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Useful Lemma

Useful Lemma

Lemma

Let z be a real or complex number. If |z| < e for every ¢ > 0,
thenz = 0.
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Decimal Representation of Real Numbers

Decimals

rat<onal

Let x; 0 be a real number. Define a set E of reatnumbers

=Ny < X, largest ng € N \/ 0
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Then x = sup E (W y ﬁz(ls{s’?)TAe deCImal expansion of x is
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Se<XX1 fitn
We know enough to prove: x =supE; 0 < n; <9fori>1.
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Decimal Representation of Real Numbers

Bijection Statement

Would need to know that

to show that n; < 9 for infinitely many /. This would imply that —

n, was not the largest. N, . ", N, .. N 94 ~p.n,.N
g Np. Ny ...(nN, +1)0000... ° - hci q " - "‘ﬁ

There is a bijection between R and decimal expansions (2) with
no €7Z,0<n; <9 fori>1, and n; <9 for infinitely many i.

Idea of Proof.

Given a decimal expansion (2), the set E of numbers (1) is
bounded above, and x = sup E has (2) as decimal expnsn.  [J
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Decimal Representation of Real Numbers

Binary Expansions

Theorem

There is a bijection between R and expansions (2) with ny € Z,
ni=0or1 fori > 1, and n; = 0 for infinitely many i.

This expansion is called the binary expansion of x.

Idea of Proof.

Use (for X7, 0)

no+ Dk < x
0T ok =7
Everything else is the same as in previous theorem. Ol
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Decimal Representation of Real Numbers

R is uncountable

Theorem
The complete ordered field R is uncountable. S — U S "
Proof. Add to the set of binary expansions the set S of thos/el "

expansions for which n; = 0 for finitely many J, ] ThIS isa ‘§,,p “ZX 01‘3
countable set as a countable union of,tmv:esets We want to @w&%
prove that the set R U $ of binary sequences like (2), starting
with ng € Z and n; = 0 or 1 for j > 0, is uncountable. This will
imply R is uncountable, because if R were countable, then
R U S would also be countable. (5.0,
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Decimal Representation of Real Numbers

R U S is uncountable
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he Euclidean Space R"

R™: Definition and vector-space structure

RS = R+ R x ny
k//,wV§;§% 2.0
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The Euclidean Space R"

The Euclidean Inner Product and Properties
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