Ornstein-Uhlenbeck process

Mathieu Gaudreault and Jorge Viñals

Department of Physics, McGill University,

Montreal, Quebec, Canada, H3A 2T8.

(Dated: January 31, 2011)

Abstract

PACS numbers: $02.30.\mathrm{Ks},\,05.10.\mathrm{Gg},\,05.70.\mathrm{Ln},\,87.16.\mathrm{Yc},\,87.18.\mathrm{Cf}$

I. CONTINUOUS LIMIT

The Fokker-Planck equation of an Ornstein-Uhlenbeck process is

$$\frac{\partial}{\partial t}p(x,t) = \lambda \frac{\partial}{\partial x} \left[(x-\mu)p(x,t) \right] + D \frac{\partial^2}{\partial x^2} p(x,t) , \qquad (1)$$

where μ and λ are constants and where D is the intensity of the noise. The Langevin equation associated to Eq. (1) is

$$dx(t) = -\lambda(x - \mu)dt + dW(t) , \qquad (2)$$

where W(t) is a Weiner process with mean $\langle W(t) \rangle = 0$ and variance $\langle W^2(t) \rangle = 2Dt$. The stationary solution of Eq. (1) is

$$p_s(x) = \sqrt{\frac{\lambda}{2\pi D}} \exp\left[-\frac{\lambda}{2D}(x-\mu)^2\right] . \tag{3}$$

Equation (2) is understood under the Ito interpretation of stochastic calculus. It is integrated numerically by using a first order method,

$$x(t + \Delta t) = x(t) - \{\lambda[x(t) - \mu]\} \Delta t + \eta(t), \qquad (4)$$

where $\eta(t)$ is a gaussian white noise with mean $\langle \eta(t) \rangle = 0$ and correlation $\langle \eta(t) \eta(t') \rangle = 2D\delta(t-t')$.

II. DISCRETE LIMIT

Consider the following chemical reactions in order to model the Ornstein-Uhlenbeck process:

$$\emptyset \xrightarrow{k_{+}} r \qquad r \xrightarrow{k_{-}} \emptyset . \tag{5}$$

Using the Law of Mass Action, the Master equation corresponding to the above network is,

$$\frac{\partial}{\partial t}p(r,t) = \Omega k_{+}[\mathbb{E}^{-1} - 1] \{p(r,t)\} + k_{-}[\mathbb{E} - 1] \{rp(r,t)\} , \qquad (6)$$

where Ω is a coarse-grained variable with unit of volume, \mathbb{E} is the raising operator $\mathbb{E}_n f(n) = f(n+1)$, and where k_+ and k_- are reaction rates. We use the van Kampen inverse system size method to solve this equation. Make the change of variable

$$r(t) = \Omega y(t) + \Omega^{1/2} \zeta(t) , \qquad (7)$$

where the solution r(t) is splited into a deterministic part y(t) and a fluctuating part $\zeta(t)$ around the stationary solution. The operator \mathbb{E} is expanded so that

$$\mathbb{E} = 1 + \Omega^{-1/2} \partial_{\zeta} + (2\Omega)^{-1} \partial_{\zeta}^{-2} + \mathcal{O}(\Omega^{-3/2}) . \tag{8}$$

Substitute in Eq. (6),

$$\partial_t \Pi - \Omega^{1/2} \dot{y} \partial_\zeta \Pi = \Omega k_+ \left[-\Omega^{-1/2} \partial_\zeta + (2\Omega)^{-1} \partial_\zeta^2 \right] \Pi + k_- \left[\Omega^{-1/2} \partial_\zeta + (2\Omega)^{-1} \partial_\zeta^2 \right] \times \left\{ \left(\Omega y + \Omega^{1/2} \zeta \right) \Pi \right\} . \tag{9}$$

Collecting terms that are factor of $\Omega^{1/2}$ leads to a deterministic equation,

$$\dot{y}(t) = k_{+} - k_{-}y(t) . \tag{10}$$

This equation has one fixed point located at $y^* = k_+/k_-$. Collect terms that are factors of Ω^0 leads to a Fokker-Planck equation,

$$\partial_t \Pi(\zeta, t) = -k_- \partial_\zeta \left\{ \zeta \Pi(\zeta, t) \right\} + 2^{-1} \left[k_+ + y(t) k_- \right] \partial_\zeta^2 \Pi(\zeta, t) . \tag{11}$$

In the stationary regime, trajectories converge to $y^* = k_+/k_-$. Evaluating Eq. (11) at the fixed point leads to

$$\partial_t \Pi(\zeta, t) = -k_- \partial_\zeta \left\{ \zeta \Pi(\zeta, t) \right\} + k_+ \partial_\zeta^2 \Pi(\zeta, t) . \tag{12}$$

Associated to Eq. (12) is a Langevin equation,

$$\dot{\zeta}(t) = k_{-}\zeta(t) + \sqrt{k_{+}}\eta(t) , \qquad (13)$$

where $\eta(t)$ is a Gaussian white noise with mean 0 and correlation $\langle \eta(t)\eta(t')\rangle = 2\delta(t-t')$. Equation (13) represents an Ornstein-Uhlenbeck process. The stationary solution of Eq. (12) is a Gaussian distribution,

$$\Pi_s(\zeta) = \mathcal{N}e^{\frac{k_-}{2k_+}\zeta^2} \ . \tag{14}$$

Time evolution of the n^{th} moment can also be found using Eq. (12),

$$\partial_t \langle \zeta^n(t) \rangle = -nk_- \langle \zeta^n(t) \rangle + n(n-1)k_+ \langle \zeta^{n-2}(t) \rangle . \tag{15}$$

The stationary moments are thus,

$$\langle \zeta \rangle_s = 0 \,, \tag{16}$$

$$\langle \zeta^2 \rangle_s = k_+/k_- \,, \tag{17}$$

The solution of the linear noise approximation is a Gaussian distribution with mean and variance,

$$\langle r \rangle_s = \Omega y^* + \Omega^{1/2} \langle \zeta \rangle_s = \Omega^{\frac{k_+}{k_-}},$$

$$\langle \langle r^2 \rangle \rangle_s = \Omega \langle \langle \zeta^2 \rangle \rangle_s = \Omega^{\frac{k_+}{k_-}},$$

(18)

leading to

$$p_s(r) = \sqrt{\frac{k_-}{2\pi\Omega k_+}} e^{-\frac{\Omega k_-}{2k_+} \left[\frac{r}{\Omega} - \left(\frac{k_+}{k_-}\right)\right]^2} . \tag{19}$$

To model extrinsic noise, we would like the network defined by Eq. (5) to act as multiplicative noise given that the species r is coupled to another reactant. Note that Eqs. (3) and (19) are identical if

$$x = \frac{r}{\Omega}$$
 ; $\mu = \frac{k_{+}}{k_{-}}$; $\frac{\lambda}{D} = \Omega \frac{k_{-}}{k_{+}}$. (20)

In order to compare the theoretical predictions of Eqs. (3) and (19), note that the domain of the distribution in the discrete limit has to be redefine according to $x = r/\Omega$. The distribution has to be normalized accordingly.

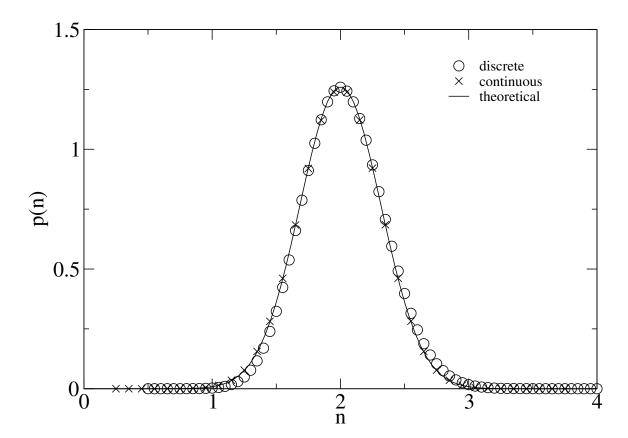


FIG. 1: Comparison of various probability densities. We show result from the simulation of the chemical reactions Eq. (5) with the Gillespie algorithm (\circ). The stationary probability distribution function $p_s(r)$ as a function of r is obtained with $\Omega = 20$, $k_+ = 2$, and $k_- = 1$. This distribution is compared to the stationary density $p_s(n)$ as a function of n calculated from a first order numerical algorithm (\times) with $\lambda = 1$ and D = 0.1. The two distributions are compared to the analytical prediction (solid curve), Eqs. (3) and (19).