
LECTURE 4: THE LIE BIALGEBRA PROP

ALEXANDER A. VORONOV

1. The Lie bialgebra PROP

1.1. The Lie bialgebra PROP. This is an example, due to D. Sullivan, of a nicely
defined PROP, the definition being intrinsic to the theory of graph homology. This
PROP governs the class of Lie bialgebras.

Definition 1. A Lie bialgebra is a Lie algebra g with the structure of a Lie coalgebra
given by a one-cocycle δ : g → g ∧ g on g with values in the g-module g ∧ g, i.e.,
the linear map δ(g) must satisfy the following cocycle condition:

δ([g1, g2]) = g1δ(g2) − g2δ(g1) for all g1, g2 ∈ g.

Lie bialgebras are so-called quasi-classical limits of quantum groups (more pre-
cisely, quantum universal enveloping algebras). The structure of a Lie bialgebra also
arises on the tangent space to the unit element of a Poisson-Lie group, a Lie group
having a Poisson manifold structure, so that the group law defines a morphism of
Poisson manifolds, i.e., respects the Poisson bracket.

Exercise 1. The structure of a Lie coalgebra is dual to that of a Lie algebra: it
is a good exercise on abstract nonsense (here: linear algebra) to write down the
co-Jacobi identity in terms of δ. Make sure that if g is finite-dimensional, a Lie
coalgebra structure is equivalent to a Lie algebra structure on g.

The following PROP will be called the Lie bialgebra PROP. In this PROP
Mor(m,n) will be vector spaces (thus, it will be a PROP of vector spaces) defined
as quotient spaces of vector spaces spanned by graphs of a certain type. Whenever
m or n = 0, we define Mor(m,n) := 0. For m,n ≥ 1, the space Mor(m,n) may be
defined as follows.

Consider the vector space spanned freely by the (isomorphism classes of) directed
oriented trivalent graphs Γ with m + n legs labeled as inputs 1, . . . ,m and outputs
1, . . . , n. The graphs need not be connected, but must be finite. A leg is either an
edge whose one end is free, that is, not a vertex, while the other end is a vertex, or
a half-edge of an edge with two free ends. The adjective directed refers to the choice
of directions on each edge, so that the legs are directed from the inputs and toward
the outputs and the directions define a partial order on the set of vertices. Trivalent

here means that all vertices must have one incoming and two outgoing edges or two
incoming and one outgoing edges. Graphs with no vertices, i.e., disjoint unions of
edges each of which connects an input with an output, are allowed. An orientation

on a graph means the choice of an ordering on the set of edges, up to the sign of
a permutation. We also impose a relation Γop = −Γ, where Γop is the graph with
the opposite orientation. The space Mor(m,n) is a quotient space of the space of
such graphs, defined as follows.
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The quotient is done with respect to the subspace generated by the edge expan-
sions of a four-valent vertex in a graph of a similar kind. In fact, this edge expansion
is precisely the differential in graph cohomology. The differentials of single-vertex
four-valent graphs are defined as follows:
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Then the defining relations between graphs are given by setting each of these
differentials to zero. These defining relations give rise to relations in our graph
spaces as follows. Take a graph with m inputs and n outputs of the same kind as
above, except that one vertex of it is of valence four. Expand that vertex, using one
of the three figures above, depending on the type of the four-valent vertex. This
gives a linear combination of graphs. The subspace of relations, that is the subspace
with respect to which we take the quotient to obtain Mor(m,n) is the subspace
spanned by such linear combinations. The orientation on the edge expansion is
given by putting the new edge to the end of the ordering.

The PROP composition Mor(m,n)× Mor(n, k) → Mor(m, k) is given by grafting
the outputs of a graph to the corresponding inputs of another graph, i.e., connect-
ing the respective legs of the two graphs so that a pair of legs becomes an edge
connecting two vertices of the new graph. An orientation on the composition of
two graphs is given by (1) reordering the edges of the first graph in such a way that
the output legs follow the remaining edges, (2) reordering the edges of the second
graph in such a way that the input legs precede the remaining edges, and (3) after
grafting, putting the edges of the second graph after the edges of the first graph.
The resulting ordering should look like that: the newly grafted edges in the middle,
preceded by the remaining edges of the first graph and followed by the remaining
edges of the second graph. The symmetric groups act by relabeling the inputs and
the outputs and not changing the orientation of the graph.

Theorem 2 (Sullivan). A vector space V has the structure of an algebra over the

Lie bialgebra PROP, if and only if V has the structure of a Lie bialgebra. More-

over, this correspondence is functorial, that is, defines an isomorphism between the

category of algebras over the Lie bialgebra PROP and the category of Lie bialgebras.

Proof. The proof is more or less tautological.
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1. Suppose V is an algebra over the Lie bialgebra PROP. This means graphs in
consideration give rise to operators between tensor powers of V . Define the bracket
[, ] and the cobracket δ as the operators corresponding to the following basic graphs,
respectively:
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The relations (1.1) we have imposed on the space of graphs rewrite as the van-
ishing of linear combinations of the following operators, respectively:

[[g1, g2], g3] − [[g1, g3], g2] + [[g2, g3], g1] = 0,

− δ(δ(g)(1)) ∧ δ(g)(2) − δ(g)2(1) ∧ δ(δ(g)(2))
13 + δ(g)(1) ∧ δ(δ(g)(2)) = 0,

δ([g1, g2]) − δ(g1)(1) ∧ [δ(g1)(2), g2]

− [g1, δ(g2)(1)] ∧ δ(g2)(2) − δ(g1)(2) ∧ [g2, δ(g1)(1)] + [g1, δ(g2)(2)] ∧ δ(g2)(1) = 0,

where for elements x ∈ V and y = y(1) ∧ y(2) ∈ V ∧ V , we used the following

notation x2 ∧ y13 := y(1) ∧ x ∧ y(2). Thus V becomes a Lie bialgebra.
2. Conversely, let V be a Lie a bialgebra. Start with assigning the bracket and

the cobracket to the two basic graphs, as above. The skew symmetry of the bracket
and cobracket follows from the equations
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which are equations of the type Γop = −Γ.
For each element in our quotient space, take a representing linear combination

of oriented graphs. Cut each graph in it into PROP compositions of disjoint unions
of the two basic graphs and the “identity” graphs — . It may be done in a unique
way: just cut each edge which is not a leg into two halves. Then take a composition
(in the sense of the endomorphism PROP of V ) of the bracket and the cobracket
prescribed by the way the basic graphs are grafted together into the big graph.
This assigns an operator to each graph and a linear combination of graphs. This
operator does not depend on the choice of an representative in the quotient graph
space, because the Jacobi, the co-Jacobi, and the cocycle identities are satisfied in
our Lie bialgebra. ¤

1.2. The L∞-bialgebra PROP. The graph description above suggests that if we
consider a more general space of graphs, allowing vertices of any valence higher
than two, and use the usual graph-cohomology differential, we will get a certain
dg PROP. This RPOP is freely generated by trees with one vertex and m inputs
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and n outputs, one for each pair (m,n). Perhaps, this PROP should be called the
L∞-bialgebra PROP. To justify that name, one needs to prove this dg PROP is a
cofibrant resolution of the Lie bialgebra PROP, described in the previous section.
This seems to be a nontrivial computation:

Conjecture 3. The homology of this dg PROP is exactly the Lie bialgebra PROP.


