LECTURE 1: TENSOR CATEGORIES

ALEXANDER A. VORONOV

An easy way to define a PROP uses the notion of a symmetric monoidal (or
tensor) category, which is an interesting and useful notion on its own. We will
give a brief introduction to tensor categories here. You can find more detail in the
new book “Tensor Categories and Modular Functors” by Bakalov and Kirillov, Jr.,
or any textbook on quantum groups, such as Chari-Pressley, the original paper of
MacLane or Saavedra Rivano’s monograph “Catégories Tannakiennes”.

Definition 0.1. A symmetric monoidal (tensor) category is a category C with a
functor

®:CxC—=C
and functorial isomorphisms
axyz: XY®Z) - (XY)®Z,
TX)Y : XY —-Y®X,
satisfying the following identities:
2

T =id,
axgy,zwoxyzew = (axyz®idw)axyezw(idx Qay, zw),
(tx,z ®idy)ax,zy (dx @7y z) =0z X,YTXQY,Z0X,Y,Z-

The second and the third identities express the commutativity of the famous
pentagon and hexagon diagrams.

Theorem 0.2 (MacLane’s Coherence Theorem). In a symmetric monoidal cate-
gory, two compositions of a’s, a”’s, and T’s between objects X1 @ Xo @ -+ @ Xp
with arbitrary positioning of parentheses and X;, @ X;, ® --- @ X;,, with arbitrary
positioning of parentheses for any permutation iy,...,i, of 1,...,n are equal.

This is a quite technical theorem, important for it asserts that in a tensor cate-
gory, it makes sense to identify any possible tensor products of the same collection
of objects, no matter in which order or succession it is made. This identification is
done via a morphism whose uniqueness is guaranteed by the Coherence Theorem.

Examples 0.3. (1) The category of vector spaces over a fixed ground field
with the tensor product of vector spaces. The morphisms 7 and « are
defined element-wise: 7(z @ y) :=y Rz and a(z @ (y® 2)) == (z R Y) 2.

(2) The category of complexes of vector spaces. The tensor product and « are
defined the same way as for vector spaces, but 7(z ® y) = (—-1)Py ® z,
where p and ¢ are the degrees of elements x and y. The full subcategory of
graded vector spaces gets the induced structure of a tensor category.

(3) The category of sets with respect to Cartesian product.
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The “geometric” categories, those of topological spaces, manifolds (topo-
logical, smooth, or complex), and schemes — all with respect to the direct
product. Moreover, the category of schemes over a fixed scheme is also a
tensor category with respect to the fibered product.

The category of representations of a fixed Lie group: the tensor product
is given by the tensor product of the underlying vector spaces with the
group action defined as g(x ® y) := gz ® gy. The same for the category of
representations of a fixed Lie algebra, except that the Lie algebra action is
defined as g(z ®y) =gz Ry + z ® gy.

The category A — mod of left modules over an (associative) algebra A
does not in general have the structure of a tensor category. The reason
is that for two A-modules X and Y, the tensor product X ® Y does not
have a natural A-module structure — for instance, see why the formulas
from the previous paragraph do not work. However, X ® Y is naturally a
module over the associative algebra A ® A. To have a universal A-module
structure on X ® Y, it would be enough to have an algebra homomorphism
A: A — AR A, satisfying certain properties providing the existence of
the morphisms a and 7 satisfying the axioms of a symmetric monoidal
category. It turns out that this all may be achieved if one requires that the
homomorphism A defines the structure of a cocommutative coassociative
bialgebra on A. The cocommutativity means A°? = A, where A°P := AP,
where P: AQ A — A® A, P(a®b) := b® a. The coassociativity means
(A ®id)A = Id®A)A.

One can relax the cocommutativity condition in the previous example,
which opens way to a whole field of mathematics called quantum group
theory. Suppose we have a coassociative associative bialgebra A and an
ivertible element R € A®A, such that A°® = RAR™!. Defining 7 as PR, we
get the structure of a symmetric monoidal category on A— mod , provided
R12R21 = ]., which yields T2 = ld, (ld ®A)R = R13R12, and (A X ld)R =
R13Rs3, which imply the hexagon axiom. Here we used the standard
notation: let Rip := R = ) R(1) ® R(g), then Ry := > Ry ® Ry,
Ri3:=) Rn)®1® Ry and so on.

Such a bialgebra is called a quasi-triangular bialgebra, although usually
one does not require Ri13R2; = 1, in which case we arrive to a more gen-
eral notion of a braided category. These equations also imply the famous
quantum Yang-Baxter equation

RioR13R23 = Ro3Ri3Ryo.



