Here is a solution of Problem 6(2) on Homework 9.

Solution: We define \(g(q) := \lim_{p\to q} f(p) \) for each \(q \in \overline{A} \). Since \(f(p) \) is continuous on \(A \), \(g(p) = f(p) \) for each \(p \in A \). The limit exists, because for any sequence \(\{p_n\} \subset A \) converging to \(q \in \overline{A} \), the sequence \(\{f(p_n)\} \) will converge in \(\mathbb{R} \), as \(\{p_n\} \) is a Cauchy sequence, and so is \(\{f(p_n)\} \) by Part (1).

We need to show that \(g \) is continuous on \(\overline{A} \). Let us do it using the definition. For each point \(q \in \overline{A} \), given \(\epsilon > 0 \), we need to find a \(\delta > 0 \) such that \(|g(p) - g(q)| < \epsilon \) whenever \(|p - q| < \delta \) and \(p \in \overline{A} \). Start with a \(\delta_1 > 0 \) such that \(|f(p') - g(q)| < \epsilon/2 \) whenever \(0 < |p' - q| < \delta_1 \) and \(p' \in A \). Such \(\delta_1 \) exists, because \(g(q) = \lim_{p' \to q} f(p') \). Note also that if \(|p' - q| = 0 \), which may happen only when \(q \in A \), we have \(|f(p') - g(q)| = |f(q) - g(q)| = 0 < \epsilon/2 \).

Define \(\delta := \delta_1/2 \). Now for any \(p \in \overline{A} \) such that \(|p - q| < \delta \), we can find \(\delta_2 > 0 \) such that \(|f(p') - g(p)| < \epsilon/2 \) whenever \(0 < |p' - p| < \delta_2 \) and \(p' \in A \). Such \(\delta_2 \) exists, because \(g(p) = \lim_{p' \to p} f(p') \). Note also that if \(|p' - p| = 0 \), which may happen only when \(p \in A \), we have \(|f(p') - g(p)| = |f(p) - g(p)| = 0 < \epsilon/2 \).

Take any point \(p' \in A \) such that \(|p' - p| < \min(\delta, \delta_2) \). Such \(p' \) exists, because if \(p \in A \), we can take \(p' = p \). Otherwise, \(p \) is a limit point of \(A \) and there are points of \(A \) arbitrarily close to \(p \). Then \(|p' - q| \leq |p' - p| + |p - q| < \delta + \delta = \delta_1 \), and we have

\[
|g(p) - g(q)| \leq |g(p) - f(p')| + |f(p') - g(q)| < \epsilon/2 + \epsilon/2 = \epsilon.
\]

Thus, \(g(q) \) is continuous on \(\overline{A} \).

Now, let us show the uniqueness of \(g \). Indeed, if we have another continuous function \(g_1 \) on \(\overline{A} \) extending \(f \) from \(A \), then we have \(g_1(p) = f(p) = g(p) \) for all \(p \in A \). If \(q \in \overline{A}' \), then take a sequence \(\{p_n\} \subset A \) such that \(p_n \to q \). Then, since \(g \) and \(g_1 \) are continuous on \(\overline{A} \), we have \(\lim_{n \to \infty} g_1(p_n) = g_1(q) \) and \(\lim_{n \to \infty} g(p_n) = g(q) \). However, since \(p_n \in A \), we have \(g_1(p_n) = f(p_n) = g(p_n) \) and thereby \(g_1(q) = g(q) \).

Date: November 14, 2014.