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I. CONTINUOUS LIMIT

The Fokker-Planck equation of an Ornstein-Uhlenbeck process is

∂

∂t
p(x, t) = λ

∂

∂x
[(x − µ)p(x, t)] + D

∂2

∂x2
p(x, t) , (1)

where µ and λ are constants and where D is the intensity of the noise. The Langevin

equation associated to Eq. (1) is

dx(t) = −λ(x − µ)dt + dW (t) , (2)

where W (t) is a Weiner process with mean 〈W (t)〉 = 0 and variance 〈W 2(t)〉 = 2Dt. The

stationary solution of Eq. (1) is

ps(x) =

√

λ

2πD
exp

[

−
λ

2D
(x − µ)2

]

. (3)

Equation (2) is understood under the Ito interpretation of stochastic calculus. It is integrated

numerically by using a first order method,

x(t + ∆t) = x(t) − {λ[x(t) − µ]}∆t + η(t) , (4)

where η(t) is a gaussian white noise with mean 〈η(t)〉 = 0 and correlation 〈η(t)η(t′)〉 =

2Dδ(t − t′).

II. DISCRETE LIMIT

Consider the following chemical reactions in order to model the Ornstein-Uhlenbeck pro-

cess:

∅
k+

−→ r r
k
−

−→ ∅ . (5)

Using the Law of Mass Action, the Master equation corresponding to the above network is,

∂

∂t
p(r, t) = Ωk+[E−1 − 1] {p(r, t)} + k− [E − 1] {rp(r, t)} , (6)

where Ω is a coarse-grained variable with unit of volume, E is the raising operator Enf(n) =

f(n + 1), and where k+ and k− are reaction rates. We use the van Kampen inverse system

size method to solve this equation. Make the change of variable

r(t) = Ωy(t) + Ω1/2ζ(t) , (7)
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where the solution r(t) is splited into a deterministic part y(t) and a fluctuating part ζ(t)

around the stationary solution. The operator E is expanded so that

E = 1 + Ω−1/2∂ζ + (2Ω)−1∂−2

ζ + O(Ω−3/2) . (8)

Substitute in Eq. (6),

∂tΠ−Ω1/2ẏ∂ζΠ = Ωk+

[

−Ω−1/2∂ζ + (2Ω)−1∂2

ζ

]

Π + k−

[

Ω−1/2∂ζ + (2Ω)−1∂2

ζ

]

×
{(

Ωy + Ω1/2ζ
)

Π
}

.
(9)

Collecting terms that are factor of Ω1/2 leads to a deterministic equation,

ẏ(t) = k+ − k−y(t) . (10)

This equation has one fixed point located at y∗ = k+/k−. Collect terms that are factors of

Ω0 leads to a Fokker-Planck equation,

∂tΠ(ζ, t) = −k−∂ζ {ζΠ(ζ, t)} + 2−1 [k+ + y(t)k−] ∂2

ζ Π(ζ, t) . (11)

In the stationary regime, trajectories converge to y∗ = k+/k−. Evaluating Eq. (11) at the

fixed point leads to

∂tΠ(ζ, t) = −k−∂ζ {ζΠ(ζ, t)}+ k+∂2

ζ Π(ζ, t) . (12)

Associated to Eq. (12) is a Langevin equation,

ζ̇(t) = k−ζ(t) +
√

k+η(t) , (13)

where η(t) is a Gaussian white noise with mean 0 and correlation 〈η(t)η(t′)〉 = 2δ(t − t′).

Equation (13) represents an Ornstein-Uhlenbeck process. The stationary solution of Eq.

(12) is a Gaussian distribution,

Πs(ζ) = N e
k
−

2k+
ζ2

. (14)

Time evolution of the nth moment can also be found using Eq. (12),

∂t〈ζ
n(t)〉 = −nk−〈ζ

n(t)〉 + n(n − 1)k+〈ζ
n−2(t)〉 . (15)

The stationary moments are thus,

〈ζ〉s = 0 , (16)

〈ζ2〉s = k+/k− , (17)
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The solution of the linear noise approximation is a Gaussian distribution with mean and

variance,

〈r〉s = Ωy∗ + Ω1/2〈ζ〉s = Ω k+

k
−

,

〈〈r2〉〉s = Ω〈〈ζ2〉〉s = Ω k+

k
−

,
(18)

leading to

ps(r) =

√

k−

2πΩk+

e
−

Ωk
−

2k+

h

r

Ω
−

“

k+

k
−

”i2

. (19)

To model extrinsic noise, we would like the network defined by Eq. (5) to act as multiplicative

noise given that the species r is coupled to another reactant. Note that Eqs. (3) and (19)

are identical if

x =
r

Ω
; µ =

k+

k−

;
λ

D
= Ω

k−

k+

. (20)

In order to compare the theoretical predictions of Eqs. (3) and (19), note that the domain

of the distribution in the discrete limit has to be redefine according to x = r/Ω. The

distribution has to be normalized accordingly.

4



0 1 2 3 4
n

0

0.5

1

1.5

p(
n)

discrete
continuous
theoretical

FIG. 1: Comparison of various probability densities. We show result from the simulation of the

chemical reactions Eq. (5) with the Gillespie algorithm (◦). The stationary probability distribution

function ps(r) as a function of r is obtained with Ω = 20, k+ = 2, and k− = 1. This distribution is

compared to the stationary density ps(n) as a function of n calculated from a first order numerical

algorithm (×) with λ = 1 and D = 0.1. The two distributions are compared to the analytical

prediction (solid curve), Eqs. (3) and (19).
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