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Useful Lemma

Lemma

Let z be a real or complex number. If |z|  " for every " > 0,
then z = 0.

Proof.

2 / 10

Clearly , I 2- I 0
. If IZI = 0

,
then 7=0 .

Done
.

If NZ170 .
Take E ⇒

'It 70 .

Then I ZI ⇐ ¥ ⇒ 2HIE IH ⇒ IH E O .

④ asDEETIntroductions
D



Useful Lemma

Decimal Representation of Real Numbers

The Euclidean Space Rn

Decimals

Let x > 0 be a real number. Define a set E of real numbers

n0  x , largest n0 2 N,
. . . ,

n0 +
n1

10
+ · · ·+ nk

10k  x , largest nk 2 N, (1)

. . .

Then x = supE . Why exists? The decimal expansion of x is

x = n0.n1n2n3 . . . (2)

We know enough to prove: x = supE ; 0  ni  9 for i � 1.
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Bijection Statement

Would need to know that

X

k�n+1

9

10k =
1

10n

to show that ni < 9 for infinitely many i . This would imply that

nn was not the largest.

Theorem

There is a bijection between R and decimal expansions (2) with
n0 2 Z, 0  ni  9 for i � 1, and ni < 9 for infinitely many i.

Idea of Proof.

Given a decimal expansion (2), the set E of numbers (1) is

bounded above, and x = supE has (2) as decimal expnsn.
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Binary Expansions

Theorem

There is a bijection between R and expansions (2) with n0 2 Z,
ni = 0 or 1 for i � 1, and ni = 0 for infinitely many i.

This expansion is called the binary expansion of x .

Idea of Proof.

Use

n0 +
n1

2
+ · · ·+ nk

2k  x .

Everything else is the same as in previous theorem.
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R is uncountable

Theorem

The complete ordered field R is uncountable.

Proof. Add to the set of binary expansions the set S of those

expansions for which ni = 0 for finitely many i . This is a

countable set as a countable union of finite sets. We want to

prove that the set R [ S of binary sequences like (1), starting

with n0 2 Z and ni = 0 or 1 for i > 0, is uncountable. This will

imply R is uncountable, because if R were countable, then

R [ S would also be countable.
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R [ S is uncountable
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Rn: Definition and vector-space structure
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The Euclidean Inner Product and Properties
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The Euclidean Norm
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