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Relative extrema

Definition

Let f : (a, b) ! R.

1. The function f has a relative (local) maximum at a point

x 2 (a, b) if there is a � > 0 such that f (s)  f (x) for all

s 2 (x � �, x + �). The relative (local) maximum value is then

f (x).
2. The function f has a relative (local) minimum at a point

x 2 (a, b) if there is a � > 0 such that f (s) � f (x) for all

s 2 (x � �, x + �). The relative (local) minimum value is then

f (x).
3. A relative extremum is a relative maximum or minimum.

Examples: sin x , x sin x , |x |
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Relative extrema and critical points

The derivative is a great tool to find extrema:

Theorem-Definition

If f : (a, b) ! R and f has either a relative extremum at

c 2 (a, b), and if f 0(c) exists, then c is a critical point of f , i.e.,

f 0(c) = 0.

Proof.
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Rolle’s Theorem

The following particular case of the mean value theorem easily

follows from the previous theorem on extrema and critical pts.

Theorem (Rolle)

Let f : [a, b] ! R be continuous on [a, b] and differentiable on
the open interval (a, b). If f (a) = f (b), then there is a point
c 2 (a, b) such that f 0(c) = 0.

Proof.

If f =const, done, as f 0(c) = 0 at each point c 2 (a, b).

If not constant, then there must be x 2 (a, b) such that

f (x) 6= f (a). The f (x) > f (a) = f (b) or f (x) < f (a) = f (b). Since

f is continuos, it attains an absolute maximum at some

c1 2 [a, b] and an absolute minimum at c2 2 [a, b]. If

f (x) > f (a), then c1 2 (a, b). Then f 0(c1) = 0 by previous

theorem. If f (x) < f (a), then c2 2 (a, b) and f 0(c2) = 0 by

previous theorem.
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Illustration and Example
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Mean Value Theorem

Theorem

Let f : [a, b] ! R be continuous on [a, b] and differentiable on
the open interval (a, b). Then there is a point c 2 (a, b) such
that

f 0(c) =
f (b)� f (a)

b � a
.
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Proof of MVT

Proof. Geometric intuition helps: the equation of the line

through (a, f (a)) and (b, f (b)) is

y = f (a) +
f (b)� f (a)

b � a
(x � a).

Consider

h(x) := f (x)� f (a)� f (b)� f (a)
b � a

(x � a).

Then h(a) = h(b), conts on [a, b], diffble on (a, b) and Rolle’s

theorem applies:
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Monotone Functions and Derivative

Theorem

Let f : [a, b] ! R be continuous on [a, b] and differentiable on
the open interval (a, b). Then
1. If |f 0(x)|  M 8x 2 (a, b) then

|f (x)� f (a)|  M(x � a)  M(b � a);

2. If f 0(x) = 0 8x 2 (a, b), then f is constant;

3. If f 0(x) � 0 8x 2 (a, b), then f is increasing. If
f 0(x) > 0 8x 2 (a, b), then f is strictly increasing;

4. If f 0(x)  0 8x 2 (a, b), then f is decreasing. If
f 0(x) < 0 8x 2 (a, b), then f is strictly decreasing.
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Proof
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Illustration and Example

An example of diffble f (x) such that f 0(c) > 0 at some c 2 (a, b)
does not imply that f (x) is increasing on an interval about c will

be on the homework: f (x) = x2 sin 1/x for c = 0.
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