
W
a
p
w
d
c
d
fl
c
p
R

I

n
o
B
c
p
�
l
s
t
a
r
t
t
b
e

a

©
J

Stability of parallelÕperpendicular domain boundaries in
lamellar block copolymers under oscillatory shear

Zhi-Feng Huanga) and Jorge Viñals

McGill Institute for Advanced Materials, and Department of Physics,
McGill University, Montreal QC H3A 2T8, Canada

(Received 8 May 2006; final revision received 22 October 2006�

Synopsis

e introduce a model constitutive law for the dissipative stress tensor of lamellar phases to
ccount for low frequency and long wavelength flows. Given the uniaxial symmetry of these
hases, we argue that the dissipative stress tensor must be similar to that of nematics/smectics but
ith the local variable being the slowly varying lamellar wave vector. This assumption leads to a
ependence of the effective dynamic viscosity on orientation of the lamellar phase. We then
onsider a model configuration comprising a domain boundary separating laterally unbounded
omains of so called parallel and perpendicularly oriented lamellae in a uniform, oscillatory, shear
ow, and show that the configuration can be hydrodynamically unstable for the constitutive law
hosen. It is argued that this instability and the secondary flows it creates can be used to infer a
ossible mechanism for orientation selection in shear experiments. © 2007 The Society of
heology. �DOI: 10.1122/1.2399088�

. INTRODUCTION

Recent interest in block copolymers arises from their ability to self-assemble at the
anoscale through microphase separation and ordering, leading to mesophases with vari-
us types of symmetries, such as lamellar, cylindrical, or spherical �Fredrickson and
ates �1996�; Larson �1999��. However, when processed by thermal quench or solvent
asting from an isotropic, disordered state, a macroscopic sample manifests itself as a
olycrystalline configuration consisting of locally ordered but randomly oriented domains
or grains�, with the presence of large amount of topological defects and unusual rheo-
ogical properties. The development of the equilibrium state characterized by macro-
copic orientational order, as desired in most of applications, requires unrealistically long
imes; hence, external forces, such as steady or oscillatory shears are usually applied to
ccelerate domain coarsening and induce long range order. However, the mechanisms
esponsible for the response of the copolymer microstructure to the shear, and the selec-
ion of a particular orientation over a macroscopic scale are still poorly understood. In
his paper we focus on the case of imposed oscillatory shear flows on lamellar phases of
lock copolymers and present an orientation selection mechanism originating from an
ffective viscosity contrast between lamellar phases of different orientation. Our study is
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100 Z. HUANG AND J. VIÑALS
ased on a mesoscopic or coarse grained description of a copolymer, but our results are
xpected to apply to other systems with the same symmetry as a microphase separated
lock copolymer.

Schematically, the response of lamellar block copolymers to external shear flow can be
lassified according to three possible uniaxial orientations �see Fig. 1�: parallel �with
amellar planes parallel to the shearing surface�, perpendicular �with lamellae normal
long the vorticity direction of the shear flow�, and transverse �with lamellae normal
irected along the shear�. Solid like or elastic response is expected for lamellar phases of
ransverse orientation, while fluid like or viscous response follows for the other two,
eading to different rheological properties at low shear frequencies as measured experi-

entally �Koppi et al. �1992�; Fredrickson and Bates �1996��. It is known that both
arallel and perpendicular alignments are favored over the transverse one under shear,
nd either of them would be ultimately selected by shear flow, as observed in most shear
ligning experiments �Larson �1999�� �although some of the experimental work indicates
coexistence between parallel and transverse orientations �Pinheiro et al. �1996��, fact

hat might be a result of strong segregation and/or molecular entanglement�. Of particular
nterest, and the least understood, is the selection between parallel and perpendicular
rientations and its dependence on shear frequency � and strain amplitude � �Koppi et al.
1992�; Maring and Wiesner �1997�� as well as temperature �Koppi et al. �1992�; Pinheiro
nd Winey �1998��. Near the order-disorder transition temperature TODT and at low shear
requencies, parallel alignment has been found in poly�ethylene-propylene�-poly-
ethylethylene� �PEP-PEE� samples �Koppi et al. �1992��, while for poly�styrene�-poly-
isoprene� �PS-PI� copolymers, the observed ultimate orientation is parallel �Maring and

iesner �1997�; Leist et al. �1999�� or perpendicular �Patel et al. �1995��, depending on
ample processing details such as thermal history and shear starting time �Larson �1999��.
t higher but still intermediate frequencies �where ���c, with �c the characteristic

requency of polymer chain relaxation dynamics�, the preferred orientation is perpendicu-
ar for both PEP-PEE and PS-PI copolymers under high enough shear strain �Koppi et al.
1992�; Patel et al. �1995�; Maring and Wiesner �1997�; Leist et al. �1999��. At high
requencies ����c� the orientation selected is different for PEP-PEE �perpendicular�
han PS-PI �parallel�.

No basic understanding exists about the mechanisms underlying the above complex
henomenology of orientation selection despite intense theoretical scrutiny in recent
ears. For the frequency range ���c that we are interested in here, the detailed relax-
tion dynamics of the polymer chains within each block are not expected to be important;

FIG. 1. Three lamellar orientations �Parallel, Perpendicular, and Transverse� under shear flow.
hus one adopts a coarse grained, reduced description in terms of the local monomer
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101PARALLEL/PERPENDICULAR DOMAIN STABILITY
ensity as the order parameter �Leibler �1980�; Ohta and Kawasaki �1986�; Fredrickson
nd Helfand �1987��. Most of the early analyses of shear alignment of copolymers relied
n thermal fluctuation effects near the transition point TODT, and focused on the role of
teady shears. A study by Cates and Milner �1989� indicates that in the vicinity of the
rder-disorder transition, steady shear would suppress critical fluctuations in an aniso-
ropic manner, increase the transition temperature, and favor the perpendicular orienta-
ion. Further extension by Fredrickson �1994� by incorporating viscosity contrast between
he microphases has shown that the perpendicular alignment becomes prevalent for high
hear rates, while the parallel one would be favored at low shear rates.

Consideration was given later to situations that are not fluctuation dominated �such as
ell aligned lamellar phases or defect structures�, regarding both stability and defect
ynamics. Stability differences between uniform parallel and perpendicular structures
ubjected to steady shears have been found �Goulian and Milner �1995�� through the
onsideration of anisotropic viscosities in a uniaxial fluid. Recent molecular dynamics
tudies as well as hydrodynamic analyses of the smectic A phase �Soddemann et al.
2004�; Guo �2006�� have shown an undulation instability of parallel lamellae, as well as

transition from fully ordered parallel to perpendicular phases for large enough shear
ate. Regarding the effect of oscillatory shears, an analysis of secondary instabilities
Drolet et al. �1999�; Chen and Viñals �2002�� has shown that the extent of the stability
egion for the perpendicular orientation is always larger than that of the parallel direction,
nd as expected, both much larger than the transverse region. Importantly, the role of
iscosity difference between the polymer blocks �as introduced by Fredrickson �1994� to
ddress shear effects near the transition point� is found to be negligible for the stability of
ell aligned lamellar structures, due to its weak coupling to long wavelength perturba-

ions. In order to address experimental phenomenology described above related to do-
ain coarsening and orientation selection, more recent theoretical efforts have focused on

he dynamic competition between coexisting phases of different orientations. A recent
xample includes the study of a grain boundary separating parallel and transverse lamel-
ar domains under oscillatory shears, and the dependence of the grain boundary velocity
n shear parameters such as frequency and amplitude �Huang et al. �2003�; Huang and
iñals �2004��.

However, we are still far from accounting for the existing experimental phenomenol-
gy on orientation selection, possibly because current approaches and models for block
opolymer viscoelasticity might not be adequate. It is important to note that block co-
olymer viscous response is not Newtonian even in the limit of vanishing frequency �

0, since the Newtonian response would result in the degeneracy of parallel and per-
endicular orientations, contrary to experimental findings. In the theory of Fredrickson
1994�, the Newtonian assumption is used for individual microphases, with different
ewtonian viscosities chosen for different monomers �blocks�. We adopt here an alter-
ative approach appropriate for flows on a scale much larger than the lamellar spacing
nd address the resulting deviation from Newtonian response in the low frequency limit.
e introduce a constitutive law for the viscous stress tensor that explicitly incorporates

he uniaxial character of lamellar phases in analogy with similar treatments of anisotropic
uids �Ericksen �1960�; Leslie �1966�� and nematic and smectic liquid crystals �Forster et
l. �1971�; Martin et al. �1972�; de Gennes and Prost �1993��. As will be shown below,
he resulting effective viscosity depends on lamellar orientation, in qualitative agreement
ith experimental results. Our analysis, however, only applies at low frequencies, well
elow the inverse relaxation time of the polymer chains. In this limit, chain entanglement
ffects that lead to elastic distortion at finite frequencies in parallel or perpendicular

onfigurations �Williams and MacKintosh �1994��, would be absent. Therefore we only
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102 Z. HUANG AND J. VIÑALS
ocus on the viscous mechanism which, on account of the symmetry of lamellar phases,
ominates the competition between parallel and perpendicular orientations at the lowest
requencies. Further discussion of this issue will be presented at the end of this paper.

The ultimate focus of our analysis is the competition among coexisting but differently
riented lamellar domains under oscillatory shears in a polycrystalline sample. Although
e are primarily concerned here with a simplified configuration involving only two

egions of parallel and perpendicular orientations, we use our results to infer a possible
election mechanism in multidomain configurations. We show below that an instability of
ydrodynamic origin occurs at the interface separating parallel and perpendicular lamel-
ae for certain ranges of material and shear parameters. The instability leads to nonuni-
orm secondary flows which are argued to favor the perpendicular orientation in some
anges of parameters. A comparison of our results to existing experimental findings, as
ell as possible tests of our predictions, are also discussed.

I. MODEL

. Governing equations

In the range of low shear frequencies compared to the inverse of the polymer chain
elaxation time, the mesoscopic description of a block copolymer is based on an order
arameter field � representing the variation of local monomer density, and a velocity field
. The evolution of � is governed by a time dependent Ginzburg–Landau equation

��/�t + v · �� = − ��F/�� , �1�

ith F as the coarse grained free energy given by Leibler �1980� and Ohta and Kawasaki
1986�, and � as an Onsager kinetic coefficient. Equation �1� is coupled to the following
quation governing the local velocity field v= �vx ,vy ,vz�:

Re��v/�t + v · �v� = − �p + � · �D, �2�

ith the incompressibility condition � ·v=0. Here p is the pressure field, and Re is the
eynolds number defined as

Re = ��d2/	 �3�

ith � as the shear flow frequency, d as the thickness of copolymer system confined
etween two shear planes, � as the copolymer density, and 	 as a Newtonian viscosity.
he coupling in Eqs. �1� and �2� is complex, especially when the stress tensor �D in Eq.

2� depends on the concentration field �, and when fluid inertia cannot be ignored �i.e., at
onzero Reynolds number�. In order to simplify our analysis, we will first assume that
rder parameter diffusion in Eq. �1� is negligible, so that � is advected by the flow v. At
he end of the analysis, we will discuss possible implications of the flow fields obtained
n order parameter diffusion as given by Eq. �1�.

Equation �2� has been made dimensionless by introducing a length scale d, a time
cale �−1, and by rescaling pressure p→p / �	��. It includes a dissipative stress tensor �D

ppropriate for a phase with uniaxial symmetry. We assume the constitutive equation �in
imensionless form� due to Ericksen �Ericksen �1960�; Leslie �1966�� as originally de-
ived for anisotropic fluids


ij
D = Dij + �1n̂in̂jn̂kn̂lDkl + �56�n̂in̂kDjk + n̂jn̂kDik� , �4�

here Dij =�iv j +� jvi �i , j=x ,y ,z�, but with n̂= �n̂x , n̂y , n̂z� a unit vector defining the slowly

arying local normal of the lamellar phase. Equation �4� is expected to be generic for any
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103PARALLEL/PERPENDICULAR DOMAIN STABILITY
niaxial phase, and thus should apply to the lamellar phases studied here by reason of
ymmetry. There are two independent viscosities �1 and �56 �the Leslie’s coefficients in
he notation used by de Gennes and Prost �1993��, which have been rescaled as

�1 → �1/	 and �56 → �56/	 .

hey obey the relationship �due to the positivity of entropy production �Forster et al.
1971�; Martin et al. �1972���

�56 � − 1 and �1 + 2�56 � − 1. �5�

Equation �4� is justified on symmetry grounds, and we note that a similar constitutive
elation also appears in the viscous stress of other uniaxial phases such as nematic or
mectic liquid crystals �Forster et al. �1971�; Martin et al. �1972�; de Gennes and Prost
1993�; Larson �1999��. However, the viscous stress we assume here for a lamellar block
opolymer does not include all the Leslie viscosities in the Leslie–Ericksen equation used
or nematics which, as compared to Eq. �4�, has two extra terms related to the director
otation rate of the molecules. As in smectics A, the independent degree of freedom
rovided by this rotation of the molecular director is absent in a lamellar phase, for which
he director field has been replaced by the local lamellar normal as indicated in Eq. �4�.

Given a range of possible different viscous stresses, as well as different elastic re-
ponses, function of the order parameter appropriate for each system �the Leibler �Leibler
1980�� or Ohta–Kawasaki �Ohta and Kawasaki �1986�� energy for block copolymers, the
rank–Oseen distortion energy for nematics, and the compression bending energy for
mectics A �de Gennes and Prost �1993�; Larson �1999���, one can anticipate that the
eneral rheological response will vary with the type of uniaxial system under consider-
tion �lamellar block copolymers, nematic and smectic liquid crystals�, even though the
onstitutive relation �4� should apply to all of them. However, in the low frequency limit
n which the details of the molecular relaxation play only a secondary role, a well aligned
amellar block copolymer is expected to belong to the same class as smectics A due to the
nalogy of mechanical properties �Amundson and Helfand �1993�� and of rheological
ehavior �Larson et al. �1993��, though both of them differ from nematics. Hence, the
onfiguration studied below �as introduced in Sec. II B� can also be understood as that of
wo stacked smectics. Note, however, that in the case of a block copolymer the existence
nd stability of such a configuration in the absence of flow follows from the stability of
icrophase separated phases.
In addition to the anisotropic, zero frequency, viscous dissipation just described, we

ote that there exists an additional contribution to dissipation arising from order param-
ter diffusion, as given by the relaxation of the order parameter field � given in Eq. �1�
Ohta et al. �1993��. However, this contribution, although nonzero in the small frequency
imit in which we assume the constitutive law �4�, is neglected in the analysis below as
e do not explicitly consider order parameter relaxation.
For a uniform lamellar phase of parallel orientation �n̂= �0,0 ,1� for the imposed shear

ow along the y direction considered, see Fig. 1�, the equations governing the velocity
eld can be written explicitly as

Re��tvx + v j� jvx� = − �xp + � j
2vx + �56��z

2vx + �x�zvz� ,

Re��tvy + v j� jvy� = − �yp + �2vy + �56��
2vy + �y�zvz� , �6�
j z
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104 Z. HUANG AND J. VIÑALS
Re��tvz + v j� jvz� = − �zp + �1 + �56�� j
2vz + 2��1 + �56��z

2vz,

fter substitution of Eq. �4� into Eq. �2�. For a domain of perpendicular orientation �n̂
�1,0 ,0�� we have instead

Re��tvx + v j� jvx� = − �xp + �1 + �56�� j
2vx + 2��1 + �56��x

2vx,

Re��tvy + v j� jvy� = − �yp + � j
2vy + �56��x

2vy + �x�yvx� , �7�

Re��tvz + v j� jvz� = − �zp + � j
2vz + �56��x

2vz + �x�zvx� .

he Newtonian limit is recovered by setting �1=�56=0. Contrary to previous work on
lock copolymers in the creeping flow approximation �Goulian and Milner �1995�; Fre-
rickson �1994�; Chen and Viñals �2002��, we retain inertial terms in the above equations.
lthough small, they are significant in determining the instabilities discussed below. In

he regime of small Re, both uniform parallel and perpendicular configurations are hy-
rodynamically stable as derived from Eqs. �6� and �7� with a procedure similar to that
hown in Sec. III for the grain boundary configuration.

Our assumption, Eq. �4�, is consistent with experimental determinations of the loss
odulus G� and dynamic viscosity 	� �=G� /�� for uniform phases of different lamellar

rientations. Assuming a shear flow along y �Fig. 1�, we have in the creeping flow limit
e→0 �in dimensional form�

Perpendicular �n̂= �1,0 ,0��: 	�=	;
Parallel �n̂= �0,0 ,1��: 	�=	+�56;
Transverse �n̂= �0,1 ,0��: 	�=	+�56+ �2a2 / �1+a2�2��1 �a=� sin��t�, with � the shear
strain amplitude�; when averaged over period T, it is �	��T=	+�56+ ��2 / �1
+�2�3/2��1.

When �1�0 and �56�0, we obtain 	Transverse� �	Parallel� �	Perpendicular� , in agreement
ith low � experimental results of Koppi et al. �1992� for PEP-PEE diblock copolymers,

nd also with the result of molecular dynamics simulations by Guo �2006� showing
maller viscosity of perpendicular lamellae compared to that of the parallel phase. On the
ther hand, when �56�0, we have 	Parallel� �	Perpendicular� , which is the case in PS-PI
opolymers �Chen and Kornfield �1998�; Gupta et al. �1995��. The viscosity coefficients

1 and �56 could be in principle measured in block copolymers under shear flows, with
xperimental setups possibly similar to those used in nematic liquid crystals �see, e.g.,
ethods reviewed by de Gennes and Prost �1993��.

. Parallel/perpendicular configuration and viscosity contrast

We focus on coexisting lamellar domains of parallel and perpendicular orientations
nder oscillatory shear flows. In real samples these two types of domains may be sepa-
ated by topological defects such as grain boundaries, dislocations, or disclinations. We
tudy here the simplified configuration shown in Fig. 2, comprising two fully ordered,
hree dimensional lamellar domains that are identical except for their orientation and
hickness. The perpendicular domain A is of thickness dA, and the parallel domain B of

B=1−dA �in dimensionless form�, both confined between a pair of shearing planes. The
ystem is uniformly sheared along the y direction; the velocity field v is zero on the lower
oundary plane z=0 and equal to v0=� cos tŷ �or ��d cos��t�ŷ in dimensional form� on

he upper boundary z=1.
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105PARALLEL/PERPENDICULAR DOMAIN STABILITY
Note that in the absence of external shear, a configuration analogous to that in Fig. 2
an exist in lamellar block copolymer samples, but not in liquid crystals with the same
niaxial symmetry, as found in various experiments �Gido et al. �1993�; de Gennes and
rost �1993��. Grain boundaries separating differently oriented domains have been ob-
erved in block copolymers, but are usually unstable �for large angles� in smectic A liquid
rystals. The difference between the two cases can be explained by the difference in their
espective order parameters, the free energy governing distortions, and the relaxation of
he different types of individual molecules. Here we are interested in block copolymer
ystems in which the two domain configuration of Fig. 2 is known to be a stationary
olution of the mesoscopic model, fact that results from the microphase separation.

Under the shear considered here, bulk configurations of either orientation �parallel or
erpendicular� are linearly stable. However, we will show that the configuration of Fig. 2
an become unstable. Note that the effective viscosities of the two domains are different,
s discussed in Sec. II A. Therefore this configuration is analogous to the case of two
uperposed Newtonian fluids of different viscosity, which is known to be unstable under
teady �plane Couette flow �Yih �1967�; Hooper �1985��� or oscillatory �King et al.
1999�� shears. In the present case, however, the viscosity contrast follows from the
rientation dependence of our constitutive law �4�. This contrast between the lamellar
hases can cause interface instability, but with a dependence on shearing conditions and
ystem parameters much more complicated than that of the Newtonian limit.

II. HYDRODYNAMIC STABILITY ANALYSIS

. Base flow

The base state for the configuration of Fig. 2 is a planar interface located at z=dA,
eparating two stable perpendicular �A� and parallel �B� regions. Under uniform shear the
elocity fields are along the y direction: vA,B= �0,VA,B ,0�. In dimensionless form, the

FIG. 2. A parallel/perpendicular configuration subjected to oscillatory shear flow.
elocities are given by
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106 Z. HUANG AND J. VIÑALS
VA = Real��A sinh��1 + i�
Az��eit� ,

�8�
VB = Real��A �sinh��1 + i�
AdA�cosh��1 + i�
B�z − dA��

+ 	m cosh��1 + i�
AdA�sinh��1 + i�
B�z − dA����eit� ,

ith

�A
−1 = sinh��1 + i�
AdA�cosh��1 + i�
BdB� + 	m cosh��1 + i�
AdA�sinh��1 + i�
BdB�

nd the viscosity ratio m=�A /�B �with �A=1 for the perpendicular region and �B=1
�56 for a parallel domain�. Here 
A and 
B are the inverse Stokes layer thicknesses


A,B = 
 Re

2�A,B
�1/2

. �9�

lso for the pressure field, pA= pB= p0. Note that these base state solutions are the same
s those of two superposed Newtonian fluids with different viscosities �A and �B under
scillatory Couette flow �King et al. �1999��.

. Perturbation analysis

For Newtonian fluids or in some viscoelastic models �e.g., Oldroyd B or Maxwell
uids�, the three dimensional stability problem can be reduced to an effective two dimen-
ional one, with fluid stability under shear flows governed by Orr–Sommerfeld type
quations for a single stream function describing two dimensional disturbances. How-
ver, this is not the case discussed here and governed by Eqs. �2� and �4�, as will be seen
elow.

We expand both velocity and pressure fields into the base state given above and
erturbations,

vi
A,B = VA,B�iy + ui

A,B �i = x,y,z�, pA,B = p0 + pA,B� . �10�

hese flow perturbations are accompanied by an undulation of interface, denoted as
�x ,y , t� �see Fig. 2�. The boundary conditions at z=dA+��x ,y , t� include:

continuity of velocity

vA = vB, �11�

ontinuity of tangential stress

��1 − ��x��2�
xz
D − �x��y�
yz

D − �y�
xy
D + �
zz

D − 
xx
D ��x��A

B = 0, �12�

��1 − ��y��2�
yz
D − �x��y�
xz

D − �x�
xy
D + �
zz

D − 
yy
D ��y��A

B = 0, �13�

nd balance of normal stress

�− p + 
zz
D − �x�
xz

D − �y�
yz
D �A

B = − ����x
2� + �y

2�� , �14�

here � �A
B= � �B− � �A, 
ij

D is the dissipative stress tensor, and

�� = �/�	�d� , �15�

ith � the interfacial tension. Also, the kinematic condition at the interface yields

��t + vB · ��� = vz
B. �16�
Assume expansions of the form
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107PARALLEL/PERPENDICULAR DOMAIN STABILITY
ui
A,B = �

qx,qy

ûi
A,B�qx,qy,z,t�exp�i�qxx + qyy�� , �17�

here qx and qy are wave numbers in the x and y directions. Substituting Eq. �17� into
qs. �6� and �7�, retaining terms up to first order in the perturbation amplitudes, and
liminating the pressure, we obtain the equations for the perturbed velocity fields ûz

A,B and
ˆ x

A,B, which govern the system stability when combined with the interfacial boundary
onditions.

For the parallel region B �dA�z�1� we find

Re���t + iqyVB���z
2 − q2�ûz

B − iqy��z
2VB�ûz

B� = �1 + �56���z
2 − q2�2ûz

B − 2�1q2�z
2ûz

B, �18�

Re��t��z
2 − q2�ûx

B + iqy��z
2 − q2��VBûx

B� + 2qxqy��zVB�ûz
B�

= ��z
2 − q2�2ûx

B + �56��z
2 − q2���z

2ûx
B − iqx�zûz

B� − 2iqx�1�z
3ûz

B, �19�

here q2=qx
2+qy

2�, while for the perpendicular region A �0�z�dA� we obtain

Re���t + iqyVA���z
2 − q2�ûz

A − iqy��z
2VA�ûz

A�

= ��z
2 − q2�2ûz

A − �56qx
2��z

2 − q2�ûz
A + iqx�2�1qx

2 − �56��z
2 − q2���zûx

A, �20�

Re��t��z
2 − q2�ûx

A + iqy��z
2 − q2��VAûx

A� + 2qxqy��zVA�ûz
A�

= �1 + �56���z
2 − q2�2ûx

A − 2�1qx
2��z

2 − qy
2�ûx

A, �21�

ith rigid boundary conditions on the planes z=0 and z=1,

ûx
A�0� = ûz

A�0� = �zûx
A�0� = �zûz

A�0� = 0,

�22�
ûx

B�1� = ûz
B�1� = �zûx

B�1� = �zûz
B�1� = 0.

he other velocity component ûy
A,B can be obtained from the incompressibility condition.

ote that the form of Eqs. �18�–�21� is similar to that of the Orr–Sommerfeld equation for
ewtonian fluids; however, in the above equations velocity fields are coupled �except for

x=0�, and thus the three dimensional system here cannot be reduced to an effective two
imensional one described by only one stream function. This irreducibility might be
nderstood from the fact that parallel and perpendicular orientations can be distinguished
nly in three dimensional space, and thus the results of the associated flows that are
rientation dependent should be also three dimensional.

The solutions to the above problem can be found by writing

ûz
A,B�z,t� = e
t�z

A,B�z,t� ,

ûx
A,B�z,t� = e
t�x

A,B�z,t� , �23�

�̂�t� = e
th�t� ,

ith interfacial perturbation �̂ defined by ��x ,y , t�=�qx,qy
�̂�t�exp�i�qxx+qyy��. When qy

0, according to Floquet’s theorem �z,x
A,B and h are periodic in time t with period T �=2�

ere� if the eigenvalue 
 �the Floquet exponent� is simple �Yih �1968��, since coefficients
n Eqs. �18�–�21� that are proportional to the base flow VA,B are periodic in t as shown in
q. �8�. When qy =0, �z,x

A,B and h are time independent, and 
 represents the perturbation

rowth rate. In either case, the real part of 
 determines the system stability.
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. Small Reynolds number limit

The Newtonian viscosity 	 is very large for block copolymers, resulting in small
eynolds numbers �Eq. �3��. For a typical block copolymer of density �
1 g cm−3 and

104–106 P, Re/�
10−4–10−6 s for a thickness d
1 cm. Within a reasonable range
f frequencies � of interest, we have Re�1. The stability problem can be now solved
nalytically by expanding around small Reynolds number

�z,x
A,B�z,t� = ��z,x�0

A,B �z,t� + Re ��z,x�1
A,B �z,t� + ¯ ,

h = h0�t� + Re h1�t� + ¯ , �24�


 = 
0 + Re 
1 + ¯ ,

ith � and h functions defined in Eq. �23�. Note that the order of the rescaled interfacial
ension ��, defined in Eq. �15� is � dependent, and needs to be addressed separately. In
he limit of Re→0 with �� finite, we set ��=�0=O�1�, while for small but finite values
f Reynolds numbers, �� can be expressed as a power of Re. For a typical value of �
1 dyn/cm �the order of � can be estimated from the grain boundary interfacial energy

alculated by self consistent field theory �Matsen �1997�; Netz et al. �1997��� and large 	

104–106 P� appropriate for block copolymers, we have ���
10−4–10−6 s−1. The
ntermediate range of � �around 1 s−1� for typical experiments leads to ���Re �1

O�Re�, whereas for much larger frequencies �� /Re�1. In the following, we present
he solutions of zeroth order �containing �0� and first order �containing �1� in Re, which
re accurate enough to determine the stability behavior for lamellar block copolymers
ith typical Re�1.

. Re\0 †with ��=�0=O„1…‡

In this parameter range, we only need the zeroth order solution for the velocity fields,
iven by �for qx�0�,

�z0
B = B1

�0�eb1z + B2
�0�eb2z + B3

�0�eb3z + B4
�0�eb4z, �25�

�x0
B = C1

�0�er1z + C2
�0�er2z + C3

�0�er3z + C4
�0�er4z +

iqx

q2 �z�z0
B , �26�

�z0
A = A1

�0�ea1z + A2
�0�ea2z + A3

�0�ea3z + A4
�0�ea4z + D1

�0�A1�e
s1z + D2

�0�A2�e
s2z + D3

�0�A3�e
s3z

+ D4
�0�A4�e

s4z, �27�

�x0
A = D1

�0�es1z + D2
�0�es2z + D3

�0�es3z + D4
�0�es4z, �28�

ith

bi
2 =

q2

�B
��B + �1 ± ��1�2�B + �1��1/2� , �29�

si
2 = ��Bq2 + �1qx

2 ± qx
2��1�2�B + �1��1/2�/�B, �30�

Ai� = iqx
 2�1 − �56
2

si
2 − q2 − �56qx

2 −
�B

qx
2 �si �31�
or i=1,2 ,3 ,4, and
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109PARALLEL/PERPENDICULAR DOMAIN STABILITY
r1 = q, r2 = − q, r3 = q/	�B, r4 = − q/	�B, �32�

a1 = q, a2 = − q, a3 = 	q2 + �56qx
2, a4 = − a3. �33�

or qx=0, we have �x0
A =�x0

B =0, �z0
B is also given by Eq. �25�, and

�z0
A = �A1

�0� + A2
�0�z�eqz + �− A1

�0� + A3
�0�z�e−qz. �34�

By using the boundary conditions �22�, we can express the coefficients A3,4
�0�, B3,4

�0�, C3,4
�0�,

nd D3,4
�0� in terms of A1,2

�0�, B1,2
�0�, C1,2

�0�, and D1,2
�0�. The remaining coefficients are obtained by

olving a linear matrix equation

� · A�0� = h�0�h0, �35�

here A�0�= �Aj
�0� ,Bj

�0� ,Cj
�0� ,Dj

�0�� �j=1,2� for qx�0 or �Aj
�0� ,Bj

�0�� for qx=0, � is an 8
8 or 4�4 constant matrix determined by the interfacial conditions �11�–�14�, h0

h0�t� denotes the zeroth order interface perturbation, and the matrix h�0� is a function of

0 and ��zVB�0, with ��zVB�0 the gradient of zeroth order base flow VB
�0�:

VB
�0� = ��0dA + ��z − dA��� cos t, ��zVB�0 = �� cos t , �36�

ith

� = m�0, �0 = �dA + mdB�−1 �m = �A/�B� .

To the lowest order, the kinematic equation �16� yields

�th0 = − �
0 + iqyVB0�h0 + �z0
B �dA� ,

here VB0=VB
�0��z=dA�=�0dA� cos t. From Eqs. �25� and �35�, �z0

B �dA� can be expressed
s

�z0
B �dA� = �fz0,1

B �qx,qy��0 + fz0,2
B �qx,qy���zVB�0�h0, �37�

ith fz0,1
B and fz0,2

B complicated but known functions of wave numbers qx and qy �and also
ependent on parameters �1, �56, and dA�, and hence,

�th0 = �− 
0 + fz0,1
B �qx,qy��0�h0 + �− iqyVB0 + fz0,2

B �qx,qy���zVB�0�h0. �38�

he requirement of periodicity of h0 with time t gives the zeroth order Floquet exponent
note that terms proportional to VB0 and ��zVB�0 are periodic in t�,


0 = fz0,1
B �qx,qy��0. �39�

onsequently, with initial value h0�0�,

h0�t� = h0�0�exp�� dt�− iqyVB0 + fz0,2
B ��zVB�0�� = h0�0�exp��− iqydA + mfz0,2

B ��0� sin t� ,

�40�

nd the velocity fields are obtained from Eqs. �23�, �25�–�28�, and �35�, all proportional
o h0�t�.

. Re™1, ��™1, such that �� /Re=�1=O„1…

In this case, the results of first order expansion need to be addressed. When qx�0, the

olution to O�Re� yields
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110 Z. HUANG AND J. VIÑALS
�z1
B = �

i=1

4

�Bi
�1�ebiz + Bi�zebiz + Bi+4� z2ebiz� , �41�

�x1
B = �

i=1

4

Ci
�1�eriz +

iqx

q2 �z�z1
B + �

i=1

4

Ci�zeriz + �
i=3

4

Ci+2� z2eriz + �
i=1

4

Bi�e
biz, �42�

�z1
A = �

i=1

4

�Ai
�1�eaiz + Di

�1�Ai�e
siz + Ai�zeaiz� + �

i=3

4

Ai+2� z2eaiz

+ �
i=1

4

�Di�e
siz + Di+4� zesiz + Di+8� z2esiz� �43�

�x1
A = �

i=1

4

�Di
�1�esiz + Di�zesiz + Di+4� z2esiz + Ai�e

aiz� , �44�

hile for qx=0, we get �x1
A =�x1

B =0, �z1
B given by Eq. �41�, and

�z1
A = �A1

�1� + A2
�1�z�eqz + �− A1

�1� + A3
�1�z�e−qz + �A1�z2 + A2�z3�eqz + �A3�z2 + A4�z3�e−qz.

�45�

Here exponents bi, ri, ai, si and coefficients Ai� are the same as those in Eqs. �29�–�33�,
nd coefficients Bi�, Bi�, Ci�, Ai�, Ai�, Ai�, Di�, and Di� are complicated functions of zeroth
rder solutions �A�0� ,B�0� ,C�0� ,D�0��. The unknown first order coefficients
A�1� ,B�1� ,C�1� ,D�1�� can be determined by boundary conditions �22� and interfacial con-
itions �11�–�14�, as in the above zeroth order case. Similar to Eq. �35�, the linear matrix
quation governing first order coefficients A�1� �=�Aj

�1� ,Bj
�1� ,Cj

�1� ,Dj
�1�� for qx�0, or

Aj
�1� ,Bj

�1�� for qx=0, with j=1,2� is

� · A�1� = h�1�h0 + h�0�h1, �46�

ith matrices � and h�0� the same as those in Eq. �35�, h1�t� as the first order interface
erturbation, and the matrix h�1� as a complicated function of �1, ��zVB�0, and �t��zVB�0.
hus, the solution of Eq. �46� takes the form

A�1� = ��−1h�1��h0 + �A�0�/h0�h1, �47�

ith A�0� given by Eq. �35�, and accordingly the first order velocity fields can be calcu-
ated with the use of Eqs. �41�–�45�.

The O�Re� result of the kinematic condition �16� is given by

�th1 = − �
0 + iqyVB0�h1 − �
1 + iqyVB1�h0 + �z1
B �dA� , �48�

here VB1=�2� sin t is the first order base flow VB
�1� evaluated at interface z=dA, with

�2 = 1
2 ��1dA − �0dA

3/3�, �1 = ��dA
3 + m2dB

3�/3 + mdAdBd��0
2.

he value of �z1
B �dA� is determined by solution �41�, and from Eq. �47� we find

�z1
B �dA� = �fz1,1

B �qx,qy��1 + fz1,2
B �qx,qy���zVB�0 + fz1,3

B �qx,qy���zVB�0
2

+ fz1,4
B �qx,qy��t��zVB�0�h0 + ��z0

B �dA�/h0�h1, �49�
B B B B
ith �z0�dA� the zeroth order solution as in Eq. �37�, fz1,1= fz0,1, and fz1,i �i=2,3 ,4�
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111PARALLEL/PERPENDICULAR DOMAIN STABILITY
btained from first order solution �47� and functions of �1, �56, and dA. Substituting Eqs.
49�, �36�, and �39� into �48�, and using the condition that h1 is periodic in time, we
btain the first order Floquet exponent


1 = fz1,1
B �qx,qy��1 + 1

2�2�2fz1,3
B �qx,qy� , �50�

nd the corresponding interface perturbation

h1�t� = �h1�0�/h0�0� + fz1,2
B �� sin t + fz1,3

B �2�2�sin 2t�/4 − �iqy�2 + �fz1,4
B ���1 − cos t��h0�t� ,

�51�

ith h0�t� given in Eq. �40�. �It is convenient to choose h1�0�=0 at time t=0 so that the
nitial condition for h is h�t=0�=h0�0�, independent of Re.�

Equation �50� determines stability. The first term of the right-hand side is proportional
o rescaled surface tension and is always negative, indicating the stabilizing effect of
urface tension. The second term, proportional to �2, incorporates the effect of the im-
osed shear flow and tends to destabilize the planar boundary. Detailed results are shown
n the next section.

V. RESULTS

Given the results of the previous section, the stability of the boundary depends on the
wo viscosity coefficients �1 and �56, on the domain thickness dA, the shear strain �, as
ell as the Reynolds number Re and the rescaled surface tension �� �both � dependent�.
ere we focus on three characteristic regimes of �� �all with Re�1 as appropriate for

ypical copolymers�: ��=O�1�, �� /Re=O�1�, and �� /Re�1, corresponding to different
anges of shear frequencies.

. Re\0 and ��=O„1…

The first regime of interest is that of very small Reynolds number �Re→0� and finite
urface tension ���=�0=O�1��, which corresponds to very low frequency � according to
he analysis at the beginning of Sec. III C. The Floquet exponent �or the perturbation
rowth rate� is then well approximated by zeroth order result 
0 in Eq. �39�. Our calcu-
ations give 
0�0 �i.e., fz0,1

B �qx ,qy��0� for all wave numbers qx and qy; thus, the system
s always stable, resulting in the coexistence of parallel and perpendicular domains under
hear flow. The stabilizing effect of surface tension dominates, and 
0��0 as shown in
q. �39�.

. Re™1, ��™1, and �� /Re=O„1…

In an intermediate range of �, �� is of order O�Re� as discussed in Sec. III C. The
erturbation growth rate can be written as 
=Re 
1 with the first order exponent 
1 given
n Eq. �50�. Note that fz1,1

B = fz0,1
B �0 whereas the maximum value of fz1,3

B can be positive
epending on system parameters �1, �56, and dA, leading to a competition between the
tabilizing effect of surface tension �proportional to �1=�� /Re� and the destabilizing
nfluence of the imposed shear �proportional to �2�. Note that �1 can also be expressed
rom Eqs. �15� and �3� as

�1 = 1/We = ��/��d3���−2 � ��−2, �52�

ith We as the Weber number and �=� / ��d3�. Thus, a system would be more unstable

or larger shear strain � and frequency �.
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112 Z. HUANG AND J. VIÑALS
To examine the onset of instability, we have carried out a numerical evaluation of 

or a range of typical system parameters. For a typical copolymer system, �=1 g cm−3,
=1 dyn/cm, 	=104 P, and d=1 cm, with Reynolds number Re= �10−4 s�� and rescaled

urface tension ��= �10−4 s−1� /�. The two dimensionless viscosities are set as: �1=1, and

56=−0.9 �corresponding to an effective viscosity �B=1/10 and thus a ratio m
�A /�B=10� or �56=9 �corresponding to �B=10 and m=1/10�.

Figure 3 shows the growth rate 
1=
 /Re as a function of wave numbers �qx ,qy�, for

56=−0.9 and two different domain thicknesses dA=1/3 �with dA /dB=1/2� and 2/3
with dA /dB=2�. The most dangerous wave numbers are near qx=0, as can be seen in Fig.
�a�. The figure shows that the maximum growth rate �
max=3.4�10−4Re� occurs at

x
max=0 and qy

max= ±0.89. Results for the larger ratio dA /dB=2 are shown in Fig. 3�b�,
ndicating that the system is stable. When �56=9, we obtain opposite stability results: a
mall ratio dA /dB=1/2 corresponds to a stable configuration, whereas instability occurs
or dA /dB=2, with 
max also found at qx=0. It is also interesting to note that at dA /dB

1, instability occurs for all values of �56 �i.e., for all effective viscosity contrast�. Figure
shows the maximum growth rate for �=1 and 0.5, �=5 and 10 �s−1� �corresponding to

IG. 3. Growth rate 
 /Re as a function of wave numbers qx and qy, for �1=1, �56=−0.9, �=1, Re=5
10−4, as well as �a� dA=1/3 �with dA /dB=1/2�, with maximum growth rate 
max=3.4�10−4 Re found at

max= �0, ±0.89�, and �b� dA=2/3 �with dA /dB=2�, indicating that 
�0 at all wave vectors.
FIG. 4. Growth rate 
 /Re versus qy at qx=0 for dA /dB=1 and different values of �, �, and �56.
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113PARALLEL/PERPENDICULAR DOMAIN STABILITY
e=5�10−4 and 10−3�, and two different viscosities �56=−0.9 and 9. As the shear strain
mplitude � or frequency � decreases, the range of unstable wave numbers also de-
reases. This observation motivates the analysis of long wave solutions presented in Sec.
V D.

The perturbed velocity fields are defined by Eq. �23�. The velocity associated with the
ost unstable wave vector �qx=0,qy �0� is given by

ûx
max = 0 and ûz

max = �zexp�
maxt� ,

ith �z determined by Eqs. �25�, �34�, �41�, and �45�. Results for �z at the most unstable
ave numbers are shown in Fig. 5 �at t=T�, and in Fig. 6 �at the interface z=dA�, for

1=1, �=1, Re=5�10−4 �with �=5 s−1�, as well as for a variety of domain thickness
atios dA /dB and different viscosity coefficients �56=−0.9 and 9. The corresponding
nterfacial perturbation h�t�, defined in Eq. �23�, is shown in Fig. 7. Although the velocity
elds near the interface are sensitive to the viscosity contrast and thickness ratios �e.g.,

IG. 5. Spatial dependence of the velocity amplitude �z at time t=T �=2��, at the most unstable wave vectors
qx

max=0,qy
max� given by Figs. 3 and 4. All the curves here correspond to unstable configuration with 
�0, with

arameters Re=5�10−4, �1=1, and �=1. �a� �56=−0.9 ��B=1/10�, for dA /dB=1, 1 /2, and 1/3; �b� �56=9
�B=10�, for dA /dB=1, 2, and 3. The locations of domain interface are indicated by dotted lines.
he temporal dependence of �z for �B=1/10 �with �56=−0.9� and �B=10 ��56=9� is out



o
i
p
t
p
s

C

�
l
fi

F
d

F
o

114 Z. HUANG AND J. VIÑALS
f phase at the interface, as shown in Fig. 6�, the qualitative results are the same: The
nstability develops around the interface, and relaxes into the perpendicular �A� and
arallel �B� bulk regions. Importantly, the perturbation flow is directed along the z direc-
ion �and y, due to the incompressibility condition�, and hence, it is transverse to the
arallel lamellae. If the monomer density order parameter were allowed to diffuse, this
econdary flow would result in the distortion of parallel lamellae, but not perpendicular.

. Re™1 and �� /Re™1

In the limit �� /Re�1, which corresponds to small surface tension � or large enough
, the effect of the surface tension is negligible at least for solutions up to first order. This

eads to �0=�1=0 in the solutions of Sec. III. Thus 
0=0, and according to Eq. �50� the
rst order growth rate is

IG. 6. Temporal dependence of the velocity amplitude �z over a period T at the interface z=dA, with

A /dB=1, and other parameters the same as those of Fig. 5.

IG. 7. Temporal dependence of the interface perturbation h over a period T, with parameters the same as those

f Fig. 6.
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115PARALLEL/PERPENDICULAR DOMAIN STABILITY

1 = 1
2�2�2fz1,3

B �qx,qy� . �53�

he function fz1,3
B �qx ,qy� can be positive, and note that it is independent of shear param-

ters � and �. The growth rate is proportional to �2.
A typical profile for the velocity functions �x and �z is shown in Fig. 8. In contrast

ith the regime discussed in Sec. IV B ��� /Re=�1=O�1��, the most unstable wave
umbers qx

max and qy
max here are both nonzero. As shown in Fig. 8 and unlike the limit

iscussed in Sec. IV B, perturbed velocity fields develop along both x and z directions
i.e., �x ,�z�0�, leading to the distortion of both parallel and perpendicular regions.
herefore, although the parallel/perpendicular interface will move in response to the
ydrodynamic instability and the resulting secondary flows, the direction of motion and,
ence, the dominant lamellar orientation cannot be deduced from this analysis.

. Long wave solutions

The calculations presented so far show that in the limit Re�1, ���1, with �� /Re
O�1�, the wave numbers associated with instability lie at qx=0 and small qy, as seen in
ig. 3. Thus, we discuss next a long wave approximation to the stability analysis. We
xpand the solutions of Sec. III C in powers of q �=qy here�, and find that

fz1,1
B = fz0,1

B = − f0q4 + O�q6� , �54�

ith

f0 =
1

3�
dA

3dB
3�1 + �56dA� � 0, �55�

nd

fz1,3
B = f1q2 + f2q4 + O�q6� , �56�

IG. 8. Velocity amplitudes �x and �z �at time t=T� as a function of position z, at the most unstable wave
umbers �qx

max,qy
max�= �3.2,6.95�. The parameters are chosen as �56=−0.9, dA /dB=1, �=1, and Re=10−2 �cor-

esponding to large �=100 s−1�.
here
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116 Z. HUANG AND J. VIÑALS
f1 =
1

60�3dA
2dB

2�56f11f12, �57�

ith

f11 = �1 + �56dA
2�2 + 4�56dA

2dB�1 + �56dA� � 0,

�58�
f12 = �dA − dB��dA

2 + dB
2� + dA

8�56
4 + 2dA

5�dAdB
2 + 2�dA − dB���56

3 + 2dA
2�3�dA − dB�2

+ �1 − dA
2�2 − 2dB

3�1 + dB�2��56
2 + 2dA�2�dA − dB�2 + 3dAdB

2 − 4�1 + dA�dB
4��56,

nd f2 a complicated but known function of dA, �1, and �56. Here � is defined as

� = �dB
2 − �BdA

2�2 + 4�BdAdB � 0. �59�

herefore, the first order Floquet exponent �50� can be rewritten as


1 = �fz1,1
B �−2 + 1

2�2fz1,3
B �2 = 1

2�2f1�2q2 − ��f0�−2 − 1
2�2f2�2�q4. �60�

hus, when f1�0 at small q we have 
1�0 for all � and �. From the definition of f1, we
ote that stability is determined by the sign of �56f12 �Eqs. �57� and �58�� which is itself
function of �56 and dA only, and independent of shear parameters � and �. The calcu-

ated stability diagram of dA /dB vs �B �=1+�56� is shown in Fig. 9. The diagram is
ymmetric with respect to dA /dB→ �dA /dB�−1 and �B→�B

−1. �Note that at dA /dB=1 �i.e.,

A=1/2� instability is found for all values of �B, in agreement with the numerical results
n Sec. IV B.� This diagram reveals the analog of the thin layer effect in the interfacial
nstability caused by viscosity stratification of two superposed Newtonian fluids �Hooper
1985��. When the thinner domain has the larger effective viscosity, instability occurs.
nlike the Newtonian case, here the effective viscosity contrast is caused by the orien-

ation dependence of the dissipative part of the stress tensor. Note the for a polycrystal-
ine sample, although the value of �56 ��B� would be determined by the specific copoly-

IG. 9. Stability diagram of thickness ratio dA /dB versus viscosity contrast �B �=m−1�. For the unstable regime
ith 
�0, the perpendicular phase is selected over the parallel one, while the stability leads to the coexistence
f parallel and perpendicular orientations.
er considered, the thickness ratio dA /dB would vary from domain to domain. Thus,
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117PARALLEL/PERPENDICULAR DOMAIN STABILITY
ccording to Fig. 9, the development of the instability would differ in different portions
f a large sample.

The largest perturbation growth rate can be obtained from Eq. �60�. When �f0�−2

1 � 2�2f2�2�0, or

�2�2 �
2�f0

�2f2
, �61�

e obtain


1
max =

�4f1
2

16��f0 − �2f2�2�2/2�
�4�2,

�62�

qmax =
1

2
�
 f1

�f0 − �2f2�2�2/2
�1/2

�� .

hese formulae show that both maximum growth rate and most unstable wave number
ncrease with shear amplitude � and frequency �, in agreement with the numerical results
f Sec. IV B and Fig. 4.

. DISCUSSION

The analysis given is purely of hydrodynamic nature and makes no reference to the
esponse of the lamellar phases to the flows considered. The fully coupled problem is
ery complex, but the flow analysis conducted here can be used to argue indirectly about
rientation selection. The flow perturbation u will advect the lamellae through the advec-
ion term u ·�� in Eq. �1�, with � the monomer concentration. Parallel lamellae are

arginal to velocity fields along the x and y directions since these flows are parallel to the
lanes of constant �, but will be distorted by flows in the z direction �Fig. 2�. Conversely,
erpendicular lamellae are unaffected by flows along either z or y, but distorted by those
long the x direction. The instability mode given in Sec. IV B for �� /Re=O�1� which
ight be of most experimental relevance �if we estimate the order of surface tension �

rom the grain boundary interfacial energy �Matsen �1997�; Netz et al. �1997��, as dis-
ussed in Sec. III C� and hence is our focus here, is associated with secondary flows with

x=0 and uz�0; thus parallel lamellae are compressed or expanded, while the lamellar
onfiguration in the perpendicular region remains unaffected due to the absence of modu-
ation along its normal. Distortion of parallel lamellae would create a relative imbalance
f free energy F in the two domains: FParallel�FPerpendicular. This free energy imbalance
ould be relieved through the motion of the domain boundary towards the distorted
arallel region. Therefore we would anticipate that a consequence of the shear flow and
he resulting interfacial instabilities would be the growth of the perpendicular region at
he expense of the parallel one.

Therefore, the stability diagram of Fig. 9 can be used to indirectly address orientation
election, suggesting coexistence of parallel and perpendicular domains �in the hydrody-
amically stable regime� or the selection of the perpendicular orientation �in the unstable
egime�. It would be interesting to examine an experimental system composed of only
wo domains of parallel and perpendicular orientations, for verifying our predictions such
s the change of instability with domain thickness ratio dA /dB and viscosity contrast �B,
easuring the viscosity contrast from the location of the instability boundary, and further
tudying the domain evolution beyond the instability stage.
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118 Z. HUANG AND J. VIÑALS
Polycrystalline samples of the type present in all shear aligning experiments involve a
istribution of grain sizes and orientations. We address next how the results just obtained
ay provide a criterion for orientation selection under certain circumstances. Experi-
ents �Gido et al. �1993�; Qiao and Winey �2000�� reveal the presence of grain bound-

ries separating domains of different orientations, and we argue that the motion of these
rain boundaries under the imposed shear affects the selection process. This mechanism
s different than other suggestions in the literature involving grain rotation, domain in-
tabilities, or other effects of microscopic origin that are related to block architecture
looping and bridging� �Wu et al. �2004�; Wu et al. �2005��.

Earlier research has shown that boundaries of domains with a lamellar normal that has
component along the transverse direction will move, leading to a decrease in the size of

he domain. The shear increases the free energy density of the transverse domain and
riginates diffusive monomer redistribution at the boundary to reduce the extent of the
hase of higher free energy �Huang et al. �2003�; Huang and Viñals �2004��. Since the
ree energy of neither parallel nor perpendicular lamellae is affected by the shear �at least
n the low frequency range of ���c in which the Leibler �Leibler �1980�� or Ohta–
awasaki �Ohta and Kawasaki �1986�� free energies are a good approximation�, one can
enerally expect grain boundaries to move toward the transverse phase. Our interest in
his paper is therefore in possible physical mechanisms that would account for the motion
f boundaries separating domains of parallel and perpendicular orientations. According to
ig. 9, if �56�0 �as might be appropriate, for example, for PEP-PEE diblocks� an

nitially large perpendicular domain �A� adjacent to a smaller parallel domain �B� �so that

A /dB is large� would grow even larger. Although our analysis does not hold beyond the
inear stage of boundary deformation, it seems unlikely that any nonlinearity could satu-
ate boundary distortion and lead to a stationary but corrugated boundary. Therefore we
ould predict that the perpendicular orientation will be selected for �56�0. If, on the
ther hand, �56�0 �as would be appropriate, for example, for PS-PI diblocks�, the
ituation is more complicated. Instability now occurs for dA /dB small, leading to growth
f the perpendicular domain and, hence, to an increase of the characteristic scale dA. To
he extent that, in a sufficiently large system the boundary remains quasi planar, the
tability boundary in Fig. 9 would be reached. Once inside the stable region, any remain-
ng curved boundaries would be expected to relax to planarity �driven by excess free
nergy reduction�, as the planar boundary would no longer be unstable under shear.
herefore, in the case of �56�0, we would anticipate coexistence of parallel and per-
endicular domains, or perhaps a dependence of the selected orientation on initial con-
ition or sample history.

We finally examine the dependence of the largest growth rate 
max on the shear
mplitude � and angular frequency � near the onset of instability. Note that the stability
oundaries of Fig. 9 are independent of both parameters, but near onset where 

O�Re��1, experiments might detect an effective stability boundary located at the

oint on which 1/
max is of the order of the observation time of the experiment. From Eq.
3� we have


1
max = 
max/Re = 
max	/��d2�� ,

nd then given Eq. �62� we find that

�2�2
�2� +
8f2	
max

�2f1
2�d2 � =

16�f0	
max

�4f1
2�d2 , �63�
ith associated wave number
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qmax = 
 	
max

�f0�d2�1/4

�1/4. �64�

sually �2��8 � f2 �	
max/ ��2f1
2�d2� for very small value of 
max, and thus we obtain


max =
�d2�4f1

2

16�f0	
�4�3, �65�

hich scales as ��3/4 for a given block copolymer. Therefore, the line of constant 
max is
iven by ��3/4=const. This result is consistent with our numerical evaluation of solutions
n Sec. III C 2, as shown in Fig. 10 for two cases of �56=−0.9 �circles� and 9 �diamonds�.
ote that the data in the log-log plot of the inset is well fitted to a straight line with slope
3/4. For small enough 
max �e.g., =10−11 as in Fig. 10�, which is the order of the inverse
xperimental observation time, this line can correspond to an effective stability boundary
bove which the instability becomes experimentally observable.

To our knowledge, the only experimental determination in �-� space of the regions in
hich parallel or perpendicular lamellae are selected has been carried out for PS-PI block

opolymers �Maring and Wiesner �1997�; Leist et al. �1999��. It has been found that the
ine separating regions of perpendicular and parallel orientations was approximately
iven by ��=const. No results for copolymers with �56�0 �such as PEP-PEE� are
vailable. Given that our predictions of effective boundary only apply to this case, it
ould be of interest to repeat the experiments for this type of copolymers.
The above discussion corresponds to a range of shear frequency so that �� /Re

O�1�. For very low frequencies so that Re→0 while ��=O�1�, a parallel/perpendicular
onfiguration is always stable due to the dominant effect of surface tension �as given in
ec. IV A�.

In combination with the stability of the lowest frequencies, our results in Fig. 10
ndicate that the perpendicular orientation would be observed for large enough � and �.
therwise, both parallel and perpendicular lamellae would coexist, and the selection

IG. 10. Lines of constant 
max �=10−11� for dA /dB=1. Symbols �circles and diamonds� are from numerical
alculations, while the solid lines in the inset follow the scaling given by the long wave approximation in Eq.
65�, that is, ��3/4=const.
etween them would depend on experimental details such as quenched or annealed his-
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120 Z. HUANG AND J. VIÑALS
ory of the sample and the starting time of the shear, as found in PS-PI copolymer
amples �Patel et al. �1995�; Maring and Wiesner �1997�; Larson �1999�� and cannot be
ddressed by the stability analysis here.

We have adopted an important simplification in the analysis above, namely that hy-
rodynamic flow and elastic copolymer response to lamellar distortion can be decoupled
n the configuration examined. Within the mesoscopic description of Leibler �Leibler
1980�� and Ohta/Kawasaki �Ohta and Kawasaki �1986�� that we have followed, the
ecoupling results from the fact that at leading order v ·��=0 throughout the entire
ystem for the particular parallel/perpendicular configuration studied. It is known, how-
ver, that even in the parallel or perpendicular configurations entanglement effects can
ead to normal stresses at finite frequencies, to lamellar wavelength reduction, and to
ossible undulational instabilities �Williams and MacKintosh �1994��. These effects are
ompletely absent in this description, consistent with its assumption that the frequencies
xamined are low compared with inverse chain relaxation times.

Even within the mesoscopic-scale and low-frequency description employed, flow and
lastic copolymer response are generally coupled when lamellar normals have a projec-
ion along the transverse direction. The resulting elastic effects have been addressed by
mundson and Helfand �1993� and Wang �1994� concerning mechanical properties and

nstabilities, and by Drolet et al. �1999� and Huang et al. �2003� concerning the response
o oscillatory shears. In particular, Huang et al. �2003� showed that a boundary separating
arallel and transverse orientations always moves towards the transverse region when
heared precisely because of the extra elastic energy stored in that region. A similar
rgument can be made for boundaries separating transverse and perpendicular lamellae.
hese analyses, however, cannot discriminate between parallel and perpendicular regions,
s both are marginal with respect to the shear within the mesoscopic description adopted.
iven that experiments addressing shear induced ordering usually concern parallel and
erpendicular orientations and transitions between the two, and that those transitions are
bserved in a range of low shear frequencies for which the mesoscopic models of Leibler
nd Ohta/Kawasaki should be applicable, we have focused on a possible mechanism than
an contribute to orientation selection absent elastic effects. Extension of our results to
nite frequencies is currently under way.

Further extension of our study would involve the examination of domain coarsening
eyond the initial instability stage, particularly the role of nonlinearities on system evo-
ution, or the effect of domain correlations and competition in a poly domain sample.
his would involve the numerical solution of the coupled order parameter �i.e., the
opolymer concentration field� dynamics and the hydrodynamic Eq. �2� with the consti-
utive law, as described at the beginning of Sec. II A. Previous efforts involving direct
umerical simulations of block copolymer ordering that allow for hydrodynamic coupling
re limited �Maurits et al. �1998�; Xu et al. �2005�; Hall et al. �2006��. In addition, the
nterpretation of the results is further complicated by the small aspect ratio of the systems
mployed in the simulations �the aspect ratio is the ratio between the lateral dimension of
he system and the lamellar wavelength�. The constitutive law that we have introduced
or the dissipative stress tensor will further complicate any numerical treatment. In fact,
t is likely that in order to address large enough aspect ratios, simulations of simplified,
wo domain configuration analogous to that studied here �Fig. 2� would be a good starting
oint for our understanding of orientation selection in polycrystalline samples.

I. SUMMARY

The assumption of a dissipative part of the stress tensor 
ij
D which is compatible with
he uniaxial symmetry of a lamellar phase leads to an effective dynamic viscosity that
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epends on the orientation of the lamellae relative to the shear. We expect this functional
orm of 
ij

D to capture the low frequency and long wavelength response to the lamellar
hase, without making reference to the microscopic origin of the viscosity coefficients.
e have explored here the consequence of this assumption on a configuration comprising

arallel and perpendicular domains. Experimental evidence suggests that these two ori-
ntations are prevalent in shear aligning experiments, and we believe that the type of
heology proposed here may contribute to our understanding of the orientation selected as
function of the parameters of the block and of the shear.
In particular, we have shown that an oscillatory shear imposed on a block copolymer

onfiguration comprising lamellar domains of parallel and perpendicular orientations can
ause instability at the domain interface. The instability manifests itself by finite wave
umber undulations of the velocity field along the direction normal to parallel lamellae,
hich we argue would ultimately result in the growth of the perpendicular region at the

xpense of the parallel one. Our results indicate that the instability, and the selection of
he perpendicular orientation, occur at an intermediate frequency range of small but finite
alue of Re, and depend on both viscosity contrast and domain thickness ratio. This
nstability is analogous to the thin layer effect in stratified fluids; that is, the system is
nstable when the thinner domain is more viscous. On the other hand, at very low
requencies �Re→0�, coexistence of parallel and perpendicular lamellae is found as
mplied by hydrodynamic stability. Also, in contrast to previous studies, the selection
echanism between parallel and perpendicular orientations introduced here is of dynami-

al nature, and an indirect consequence of the secondary flows generated by a hydrody-
amic instability of the two domain interface. It would be interesting to check our pre-
ictions experimentally in a test configuration of block copolymers as we have discussed
ere. Note that the frequency range studied here is ���c in which polymer chains
emain relaxed and hence the details of the individual blocks are not important. Thus our
esults should be independent of number and type of blocks in a copolymer.
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