surrounding matrix, until the
eventual removal of the latter from the distribution.
It is a common experimental observation that the
distribution of grains that do not exhibit preferen-
tial growth stagnates, while the favored subset
grows (secondary grain growth). The ensuing par-
ticle size distribution function becomes strongly
bimodal. When secondary growth completes, the
average size of the remaining grains can be much
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larger than that of the initial distribution. An
example of a system in which abnormal growth is
ubiquitous concerns thin films [6]. Anisotropy of
grain boundary properties or elastic strain energies
that couple to the orientation of the film grains lead
to preferential motion of certain orientations, while
constraining others. This dynamical selection of
texture leads to a narrow, and often stationary, dis-
tribution of grain orientations.

Different mechanisms have been proposed for
abnormal grain growth, although the actual physi-
cal mechanism responsible for this phenomenon
remains largely unknown. Defect induced strains
can induce isolated grain growth [7], as well as the
same capillary forces responsible for coarsening
when anisotropy of grain boundary energies or
mobilities exist [8,9]. The conditions for abnormal
growth due to variable surface energies or
mobilities were recently examined in [10] within
a mean field treatment of the matrix grains. For the
case of a single grain with boundary properties that
differ from those of the surrounding matrix, it was
found that a higher boundary mobility generally
promotes abnormal growth whereas a higher
boundary energy constrains it. The detailed
behavior can be quite complex depending on the
ranges of the model parameters chosen. It includes
abnormal growth only up to a limiting grain size,
or lower bounds in the initial size of the grain for
abnormal growth to occur.

Abnormal grain growth has also been shown to
occur when grain boundaries pin due to, for
example, existing precipitate phases or other
defects. Simplified models have been proposed that
introduce grain boundary drag forces that lead to
ultimate pinning (Zener pinning) [11,12], while the
role of thermal fluctuations to overcome pinning
has been analyzed by Monte Carlo simulation [13].

A number of simplified models of grain growth
have been introduced that focus on certain aspects
of the problem while simplifying others. Statistical
theories have been recently reviewed in [14]. A
configuration of the polycrystalline material is
described by the (one point) probability distri-
bution of grain sizes and orientations. Phenomeno-
logical laws for the average growth velocity of a
class of sizes and orientations is introduced to yield
a closed set of equations. The topology of the grain

distribution only enters the description in terms of
averages, and correlations between neighboring
grain sizes and orientations are absent. On the
other hand, Monte Carlo simulations based on the
Potts model [15,16,17] simplify the grain structure
by assigning a single discrete value (“spin” ) to the
grain orientation, and the grain boundary structure
and its energy by introducing a single coupling
constant between adjacent spins that represents the
(constant) boundary energy. The model, however,
incorporates the microstructure topology and cor-
relations between neighboring grains. Computer
simulations of normal growth have shown that the
distribution of grain sizes becomes asymptotically
scale invariant, and that the average grain size
grows as a power law of time with an exponent of
1/2 (parabolic kinetics). A third class of models
consider idealized boundaries that evolve accord-
ing to the rule that the local boundary velocity is
proportional to its mean curvature
[18,19,20,21,22]. For normal growth, parabolic
kinetics and scale invariance of the particle radius
distribution have also been obtained by direct
numerical solution. The case of abnormal growth
has been described more recently in [22]. We focus
instead on the so-called bubble models. Previous
studies of grain growth by using these models
include the case of a froth [23], and the linear bub-
ble model of Hunderi, Ryum and Westengen [24].
In this latter case, not only the grains are idealized
spherical domains, but also the topology of the
microstructure is further simplified into a linear
chain of bubbles that exchange mass only among
nearest neighbors. Whereas the model is too crude
to provide a reliable description of the physical
system, its simplicity allows detailed studies of
approximations that are often invoked in more
realistic treatments (e.g., correlations effects and
strict self-similarity versus slow transients and tex-
ture development, [25], or dimensionality effects
[26]).

Orientation effects and anisotropy in grain
boundary energies and mobilities have been intro-
duced into most of the simplified descriptions of
grain growth, including statistical theories [14],
Potts model simulations [27], moving boundary
models [22], and linear bubble models [28,29].
Rollet et al. [27], for example, considered the case
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of two distinct orientations by introducing into
their Potts model simulation two types of grains
and allowing both boundary energy and mobility
to depend on whether two adjacent grains are of
the same or different type. They used the model to
study abnormal grain growth by considering initial
conditions for the simulation in which a minority
of grains of one type were embedded in a matrix
of the other. When boundaries among unequal type
grains were assumed to have larger energies or
mobilities, abnormal growth was observed, with
average radius sizes growing faster than t1/2. Orien-
tation effects have been introduced into bubble
models of grain growth by Novikov [28], and later
by Abbruzzese and Lücke [29] to study the devel-
opment of texture. Both in Novikov’s work and in
later work [30,31,25] two types of bubbles A and
B were considered to represent the idealized situ-
ation of only two different grain orientations. The
mobility of unequal A–B boundaries was assumed
to be larger than the mobility of either A–A or B–
B boundaries. The conditions under which a steady
state distribution is reached in this binary case was
studied in [25].

We consider in this paper a linear bubble model
of grain growth to investigate the conditions that
could promote abnormal growth in the model. As
is the case with the other simplified models of
grain growth, only some generic features of the
results are expected to apply to the physical sys-
tem. In our case, these include the observation that
anisotropy in boundary mobility leads to a stable
fixed point characterized by a constant ratio
between the radius of the abnormal grain to that
of the matrix. Our study proves that, within our
model, this result is not restricted to the mean field
approximation, but that it also holds when corre-
lations between neighboring bubbles are included.
We therefore suggest that extending previous mean
field treatments of abnormal grain growth to allow
for correlations among neighboring grains would
not modify this conclusion. We are also able to
demonstrate a novel mechanism for abnormal
growth in the model. Hysteresis in bubble mobility
can lead to abnormal growth, even in the absence
of mobility contrast between bubble type. We
further show that there is a sharp transition
between stagnation and abnormal growth at a criti-

cal value of the lower cut-off for the mobility. We
suggest that both features will be present in more
realistic models of grain growth. Unfortunately, it
is not clear to us at present what is the origin of
the hysteresis in mobility, nor how the value of the
mobility cut-off can be related to parameters of the
physical system.

Section 2 presents a mean field analysis along
the lines of the mean field treatment of grain
growth by Rollet and Mullins [10]. We consider a
linear chain of bubbles of two types to model grain
boundary anisotropy and, consistent with their
analysis, show that abnormal bubble growth is
possible when the permeability of links separating
unlike bubbles is larger than that of like bubbles.
This mean field analysis is complemented by a
direct numerical solution of the model that con-
firms the mean field predictions regarding abnor-
mal bubble growth: parabolic kinetics for both the
abnormal bubbles and the matrix, and a constant
value of the ultimate ratio of abnormal to matrix
bubble radii.

We then explore in Section 3 a different mech-
anism that can lead to abnormal growth even for
the case of a single bubble type (i.e., in the absence
of mobility anisotropy). We model grain boundary
pinning by introducing a finite threshold in the
driving force for bubble growth. Links between
adjacent bubbles are open if the driving force
exceeds an upper threshold, and closed if it falls
below a lower threshold. In between the two thre-
sholds we assume hysteretic behavior of the link
permeability. A numerical solution of the model
shows that abnormal growth follows from an initial
steady state distribution of bubble sizes depending
on the values of the upper and lower thresholds.
While the upper threshold largely determines the
subset of bubbles that can grow against the matrix,
we show that there is a sharp transition in behavior
depending on the value of the lower threshold.
Abnormal growth is observed below a critical
value, with the average radius of the bubbles grow-
ing linearly with time. Above this value, the bubble
distribution freezes after an initial transient
(growth stops).
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2. Asymmetric linear bubble model

A linear bubble model of abnormal grain growth
is introduced to address the relationship between
stable abnormal growth and anisotropic grain
boundary mobility. The analysis is motivated by
recent research that involved the idealized situation
in which a single isolated grain A grows in a matrix
of B grains [10]. Under the assumptions that the
A–B boundary has a different energy and mobility
than B–B boundaries, that the boundary vertices are
in equilibrium, and a mean field treatment of the B
grain matrix, it was concluded that abnormal grain
growth is to be observed when unequal boundaries
have higher mobility than equal boundaries,
whereas higher surface energy of unequal bound-
aries relative to equal boundaries constrains it. The
linear bubble model described here allows us to
extend these results beyond the mean field approxi-
mation for the matrix. We find that the conclusion
that abnormal growth occurs when unequal bound-
aries have higher mobility also holds in this case,
and that a mean field prediction of the ultimate size
ratio is in reasonable agreement with the results of
the numerical calculations.

We consider a set of N spherical bubbles of radii
Ri, i=1, . . ., N, forming a linear chain with periodic
boundary conditions. The temporal evolution of the
linear bubble model is defined by the following set
of equations,

dRi(t)
dt

� Mi i+1� 1
Ri+1

�
1
Ri
� � Mi i�1� 1

Ri�1
(1)

�
1
Ri
�,

where Mij is a permeability coefficient between
bubbles i and j (the analog of the mobility in the
grain boundary case). We first consider in this sec-
tion the case of two types of grains, A and B, such
that MAA=MBB=1, and define m=MAB/MBB. A gen-
eral property of equation (1) is the existence of a

conserved quantity, �N

i � 1

Ri, which is independent

of time.
Numerical results for the symmetric case m=1

were given in [25]. For a random initial distri-
bution of bubble radii, the ensemble coarsens

through growth of bubbles larger than a time
dependent critical radius, and shrinkage and disap-
pearance otherwise. Following an initial transient,
the configuration reaches a stationary self-similar
state. In it, consecutive configurations of the coars-
ening structure are geometrically similar in a stat-
istical sense. As a consequence, any linear scale of
the structure (i.e., the average bubble radius) grows
as a power law of time

�R(t)�2��R(t0)�2 � C(t�t0),

where � � denotes the configuration average, and t0
is some time in the self-similar regime.

We now turn to the asymmetric case of m�1 in
the limit of a small fraction of A bubbles. Before
presenting the results of our numerical calculations
for m�1, we discuss a mean field treatment of the
linear bubble model (equation (1)) along the same
lines of [10], and show that similar conclusions fol-
low. We then obtain a numerical solution of equ-
ation (1), and demonstrate that, in agreement with
the mean field results, the linear bubble model does
lead to abnormal grain growth when m�1. We also
show that the ultimate size ratio between the
abnormal grains and the matrix is quite close to
that predicted by the mean field analysis.

Consider a single bubble of type A in a long
chain of B bubbles, and that the AB links have a
mobility MAB�MBB, with the mobility ratio
m=MAB/MBB. Since the number of B bubbles is
large, the evolution of the matrix will not be appre-
ciably affected by the presence of the abnormal A
bubble. Furthermore, since RA��RB�, matrix
bubbles adjacent to A will quickly shrink to zero
in the characteristic time scale for growth of matrix
bubbles. Hence we expect that the radius distri-
bution of B bubbles that become neighbors of the
growing A bubble will be well approximated by
that which corresponds to normal growth of matrix
bubbles. We therefore approximate the time depen-
dence of w � RA / �RB� by using a mean field
approximation to the evolution of the B bubbles.
We start from,

�ẇ|w� �
d
dt� RA

�RB�� �
1

�RB�2��RB��ṘA|RA� (2)

�RA

d�RB�
dt �.
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Since the A bubble has two B bubbles as neigh-
bors, one has,

�ṘA|RA� � 2MAB�� 1
RB
	�

1
RA
� � 2MAB� a�RB�

(3)

�
1

RA
�,

where the second equality follows from assuming
self-similarity of the matrix bubbles and a �
�RB��1/RB� � �RB� /Rc
1.1927 (cf. Appendix A).

Only weak deviations from self-similarity are
expected for the matrix distribution under the con-
ditions of our study. We do not address, however,
the consequences of a finite number fraction of
abnormal grains, nor its effect on the growth of
the ensemble.

The mean field treatment of the B bubbles out-
lined in Appendix A gives for the critical radius
Ṙc � MBB /2Rc, and hence from the definition of a
we find,

d�RB�
dt

�
MBBa2

2�RB�
. (4)

Substituting equations (3) and (4) into equation
(2) gives,

�ẇ|w� �
MBB

�RB�2G(m,w), (5)

where,

G(m,w) � 2m�a�
1
w��

a2w
2

. (6)

This latter function determines the sign of �ẇ|w�,
and therefore whether the A bubble grows or
shrinks relative to the coarsening B matrix.

For m=1 the function G is everywhere non-posi-
tive. For m�1 there is a range of values of w for
which G is positive, and in particular a stable fixed
point at some w=w+ that corresponds to steady
abnormal growth. Figure 1 shows the phase space
plot of ẇ for a � 1 and m � 1.5. For values of w
from roughly 1 to 4, ẇ � 0 so that a bubble of
type A in this range would grow relative to the
matrix of B bubbles. However, if the ratio w
exceeds 4, the larger bubble would shrink back to
the fixed point. This root of G is a stable fixed

Fig. 1. Phase plot ẇ versus w where w � RA / �RB� is the ratio
between the radius of the A and matrix bubbles. G�0 corre-
sponds to ratio growth, and G�0 otherwise. The plot shows two
fixed points (G=0) at two different values of w. The smallest of
the two is unstable, and the largest, denoted by w+ is stable. This
is the expected operating point of the model and corresponds to
a fixed size ratio between RA and �RB�.

point. The other root w�1 is not stable. The upper
root of G(m, w) is given by,

w+ �
2
a

(m � �m2�m). (7)

The range of relative growth is given by the differ-
ence between the upper and lower roots of equ-
ation (6),

�w �
4
a
�m2�m. (8)

We next compare the results of the mean field
calculation to a direct numerical solution of the set
of equation (1). We only describe the algorithm
briefly, further details can be found in [25]. We
consider a large number of bubbles N=2×106, and
impose periodic boundary conditions such that
RN+1(t)=R1(t). We initially place 20 equally spaced
bubbles of type A in a matrix of N�20 bubbles of
type B. The initial sizes of B bubbles are distrib-
uted according to the mean field distribution
(equation (A9) with �RB�(t � 0) � 5). The initial
radius of the A bubbles is fixed at RA(t � 0) �
3�RB�(t � 0) for the results presented in this sec-

tion. A wide range of initial ratios has been investi-
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gated with identical results. We also set MBB=1. A
lower size cut-off Rmin is introduced for numerical
reasons so that any bubble for which Ri(t)	Rmin

during the course of the calculation is removed,
and the two adjacent bubbles redefined as neigh-
bors. The value of Rmin=0.28 is chosen so that no
bubble can shrink to zero in �t=0.02, the time
discretization used to integrate the system of equa-
tions (1). The averages shown refer only to aver-
ages over the configuration. We have not perfor-
med additional averages over independent initial
conditions as the large number of bubbles con-
sidered appears to be sufficient for the required
statistical accuracy.

Figure 2 shows our results for �RB(t)� as well as
�RA�, where the latter is an average over the 20
bubbles of type A. The average radius of the matrix
bubbles �RB(t)� exhibits power law growth with an
exponent of 1/2, in agreement with the mean field
prediction of Appendix A. The figure also shows
two least square fits to obtain the corresponding
amplitudes of the power laws which are used to
calculate the ratio �RA� / �RB� at long times. Figure
3 shows our numerical results for the ratio of
amplitudes for a range of mobility ratios m, and
compares them with the mean field prediction
given by equation (7).

Fig. 2. Average radius of large bubbles �RA�, and average
radius of the matrix �RB� as a function of time for a mobility
ratio m=1.5. Both A and B bubbles exhibit average parabolic
growth to a very good approximation as shown by the fits (solid
lines). The amplitudes of the term t1/2 are used to estimate the
quantity w+ shown in Fig. 3 for each value of m.

In summary, a mean field treatment of the linear
bubble model with unequal boundary mobilities
predicts that abnormal bubble growth will occur
for m�1 with an ultimate size ratio of w+. The
numerical results confirm power law growth in
time of both A and B average radii, with an
exponent of 1/2. The numerical results for the ulti-
mate size ratio w+ are also in excellent agreement
with the mean field prediction. Clearly, bubble size
correlations that are not taken into account in the
mean field treatment must only introduce small
corrections.

3. Symmetric case with a mobility threshold

We investigate in this section a different mech-
anism leading to abnormal grain growth even in
the absence of any mobility anisotropy. We
hypothesize that if a finite threshold to grain
boundary motion exists, then it is possible that a
large fraction of the matrix grains would remain
immobile, except for those that were sufficiently
larger than their neighbors so that the local driving
force for growth exceeds the given threshold. The
excess energy that is contained in the initial par-
ticle distribution would then be relieved mostly

Fig. 3. (�), values of w+ obtained by numerical integration.
For each value of the mobility ratio m the model equations are
integrated in time, and the value of w+ estimated by fitting par-
abolas to the average radii as shown in Fig. 2. The solid line
is the mean field prediction, equation (7).
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through size increases of the larger grains at the
expense of a largely immobile, high energy,
matrix distribution.

In order to investigate this possibility within the
linear bubble model introduced in Section 2, we
consider an ensemble of like bubbles and introduce
two threshold values for the mobility M in equation
(1). Let �p � 1 /Ri�1/Ri � 1 be the local driving
force associated with the ith link, and �pl � �pu

the low and high driving force thresholds, respect-
ively. We define M � 1 if |�p| � �pu, and M �
0 if |�p| � �pl. We also assume a hysteresis loop

in �pl � |�p| � �pu with M � 0 in the lower
branch and M=1 in the upper branch. Therefore a
link remains closed (M=0) until |�p| across the link
exceeds �pu. Once the link is open (M=1) it
remains open until |�p| falls below �pl. Finally,
when a bubble radius falls below Rmin, so that the
bubble is removed from the distribution, a new link
between the new neighboring bubbles is made, and
its mobility is assigned to be 1 unless |�p| � �pl.

We have used the same numerical algorithm
described in Section 2 to integrate the system of
equation (1) with the mobility thresholds just intro-
duced. In this Section we consider an ensemble of
N=106 identical bubbles, initially distributed
according to the mean field result, equation (A9),
with �R(t � 0)� � 5. Although all bubbles are
identical in the present case, it is convenient for
the sake of the discussion to refer to those that
grow relative to the average as A bubbles, and as
B or matrix bubbles to the rest.

Figure 4 shows our results for the bubble radius
distribution function for a representative set of
parameters �pl=0.05 and �pu=3.0. Even though all
bubbles are identical and follow the mean field dis-
tribution at t=0, the largest bubbles in the initial
ensemble grow while most of the rest remain stag-
nant. This figure shows the radius distribution p(R)
(with the main peak near R � �R� suppressed for
clarity) starting at t=1000 all the way up to t=25000
in increments of 2000 time units. It is clear from
the figure that a small subset of the initial distri-
bution grows as indicated by the successive peaks
of p(R) at large R.

Not all possible combinations of �pl and �pu

result in abnormal growth however. First, there is

Fig. 4. Probability distribution function of particle radius as a
function of R for several times ranging from t=1000 to t=25000
in increments of 2000 time units. The main peak of the distri-
bution has been removed for clarity. Each of the peaks shown
at large R corresponds to a specific time, and they are ordered
from left to right according to increasing times. The distri-
butions show the existence of a small set of large bubbles that
grow to a size much larger than the matrix average.

an obvious upper bound for �pu given the initial
radius distribution, and it corresponds to the driv-
ing force �p between the largest possible bubble
Rmax
8.4 for our initial distribution, and
Rmin
0.28. We find �pmax=1/Rmin�1/Rmax
3.42.
If �pu��pmax no bubble will grow.

For fixed �pu��pmax, a bubble will grow (call
it A) at the expense of a B neighbor when
RA�(1/RB��pu)�1. Therefore for a given initial
distribution the value of �pu determines the range
of radii of bubbles expected to grow. Once a given
A bubble starts growing, it will only stop if it
encounters a bubble B such that 1/RB�1/RA��pl.
Equivalently, whenever an A bubble encounters a
bubble of radius RB=(1/RA+�pl)�1 or larger, growth
will stop. If one further assumes that growth of A
has already occurred for some time so that RA is
sufficiently large, then this condition is approxi-
mately RB
1/�pl independent of RA, a relation that
can be used to define a critical value for growth
�pc

l . If �pl
�pc
l there is a nonzero probability that

a large and growing A bubble will become the
neighbor of a B bubble that is sufficiently large
to stop growth of the A bubble. If the matrix has
remained approximately stagnant, this critical
value can be obtained from Rmax
8.4 as �pc

l �
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1 /Rmax
0.12 (in practice, the numerically
sampled initial condition typically has
Rmax
7.9 or �pc

l 
0.127). This behavior is
observed numerically and is illustrated in Fig. 5.
The figure shows the radius of the largest bubble
in the ensemble as a function of time. The upper
cut-off in all the cases shown is fixed �pu=2.0, and
the figure shows the results for a range of values
of �pl. The value �pl
0.130 marks the transition
between abnormal growth and an ultimately frozen
configuration. Note that the transition is quite sharp
as a function of �pl. Identical numerical results
concerning this transition as well as the same criti-
cal value �pc

l have been obtained for �pu=2.5
and �pu=3.0.

In summary, the upper cut-off �pu determines
the fraction of the ensemble that can grow, and
therefore the degree of stagnation of the matrix.
Once abnormal grain growth has started, the value
of the lower cut-off �pl (and the amount of growth
in the matrix, if any) determines whether abnormal
growth continues or rather the system reaches a
frozen configuration.

We finally mention that while abnormal growth
occurs, the typical radius RA of the large particles
is expected to grow linearly with time. In mean

Fig. 5. Largest bubble radius in the distribution as a function
of time. The upper threshold �pu=2.0 in all the cases shown,
and the values of the lower thresholds are indicated in the fig-
ure. The three largest values of �pl=0.131, 0.150 and 0.200 lead
to an asymptotically stagnant configuration (left axis), whereas
the values �pl=0.100, 0.125 and 0.130 lead to abnormal growth
(right axis).

field, a given A bubble will have two B bubbles
as nearest neighbors and therefore

dRA

dt
� 2MAB� 1

RB

�
1

RA
�. (9)

While bubble A grows successive B neighbors will
shrink to zero and be eliminated from the ensem-
ble. Therefore the growth of A can be estimated
by averaging equation (9) over the distribution of
B, and when the matrix is almost stagnant, over the
initial distribution of bubble radii. In either case,
�1 /RB�, where �� denotes average over the con-
figuration, will be constant (or changing very
slowly compared with the rate of growth of the A
bubble), so that for sufficiently long times
(1 /RA��1/RB�) dRA(t) /dt is approximately con-
stant. This is the dependence shown in Fig. 5 in
the cases in which abnormal grain growth is
observed. The value of the slope of the line RA(t)
versus t can be straightforwardly obtained by com-
puting the average �MAB /RB��MAB /RB� over the
initial distribution of matrix grains.
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Appendix A. A Mean field calculation for a
linear bubble model undergoing normal
growth

Consider a set of identical spherical bubbles
arranged along a line that model a set of neighbor-
ing (identical) grain boundaries. The equation of
motion for their radii is,

dRi

dt
� M� 1

Ri+1

�
1

Ri�1

�
2
Ri
�. (A1)

Average equation (A1) over the ensemble of
bubbles. The left hand side will be simply denoted
by �Ṙi|Ri�, the average growth rate of a particle of
radius Ri. The right hand side is treated at the mean
field level (i.e., neglecting correlations) so that
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�1 /Ri � 1� � �1 /Ri�1� � �1/R�, the average of 1/R
over the set. We now use this latter quantity to
define a time dependent critical radius 1 /Rc �
�1/R� so that bubbles of radius large than Rc will

grown, and shrink otherwise. The mean field
approximation to equation (A1) is,

�Ṙi|Ri� � 2M� 1
Rc

�
1
Ri
�. (A2)

Define now a reduced radius r=R/Rc. Equation
(A2) can also be written as,

Rc�Ṙi|Ri� � 2M�1�
1
r�. (A3)

As is standard in the analysis of steady state sol-
utions for the averages [32], one first defines the
quantity,

y � ṘcRc �
1
2

dR2
c

dt
,

so that equation (A1) can be written as,

R2
c�ṙ|r� � f(r)�ry, (A4)

where we have defined f(r)=2M(1�1/r). This equ-
ation is a particular case of equation (7) in [32].
The nodal curve defined by �ṙ|r� � 0 is thus given
in our case by,

y � 2M�1
r
�

1
r2�. (A5)

According to the classical mean field treatment
of Lifshitz and Slyozov [33], there exists a stable
operating point of the reduced particle size distri-
bution determined by equation (A1) that corre-
sponds to the maximum of the nodal curve y=ym,
so that the distribution of reduced radii r extends
from r=0 to a sharp cutoff r=rm. For our particular
form of the nodal curve, equation (A5), we have
rm=2, and ym=M/2. A statistical self-similar distri-
bution is reached with this value of y, and from its
definition, we have,

dRc

dt
�

M
2Rc

,

that after integration leads to the asymptotic para-
bolic growth law,

R2
c(t)�R2

c(t0) �
M
2

(t�t0),

where t0 is some time within the self-similar regi-
me.

The distribution of reduced particle sizes can
also be computed by using our result for f(r), and
equation (14) in [32]. Define the function F(r) �
t�ṙ|r�, which satisfies in the steady state,

F(r) �
f(r)�rym

2ym

� �
(2�r)2

2r
. (A6)

The general solution of the continuity equation for
n(r,t), the number particle density, is given by
[32],

n(r,t) �
1

F(r)
�[t�
(r)],

where � is an arbitrary function and where,


(r) � 

r

0

dr�

F(r�)
. (A7)

Substitution of equation (A6) into equation (A7)
yields,


(r) /2 � �ln(2�r)�
2

2�r
� ln2 � 1. (A8)

With this result, the normalized probability distri-

bution function P(r) � n(r,t) /
n(r,t)dr is time

independent and given by (equation (20) in [32]),

P(r) �
2e r

(2�r)3e
�2/(2�r), 0	r	rm (A9)

We note that the upper cut-off is rm=2, that the
maximum of P(r) occurs at r � �2, and that the
average reduced radius is given by �r� �
�R� /Rc
1.1927.
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