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I. CONTINUOUS LIMIT

The Fokker-Planck equation of an Ornstein-Uhlenbeck process is
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where p and A\ are constants and where D is the intensity of the noise. The Langevin

equation associated to Eq. (1) is
da(t) = =Nz — p)dt +dW (t) , (2)

where W (t) is a Weiner process with mean (W (¢)) = 0 and variance (W?(t)) = 2Dt. The

stationary solution of Eq. (1) is
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Equation (2) is understood under the Ito interpretation of stochastic calculus. It is integrated

numerically by using a first order method,
2t + At) = 2(t) — {Mz(t) — pl} AL+ (1) , (4)

where 7(t) is a gaussian white noise with mean (n(t)) = 0 and correlation (n(t)n(t')) =

2D6(t — ).

II. DISCRETE LIMIT

Consider the following chemical reactions in order to model the Ornstein-Uhlenbeck pro-
cess:
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Using the Law of Mass Action, the Master equation corresponding to the above network is,

(7, 1) = OB = 1] {p(r, )} + k- [E — 1] {r(r,0)} ©)

where (2 is a coarse-grained variable with unit of volume, E is the raising operator E,, f(n) =
f(n+ 1), and where k, and k_ are reaction rates. We use the van Kampen inverse system

size method to solve this equation. Make the change of variable
r(t) = Qy(t) + Q72¢(1) (7)

2



where the solution r(t) is splited into a deterministic part y(¢) and a fluctuating part ((t)

around the stationary solution. The operator E is expanded so that
E=1+Q"20,+(20)7 07> + O(Q*?) . (8)
Substitute in Eq. (6),

O 25011 = Qky [—Q720, + (2Q) 'O T+ k- [Q7/20, + (2Q) 7' 07] x

(9)
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Collecting terms that are factor of Q'/2? leads to a deterministic equation,
§(t) = ks — ky(t) (10)

This equation has one fixed point located at y* = k, /k_. Collect terms that are factors of

QY leads to a Fokker-Planck equation,
OII(C, 1) = k-0 {CTL(¢, )} + 27 [ky + y(8)h-] OZTI(C, 1) - (11)

In the stationary regime, trajectories converge to y* = ki /k_. Evaluating Eq. (11) at the
fixed point leads to

OII(C,t) = —k-0c {CIL(¢, )} + k1 OFII(C, t) - (12)
Associated to Eq. (12) is a Langevin equation,
C(t) = k-C(t) + VEn(t) (13)

where 7(t) is a Gaussian white noise with mean 0 and correlation (n(t)n(t')) = 26(t — t').
Equation (13) represents an Ornstein-Uhlenbeck process. The stationary solution of Eq.

(12) is a Gaussian distribution,
k_
IL,(¢) = NeTT ¢ (14)
Time evolution of the n'™ moment can also be found using Eq. (12),

0/(C"(8)) = —nk_(C"(1)) +n(n — Dk (C"7(1)) - (15)

The stationary moments are thus,

()5 = ki/k_, (17)



The solution of the linear noise approximation is a Gaussian distribution with mean and
variance,

* k
(r)s = Qu* + QY2(C), = Q7F

((r7)s = Q(C))s =

ps(r) =4 / 27:?2_]{4@_%[6_(%)]2 | (19>

To model extrinsic noise, we would like the network defined by Eq. (5) to act as multiplicative
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leading to

noise given that the species r is coupled to another reactant. Note that Egs. (3) and (19)
are identical if
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In order to compare the theoretical predictions of Egs. (3) and (19), note that the domain
of the distribution in the discrete limit has to be redefine according to z = r/Q. The

distribution has to be normalized accordingly.
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FIG. 1: Comparison of various probability densities. We show result from the simulation of the
chemical reactions Eq. (5) with the Gillespie algorithm (o). The stationary probability distribution
function ps(r) as a function of r is obtained with Q = 20, k4 = 2, and k_ = 1. This distribution is
compared to the stationary density ps(n) as a function of n calculated from a first order numerical
algorithm (x) with A = 1 and D = 0.1. The two distributions are compared to the analytical
prediction (solid curve), Egs. (3) and (19).



