Math 5615H: Honors: The algebra of limits in
R, C, and R”

Subsequences an

Sasha Voronov

University of Minnesota

October 9, 2020



The Definition of a Limit of a Sequence

Definition A sequence {a,} in a metric space X has limit L € X
ifVe >0 3INeN:Vn> Nwehave d(ap, L) <e.
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The Algebra of Sequences in R and R”

Theorem
Suppose for two sequences in R, C, or R”

I|m ak_aand I|m bk = b.
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Subsequences

b & heAvic gpaa X
{an} sequence, n; < n, < ..". infinite sequence of naturals.

Then {ap, } is called a subsequence and its limit, gf exists, a
subsequential limit of {a,}. Observe: nx > k Vk > 1.
Theorem
Every subsequence of a convergent sequence converges.
Proof. Z&n a, = L , O, X )
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Subsequences in Compact Subsets

Theorem

If K is a compact subset of a metric space X, then every
sequence in K has a subsequence that converges to a point in
K.

Proof. (By contrapositive: If K has a sequence with no
subsequence converging to a point in K, then K is not
compact.)
Enough to consider sequences with infinite range, because
every sequence V{ith a finite range has a convergent
subsequence. al < K
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Sequential Compactness

Definition

Let X be a metric space. A subset K C X is sequentiqally
compact if every sequence in K has a subsequence that
converges to a point in K.

Compare to the Bolzano-Weirestrass property: every infinite
subset of K has a limit (cluster) point in K.

K C X TFAE: l ( >
Q K is compact; (> = L

S

@ K is sequentially compact;
© K has the B-W property.
Proof. (1) = (2): Previous theorem.

(1) = (3): A theorem proven last Friday, 10
(3) = (1): A problem on the Midterm.
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Proof of Compactness Criterion, continued
To w%ﬂa@»& %«d:wgo@‘, Q\ B)

The simplest thing now: Show EQQ = C&l
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