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This paper is devoted to an exposition of the structure theory of supermanifolds 
and bundles on them, a description of Serre duality on supermanifolds, investiga- 
tion of inverse sheaves, definition of characteristic classes and proof of the 
Grothendieck-Riemann-Roch theorem for supermanifolds. 

This paper is devoted to certain questions of supergeometry not yet incorporated in the 
standard textbooks (see, e.g., [i, 3, 5]) or not treated therein in adequate detail. Some 
of these questions will be presented with proofs, for others we shall only provide references. 
Our main topics are: Serre duality on supermanifolds, the structure theory of supermanifolds 
and bundles on them, inverse sheaves, characteristic classes, and the Grothendieck-Riemannn- 
Roch theorem for supermanifolds. We are deeply indebted to I. A. Skornyakov for his permis- 
sion to present his study of l]l-dimensional bundles (Appendix to Sec. 4). The exposition 
in Sec. 3 is also based on his writings. We are grateful to A. Yu. Vaintrob for his useful 
comments. 

i. Notation and Conventions 

Our notations will largely coincide with those of Chaps. 3 and 4 in [5]. However, the 
evenness of a homogeneous element a in a Z=-graded Abelian group Ao~A I will be denoted by 
a~Z2 (rather than ~Z~ as in [5]). 

In contradistinction to [5], given modules M, N over a superring, we shall use the s~- 
bol Hom (M, N) for the group of even homomorphisms, i.e., those preserving the Z2-grading, 
and Hom (M, N) for the inner Hom, i.e., the (Z2-graded) module of all homomorphisms. 

Let A'=(~,~x) be a superspace, i.e., a locally ringed space such that the structure 
sheaf Gx is a sheaf of supercommutative rings. For an ideal ~x:----(Gx)~@(Gx)1 in ~x we put 

gri~x: -'a4f~/dV'~ +1, grX:  --(~, gr~x:-----~grt~x), ~red: =groOx, Xred: = (~, ~red), N~: =.grl~?x - the  c_2o- 
normal sheaf of the natural embedding Xre d § X. We shall say that X s_plits if there exists 
an isomorphism of superspaces X ~ grX. 

We shall work in one of three geometrical categories: i) the category of smooth super- 
manifolds; 2) the category of analytic superspaces; 3) the category of superschemeso In the 
last two cases we shall also be interested in superspaces with smoothness conditions on the 
local rings - analytic and algebraic supermanifolds. 

2__. Serre Duality 

i. Relative Berezinian (Dua!izing Sheaf). Let T:X-+~ be a proper (relative to the 
underlying space or scheme) smooth morphism of complex superspaces or superschemes of finite 
type over C of relative dimension MIN. We define the Berezinian Berf of f by 

Ber I: = Ber P~c/dl,e~, 
1 

where ~x/jTl.e~ is the sheaf of relative even differentials, and the symbol Bar on the right 
denotes a simple generalization of the concept of Berezinian of a free module (the super- 
analog of maximal outer degree) to the case of a locally free sheaf. 

2. Duality Theorems. It is natural to assume that in the situation of subsection 1 
Berf is a dualizing sheaf in Grothendieck's sense. This means that for any bounded complex 
of Ox -modules ~" with coherent cohomology, considered as an object of the derived category 
D~(Coh) of bounded complexes of Gx -modules with coherent cohomology, one has a canonical 
isomorphism into D~f (Cok ) : 
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Of:  Rf,RHorax (St', Ber! [ - -  MI)~RHomA (R/,~r', aX), 
where Berf[ -M] i s  t he  complex whose M-th term i s  t h e  s h e a f  Ber f  and t he  o t h e r  terms v a n i s h .  

This  a s s e r t i o n  may a p p a r e n t l y  be proved  a long t he  l i n e s  of  t he  p r o o f  in  t h e  u s u a l  case .  
As communicated t o  us by V a i n t r o b  ( s e e  a l s o  h i s  paper  [2] in  t ~ i s  vo lume) ,  t he  e x i s t e n c e  
of  a d u a l i z i n g  complex K', i . e . ,  an o b j e c t  K" o f  t he  c a t e g o r y  D~(Coh) such t h a t  (1)  i s  t r u e  
w i th  Berf[ -M] r e p l a c e d  by K ' ,  i s  r e a d i l y  proven  even f o r  any p r o p e r  ( r e l a t i v e  to  t h e  under -  
l y i n g  space  o r  scheme) morphism of  complex s u p e r s p a c e s  or  superschemes .  The un iqueness  of  K" 
i s  v e r i f i e d  by s t a n d a r d  means. Thus, i t  remains  on ly  to  show t h a t  f o r  smooth f ,  K.~---Bert[--M]. 
Nevertheless, up to the present only special cases have been treated in the literature. The 
first important special case is when ~[ is a point and ~" a coherent (~x-module. Regarding 
this case see [15], where a more general assertion is proved, concerning non-proper analytic 
supermanifolds as well. One of the papers in this volume [8] will also use another special 
case of duality, when J[ is arbitrary and the morphism f is smooth and projective. 

This means that there exists a commutative diagram 

�9 P , a ( I )  

in which P~(~)-~J/ is a projectivization of a locally free G~-module ~ and j is a closed 
embedding. In this situation the methods of [13] admit a direct supergeneralization, which 
leads to the duality theorem (see [6]). The following proposition sums up the facts that will 
be used in this volume. 

3. Proposition. Let [:X-w~f be a proper morphism of complex superspaces or super- 
schemes of finite type over C. Then: 

a) There exists a dualizing complex K'. 

b) If ~f=SpecC, f is smooth of relative dimension M[N (i.e., X is an analytic or alge- 
braic supermanifold of dimension MIN) and ~" is a coherent ~x -module, then the dual- 
izing complex of part (a) is exactly Berf[-M]. In particular, one has a canonical 
isomorphism of Z=-graded vector spaces over C 

E__~ -~ (~, Ber! = Berx) = H' (~D* 
for all iEZ§ 

c) If f is smooth and projective and i~ is a coherent ~x-module, then the dualizing 
complex of part (a) is exactly Berf[-M]. In particular, for example, if~and all 
Rkf,~, kEZ + are locally free, then one has a canonical isomorphism of ~-modules 

. ~ - l f ,  (St, | ... (R~f,~t), 
for all i~Z+. D 

3. Structure Theory of Supermanifolds and Locally Free ~-Modules 

(Component Analysis) 

i. Component Analysis of Supermanifolds. Let ~ be a manifold and E a locally free G~- 

module of rank 01N, /VEZ,. To each such pair {~,E) we associate a supermanifoldX~ S'(E)). 
Obviously, X~ed=(~,G~)t~V~o-----E, and grX~ It is natural to ask: How many supermani- 
folds X are there such that grX = X~ Essentially, this is a question about a certain non- 
commutative cohomology series, whose structure we shall investigate below. 

We introduce a point set 

Ox.:={(X, ~)[X is a supermanlfold and i ~] isomorphisms~I 
~:g rx~X0is an is~176 IlL of pairs ) 

with distinguished point (X ~ id). By definition, two pairs (X1,~l) and (X2, ~@ are isomorphic 
if there exists an isomorphism n:Xl + X 2 such that ~2ogr~=~,. 

Let ~ be the sheaf of (unipotent) groups on ~ associated with the presheaf 

U ~ ~ (U) : ={g6A~ (~x0 [~ I gr ~) = i~, 
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where U~ is an open set. Then a standard construction leads to an identification of 
pointed sets 

~x~ = H I (~, N I .  

Note  t h a t  t h e  Z - g r a d i n g  on ~Yx0 i n d u c e s  a n a t u r a l  f i l t r a t i o n  on N .  I n d e e d ,  t h e  e q u a l i t y  
gr (g) = id for all U and all g6Aut(Gx~ is equivalent to the inclusion 

N 
( g - - i d ) ( S t ( E ) ) c S > ~ ( E ) : =  (9- S~ (E)  for a l l  i, O . . < i < N .  k~i..p1 

Thus, we define NiJcN as the sheaf associated with the presheaf 

U ~ N  zj (U) : ={gfiAut (Ox0 [u) I (g -- id) (S t (E)} c S  >*+2/(El for ~Z+}. 

I t  i s  e a s y  t o  s e e  t h a t  9 ~ 2 = N , N  2 j=l  f o r  2j > N and 

A filtration on /~f also induces a filtration on the sheaf of Lie algebras Lie(N) of the sheaf 
of groups ~. 

Next, it is not hard to establish an isomorphism of sheaves of Z-graded Lie algebras 

gr Lie (N) -~ Y~n, 

where  gr L ie (N)  i s  t h e  s h e a f  o f  Z - g r a d e d  L i e  a l g e b r a s  a s s o c i a t e d  w i t h  t h e  above  d e s c r i b e d  
f i l t r a t i o n  on L i e ( ~ )  and Y-n i s  t h e  s h e a f  o f  L i e  a l g e b r a s  o f  n i l p o t e n t  v e c t o r  f i e l d s  on X o, 
d e f i n e d  as  

~ . :  = eyT~ i, 
]>1 

l~r'21: ={l~~ ! %p (S ~ ( E ) ) c S  t+i] (E) for ~fiZ+}, 

ff'~Xg :is ~he tangent sheaf to x~ 

Finally, there are two obvious mutually inverse isomorphisms of sheaves of sets 

log 

exp 

In particular, H~176 q)/f~ Hence it follows that for any />I the restriction 
map 

H 0 (9~) ~ H o ( N / ~ i J  1 

is surjective, and so the following sequences of pointed sets are exact: 

( ~isting1~* ~ r 
ished point] -+ H I  (~27) _~ H I  (N)  -~ H I {~'1 N~]), k i )j 

distingu- ] _+ H '  (g$2i+2) _+ H I (9~2i) + H 1 (9~9-1] ~21+~}, ( 2 ) j 
ished point] "" 

j>l. 

Sequences (1)j imply that the sets HI(NiJ), ]11 define a (pointed) filtration on aX0 = 
//i(~). Sequences (ij) furnish the characteristic maps cij:H~(I~=i)--+H~(N=i/N~ +~) that measure 
the deviation of the terms of the filtration from one another. 

These arguments constitute an outline of the proof of the following theorem. 

2. THEOREM. There exist a canonical pointed filtration on ox0: 

/ distingu- 
GX" = (;2~(~4 ~'~ ~(Yir = ~ ished point] = ( x0, id) 

and a sequence of maps ci]:~i-~]-/a(~T~ ~) such that for any j6N (X, ~)6~=7+2 if and only if (X, 
~)6~I and C~" (X,@=O. [] 

The theorem has several important corollaries. 

3. COROLLARY. A supermanifold X with grX = X ~ is split if and only if for some (equiv- 
alently: for any) isomorphism ~p:grX=T~X o ci](X,~)=O for all j6N. 

Proof. This is simply a reformulation of Theorem 2. s 
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4. COROLLARY. a) If H1(~J)=0 for all j~N, then any X with grX = X ~ is split. 

b) If H* (E*| 2j+I (E)) =0 and H 1(~,x 0 | (E)) =0 for all jGN, then any X with gr X -~ X ~ is 
ted split. 

Proof. a) H'(~J)=0 implies that c2j(X, ~)-~-0 for all ~ and all j6N. 

b) The restriction ~]~+~]IX0ed , where ~]6~J defines an exact sequence of (~X0ed-mOdules 

E* | +,   J j-x  | "=~0. 

Consequently, since all HI (E*|247 (E)) and Hz(~e~S2J(E)), jENvanish, the same is true of 
HI(~), j@N, and our assertion reduces to (a). D 

5. COROLLARY. a) Every C~-smooth supermanifold is split. 

b) If Y is a complex analytic supermanifold and Yred is a Stein manifold, then Y is 
split. 

c) If Y is an algebraic supervariety and Yred is affine, then Y is split. 

Proof. If Yred is C~-smooth, Stein or affine, then all higher cohomology groups with 
coefficients in locally free CYyrea -modules vanish. D 

6. We now show that there exist nonsplit analytic and algebraic supermanifolds. Since 
all supermanifolds of dimension M] 1 are split by definition, nonsplit supermanifolds must be 
sought in dimensions MIN , N~>~. In fact, it suffices to consider dimension i]2. Putting 
~=Xr~ :=CP ~, E:=llO,~(--2)~llOred(--2), where (~red(k) denotes the -k-th power of the tautologi- 
cal bundle on CP I , one can show by direct calculation that for X~ ', S'(E)), considered as 
an analytic supermanifold, the canonical filtration on ox0 is of length 2. In particular, 

~176 ~ (distinguished) Consequently c= ~ 0 and, by Corollary 3 there exists a nonsplit 
point " ' ' 

analytic supermanifold X such that grX = X ~ Moreover, it is clear that in that case all X 
with grX ~ X ~ are automatically algebraic, and the condition of algebraic splitting is equiv- 
alent to that of analytic splitting. 

We would like to emphasize that the case of a nonsplit analytic or algebraic super- 
manifold is not pathological, but in fact represents the general position. Thus, the super- 
Orassmannians Gr(a[b, S mln) with a, b=/=0, a=/=m, b=/=n are nonsplit - see [9]. 

7. If a supermanifold X= (~,CYx) is split, then there exists a projection X + Xre d. 
The converse is false, but one can establish a criterion, analogous to Theorem 2, for the 
existence of such a projection. 

We first note that, since any projection X § Xre d factors through the natural projection 
X-')=Xo:=(~, ((~X)0) ' it will suffice to consider the existence of a projection X 0 + Xre d. We 
now again fix o ~=Xred and E and let ~0 denote the sheaf of (unipotent) groups on ~ associated 
with the presheaf 

where X~:=(~, S'(E)O and gr(g 0) are considered relative to the standard filtration OxO by 
powers of J~,.= Let ~x0:=H*(~ 9. There exists a canonical identification of pointed sets: 

locally ringed space IP hisms L 
H1(~~ -- (X0)~a] with the filtration of 

the structure sheaf and [of pairs l 
y:f~i:~X~ is an iso- 

' morphism 

with distinguished point (X0 ~ id). 

8. THEOREM. There exist a canonical pointed filtration on ~;xo 

~X~_~_ (;O~(y~ . �9 �9 ~( distingU-ished point]-- ~- ( x0, |d) 

and a sequence of maps 
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such that for any j~N (Xo, ~Q~/+~ if and only if {X o, ~Qa~j and C~ {X o, @~=0. 

Thus, if grX0__~X~. , then the existence of a projection X § Xre d is equivalent to van- 
ishing of all classes C~ (X0, ~0) for some (equivalently: for any) isomorphism @0:grX0~X~, 

9. Remark. There exist a canonical restriction morphism 

and a diagram 

Res :,~_~ ~,-~o, 

Ht(Res) 0 
~ 2 j ~  -..-~ 0"2 ~ 

c'J lH,(resj) Ic2j " 
H | (e)), 

in which resj is the canonical restriction morphism ~.2nl "->'~'[Xr~I| which is commutative 
for any j@N. 

i0. Component Analysis of Locally Free (Y-Modules. Let X be an arbitrary supermanifold, 
~r a locally free (~xt~-module. It is natural to ask: Under what conditions can ~fr be ex- 

tended to a locally free (Yx-module ~ such that ~red:--=-~/JPx~=~r? And if such an extension 
exists, how can one describe all nonisomorphic extensions? The answer to both questions is 
provided by a superanalog of a well-known theorem of Griffiths [ii] about infinitesimal ex- 
tensions of vector bundles on manifolds. 

Assume that X is fixed, and let X(O:--(~,  0)(!):-----(~x/J/'~ +I) denote the i-th "infinitesimal 
neighborhood" of the submanifold Xre d in X. X ~i) is not a supermanifold (for i ~ 0, N, N + i, 
where MIN = dimX), but if X is algebraic (complex analytic), then X (i) is a superscheme 
(analytic superspace). Let ~r be a locally free (~red-module and ~O) a locally free ~y(O _ 
module such that ~'(O/.~t~x~(O=~C 

ii. THEOREM. a) There exists a unique cohomology class 

c (~')(~H~ ((End~' | 
Orea 

such that the locally free G(i+1)-module ~(I+I) with ~(i+~)/{j~+I/jp~(~+~)=~(O exists if and only 
if c (~(0) =0 .  

b) If C I~'(O)=O, then the group HI((Er~ r | av x tar x 10p acts transitively on the set of 
Ored 

isomorphim classes of locally free (Y(~+~)-modules ~f(~+~) with ~(~+O/(~/j~+~) <~O+~)=~(0. i f 

there exists an extension ~(~+') of $(O such that the natural restriction map ff~{E~d(-$(~+~)))-+ 

HO(End(~(~ is surjective, then the action of H ((End~ | x I x )o) is effective. 

The proof is practically the same as in the case of ordinary infinitesimal extensions of 
vector bundles - see [5, Chap. 2, Sec. 6], or the original paper of Griffiths [ii]. 

12. COEOLLARY. a) Given a locally free ~rea-module $~ , there exists a locally free 
(Yx-module ~ with ~'rea~---~ ~ if and only if there exists a sequence ~,(o)___~, ~(1) ..... ~(~'-~) of 
extensions of ~r such that c($(O)_-- 0 for 0~<i~<N--|. In particular, ~ exists if H={~d~| 
~/~+~)=0 for all /~Z+. 

b) If f-/~(~rtd~| for all k@Z+ and there exists a locally free ~Yx-module ~" 
with ~/J~=~ , then ~ is unique up to isomorphism. [] 

13. COROLLARY. If X is C~-smooth, complex analytic with Stein Xre d or algebraic with 
affine Xred, then any locally free ~Yred-module ~ is uniquely (up to isomorphism) extendable 
to a locally free (Yx-module ~'. Moreover, there exists an isomorphism ~ ' ( ~ O r e a O x ,  where 

the s structure on (Yx is defined by any projection X § Xre d. [] 

14. Any locally free ~Yred -module ~ can also be extended to a locally free (Y~-module 
~" under weaker assumptions concerning X: it is sufficient to demand the existence of a pro- 
jection p:X § Xre d - then ~=p*(~). In this context it is important to note that even if 
the supermanifold X is split it does not follow that any locally free (Yx-module d~ is isomor- 
phic to P*(~md), where p:X § Xre d is the natural projection. In fact, one need only take a 
split X such that the sheaf (Yred has a nontrivial extension by means of the (Yr~ -module 
$~(Nx*)=ffr=(Yx. Adding gr~Yx, i ~ 0, 2 to this extension as direct summands, we obtain an 
O~ =module ~ such that ~Ra-----(Yred. But ~Y-----p*(~ma), since diln F(X,~)<dim F(X,O). 
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Since there does not exist a "fibered" functor gr, the considerations of this section 
have no immediate generalization to the relative case. 

15. Remark. It is clear that the space of supermanifolds X with fixed underlying 
manifold is a subspace of the space of versal deformations of the supermanifold gr X. Thus, 
the noncommutative cohomology of Subsec. i implies a certain approach to deformation theory. 
On the other hand, deformation theory is in a certain sense a generalization of the struc- 
ture theory of supermanifolds. These remarks also apply to the structure theory of coherent 
sheaves on supermanifolds. As to the general theory of deformations on supermanifolds, we 
refer the reader to Vaintrob's paper [2] in this volume. 

16. Remark. The structure theory of supermanifolds and bundles on them has been redis- 
covered and rewritten many times. We mention two publications which describe the obstruc- 
tion to the extension of a splitting (or bundle) from one infinitesimal neighborhood of the 
underlying manifold to the next: Palamodov [7] and Manin [5, Chap. 4, Sec. 2], and two that 
adopt an approach close to ours: Molotkov [14] and Rothstein [18]. 

4. Invertible Sheaves 

i. Sheaves of Rank ii0 and 011. Possible analogs of the Picard group for an algebraic 
supermanifold X are the group [Pic 0 X] of locally free sheaves of rank li0, the group [picX] 
of locally free sheaves of rank ii0 or 011 (both relative to tensor multiplication) and, fi- 
nally, the set [Pic HX] of locally free sheaves of rank iii with H-symmetry. Obviously, the 
natural embedding [Pic 0 X] ~ [PicX] can be completed to a short exact sequence 

l-~[PicoX]-~- [Pic X]--~Zz--~O, 
which splits canonically via the homomorphism Z2---.~[PicX], 0~+Gx, I~HOx. In this sense, con- 
sideration of the group [Pic X] is uninteresting, with the exception of those cases in which 
it appears naturally. 

The group [Pic 0 X] is entirely analogous to the classical Picard group, but its struc- 
ture is less trivial in the cases to which we are accustomed (projective superspaces, flag 
superspaces, SUSY-curves etc. - see [8, 9, 16]); the set [Pic Hx] is a new invariant of the 
supermanifold (see [4, p. 311]). 

We begin with an investigation of even (odd) invertible sheaves on a supermanifold X; 
by definition, they are locally free fYx-modules of rank ii0 (011). Clearly, the set of all 
invertible sheaves on a fixed X has the natural structure of a strictly commutative Picard 
category or a categorical Abelian group (on the formalism of Picard categories see, e.g., 
[i0]) relative to tensor multiplication. Note that the parity of an invertible sheaf de- 
fines a canonical functor from this category into the category Z= (regarded as a groupoid 
of two objects). Let Pic 0x denote the kernel of the functor (i.e., the Picard category of 
all even invertible sheaves on X), then [Pic 0 X] is the group of isomorphism classes of the 
objects in Pic 0 X. As in the usual case, one has a group isomorphism 

[Pl~Xl---H' (a~, 
where O~0 is the subsheaf of invertible sections of ~x, considered as a sheaf of multiplica- 
tive groups. 

We now define the relative Picard functor. Considering the category Sschj of super- 

schemes (the category Sa,jK of analytic superspaces) over ~ in the standard way, where~ 

is a superscheme (analytic superspace), we define for fixed F->~Ob (Sschj[) [fixed Ob(Sanj) ] 
a functor 

by the equality 

Pico (Y/.~): Ssch #[ (San if) ~ Ab 

mCo V / x )  (z/x): = (rxzll/p  Zl, 

where Ab is the category of Abelian groups, Z-+JJ[ an object of the appropriate category and 
ps:YxZ-+Z the natural projection. In particular, we define the Picard group of Y over ~ by 

ipi% {Y/at)l: = Pi~ (Y/~) {.K/~). 

Note that the important question as to whether the functor Pic0 is representable is non- 
trivial even in the absolute case (i.e., when ~ is a point) and requires further investigation. 
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2. Sheaves of Rank IIi with _~-Symmetry. Let X be a superspace. Define PicIIX as the 
category whose objects are pairs (S, p), where S is a locally free OX-module of rank iii, 
p:S $ S is a H-symmetry on S (i.e., an odd morphism such that pe = -ids), and the morphisms 
are the elements of the group Hem(St, S 2) that define isomorphisms of ~Yx-modules and commute 
with the H-symmetry. There is a natural completely univalent functor 

,~ : P i e o  X-.+P~i,cXIX, 
a(~ ' )  : =~'~9II~', 

but, unlike Pic0X, PicHX does not have the natural structure of a Picard category. In this 
case [PicHX] is a pointed set of isomorphism classes of objects of the category PicHX (with 
basis point ~x~IIOx). A standard construction enables us to identify pointed sets 

a,  : [I~ie n X] -7. H 1 (' nAut(O~O~) ), 

where nAut(ax~)~Yx) is the sheaf of groups of local automorphisms of the object Gx~ll~Yx of 

the category Pic~X. As a sheaf of groups, nAut(~Yx~17s is canonically isomorphic to the 

multiplicative group s of invertible sections of CYx. Thus, there is an isomorphism of 
pointed sets 

cz~ : [Pi, o n X] ~H, (Ox*). 

Moreover, it is easy to verify the commutativity of the diagram 

[plcnX].~ H' (0)i-) 

: H' (0~), 

where [~] is the embedding induced by ~ and ~ is embedding O~-~. 

For a more detailed study of the mutual relationships between Pic0X, PicHX and the set 
of sheaves of rank iii , the reader is referred to the supplement to this section~ 

Supplement to Sec. 4: General Properties of l l 1-Sheaves 

0_. Basic Objects. Let X be a complex supermanifold~ In addition to the group [Pic 0 X] 
and pointed set [PicHX] introduced in Sec. 4, our investigation of lll-sheaves (i.e. 
locally free Ox-modules of rank i[i) will need the pointed sets 

Fl t 'X:  ={isomorphism classes ofl I l-sheaves}, 
f isomorphism classes of I l -sheaves~ endowed with the 

S[;IIIX: = ~ trivialization ; ~ : Ber S -~ Ox, t is even 
[ i f  r k B e r S . - - l l O ,  and odd i f , rkBerS- - - - -O[1  I 

In this supplement we let Pic 0X denote the group [Pic0X] and PicHX the pointed set [Pic[IX]. 

i. The Two Endomorphisms of FII IX. For each S~FII~X, consider the two relative flag 

10; S)-..~X and X _ : = F l x  (011; S ) - , .X .  ~u,. s u p e r s p a c e s  o f  r e l a t i v e  d i m e n s i o n  O[ 1: X + : = F I x  (1 ~+ =- ~ ~ 
tt*r and t t-(S):=(~_),CYx �9 C l e a r l y ,  u -+ a r e  endomorphisms of  t h e  p o i n t e d  s e t  FiI  iX, 
u-+(ns) = u~(S). 

LEMMA. There are two canonical exact sequences 

O~Ox-+U • (S)-+ (Ber S) • 

The proof proceeds by direct evaluation of Cech cocycles for u-+(S) in terms of the co- 
cycle defining S. m 

2. Cohomological Interpretation. Let G be a complex group superscheme. Define the 
sheaf G X of groups of X as the sheaf associated with the presheaf 

U~- G ( r ( u ,  a x ) ) ,  
U c X is an open subset. 

We also define the following group schemes: for an arbitrary complex algebra A 

(]~0 (A): -~- A~ relative to multiplication, 

(ira (A): ~ A *  relative to multiplication, 

0o) 1 a (A):-----A, relative to addition. 
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Proposition. 

and pointed sets 

One has canonical isomorphisms of the groups 

Pic0X----Hv(X, ~mx 

PicnX =- H I (X, OmX), 

FIIIX= I-P (X, OL (I ] 1)x), 

SFIJIX=HI (X, SL (I 11)x). 

The proof is standard. [] 

For the rest of this supplement we shall write simply HI(G) instead of HI(X, GX). 

The following class may be regarded in a sense as a purely odd analog of the Chern class 
of a ill-sheaf with H-symmetry. 

Definition. With the morphism of group superschemes g:Om->O~ I given by the formula 

c (ao+aO: =allao, 
we associate a corresponding morphism of pointed sets 

c 

P i cnx~H1  (Ore) "+ H I ~'0 ~ I= HI (00. 

#• in Subsec. i are induced by idempotent Note that the morphisms 
endomorphisms of GL(III): 

Hence it follows that (u+-) 2 = u +-. 

Note that if H-~-(~ ~)@SL (I I I) (A), then b/a = b/d, c/a = c/d, and the endomorphisms 
U+ISL(m) may be regarded as homomorphisms 

u• (1 I1) ,-,o. " 1 "  ~ l l a  ) 

Define a homomorphism 

by the formula 

tt:SL (I 11).--0 ~ 

~: ~-g§ 

Then it is easy to see that the following sequence is exact: 

- u 011 

1 -+ 0 ~ - .  SL (11 l ) - . O a - . O  , ( i )  

3. Compos i t ion  of  Elements  of  PicIIX. Le (S,  p ) ,  ( S ' ,  p ' )  be two i l l - s h e a v e s  w i t h  
H-symmetry. We extend p and p' to pairs of su~ rcommuting symmetries }: =p| and p':-----|d| 
on $-| 

THEOREM. With the above notation 

a) S|174247174 where (S'~S')+ are i !-sheaves which are characteristic sub- 
spaces of the endomorphism ~o~' with char, teristic values +_i, 

b) Ber(S| are trivial and 

u" ((S |  = c (S g - -  i~,x' e (S)eH* ( 0  0, ~,, z" E{ q- , - -  1. 
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Proof. (a) follows from the fact that ~o~' is an even endomorphismwith square -ds| 
(b) is proved by direct evaluation of Cech cocyles. 

4. Possibility of Introducin~ ~-Symmetry on l l 1-Sheaves.__ Using Theorem 3, we can 
associate to a pair of l[l-sheaves with N-symmetry a pair of 111-sheaves on which F.-symmetry 
can be introduced under certain cohomological restrictions - see Corollary 4 below. 

Since a N-symmetry defines a trivialization of the Berezinian [see Proposition 2 and 
formula (i)], a necessary condition for the existence of a N-symmetry on a l[l-sheaf S is the 
triviality of its Berezinian: BerS-~ If(7. 

The freedom in the choice of a trivialization is measured by the group f-/0(~) , since 
the orbits of the latter's action on HI(SL(III)) are the fibers of the map H ~(St,(lll))-~/-/~ 

B e t  . , ~  
- II v (OL (1 [ 1)) induced by the  s h o r t  exac t  sequence  1-~SL(1 [ 1)-~GL {1 I1) --(}= -~! .  

The o b s t r u c t i o n  to  i n t r o d u c t i o n  of  t h e  ~-symmetry  induced  by a g i v e n  t r i v i a l i z a t i o n  of  
t h e  B e r e z i n i a n  on a 1[ 1 - s h e a f  S, as  i m p l i e d  by t h e  e x a c t  sequence  

H '  (tim)--+H z (SL (111)) --~" g~ ((i~ 

, I oil [see (i)] is the class U(S)@/-I (Ga). 

On the other hand, it is easy to see that 
u*  

0 * where =E/-/ ((~0), ~EHZ(SL(I II)) and the multiplication on the right is the natural multiplication 
H ~ ((~0)| (O~) -~H I (~i) �9 We have thus proved 

Proposition. Let S be a i[ 1-sheaf such that BerS ~G. Then one can introduce a ~- 
symmetry on S if and only if there exists ~@/-/0((~)such that ~2~(S)=~-(8). [] 

COROLLARY. Under the assumptions of Theorem 3, the l l 1-sheaves ($|177 can be endowed 
with a ~-symmetry if and only if there exists ~I-/~ such that (c~-|)c($)=[~2--~|)~(S~)o ~] 

5-- Obstructions to Decomposition of a l l 1-Bundle with ~-Symmet_~ as the Direct Sum of 
Two Bundles Isomorphic Relative to ~. The pointed set of such obstructions is the image 
of the morphism c in the exact nonco~utative cohomology sequence 

Pi%X -~ PicgX-> H ~ ((7~), ( 2 ) 

induced by the exact sequence 

~ U 0  #-~ e r t -">~m "+~m'- '>ua -+0 

(see Subsec. 2). The group O~ is central in G m , and therefore the exact sequence (2) may 
be extended one more term to the right ([12, Corollary to Proposition 3.4.2]): 

c b 

Pi% X-~ PicnX-~ H ~ (O~) _~//2 (O~. 

The set Imc in which we are interested is equal to Ker 8. We shall evaluate Ker 3 explicitly. 

Proposition. The following diagram is commutative: 

H~((~I} = , - - = , ~ =  _- M2(f}o) 

Less formally: Ker a={=~H' (G,) i exp (==) =:I}. 

Proof. Let {Ui} be a sufficiently fine cover of X and let ~E~TI(~U~U~) define a ~ech 
l-cocycle. The coboundary morphism can be evaluated explicitly: 

d ({eU}) ----- {I -- ~j,~,, + %,%)-- ~,,~,]} ---- {exp (-- ~j,~,, + ~I,%)-- ~,,~,J)}" 

Clearly, the collection -(p/~(p~-@jk~/--(pik(pl/@(~0(UiULf1~ Uk) defines a Cech 2-cocycle which is 
the product [] 
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Note that in the case of algebraic X 

(C?o)-.~H2 (~0 ) )=  Im (//2 (X,r Z9 ~ / / 2  (O@) == Ker (//2 ,1p 

{ the group of obstructions to rea l iza t ion of singular Z-cycles on Xro ~ by Cartier divisors}.  

Thus, the obstructions to decomposition of lll-sheaves with H-symmetry as direct sums of 
two H-isomorphic locally free sheaves are the square roots of the obstructions exhibited 
above. 

6. Obstructions to Decomposition of an Arbitrary l[l-Bundle as a Direct Sum of Two 
Bundles Isomorphic Relative to H. As in Subsec. 5, the pointed set of such obstructions is 
Ker 3 = Iml in the cohomology sequence 

PicoX--,.F~'IX~H1 ( n ) L H  2 (n%~ (3 )  

i n d u c e d  by t h e  e x a c t  s e q u e n c e  

1 ~ 02~ OL (1 I 1) ~.-~(t.~ I, 
where 6~ {r,1011 ~r ~ "---.~ N I1~ 
defined by 

is the semidirect product relative to the action of ~mNll~ on ~an~176 

011 a (b, b'): = (ab, a-Xb'), af:O :l~ b, b P.Oa, 

a, . c Ber(:be)). ~'(c e):----(--~' --~-; 

To d e s c r i b e  Ker  3, we s h a l l  need  y e t  a n o t h e r  e x a c t  n o n c o n e n u t a t i v e  cohomology  s e q u e n c e :  

HO (02~ H1 1 mcoX, (4) 

induced by the natural exact triple 

Oll Oll II o 0-+Oa ~Oa - + 0 - ~ 0 =  - ~ 1 .  

Let ~ denote the composite 

HI(0 I)mH1 o,1 (0o)- HI(0)4H2 
obtained by splicing together (3 )  and (4). Thus, KerOml~(Ker,)'-'Ker,11-1o(o*o). 

Proposition. The following diagram is commutative: 

HI(~I)eHI(01 ) (~,JJ),--~,.,.iS HZ(Oo) 

Less formally: Ker ~ = { ( = ,  8) ell' ( O 0 e H '  ( 0 0  l e ~ ( = ~ )  ----1}. 

The p r o o f  i s  a n a l o g o u s  t o  t h a t  o f  P r o p o s i t i o n  5. [] 

7. Special Case: H~ -~'C, Pie0X----H*(~Y0*)={l}, Put W' :----H'(O,), W2 : =H2(O0), L : =H~(Z). 
By virtue of these assumptions and Subsec. 5, Lt. W 2 and L = {the group of obstructions to 
realization of 2-cycles on Xre d by Cartier divisors}. By Proposition 5, 

Pie" X =A {ae W' I a2~t}, 
and by Proposition 6 

FI)'~={ ( a, b) 6 W~g W ~ l ab~L}/C* 

[ t h e  a c t i o n  o f  C* on WI@W 1 i s  g i v e n  by ~z(wx, wz)=(~zwx, a-lw2)]. By S u b sec .  4,  t h e  image o f  

Pica X u n d e r  t h e  embedding PienX ~SFmXdFmX, where  a was d e f i n e d  in  S u b sec .  2 and ~ i s  t h e  
n a t u r a l  embedd ing ,  i s  

l~iic n X={  (a, b) ~WI@iW x [ ~/=~C* : a2a=b, abeL}. 

8. Remark. The above special case includes all homogeneous superspaces G/P, where G 
is a complex algebraic supergroup of type Q(m),n~3, and P is a parabolic subgroup - see [8]. 
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5. Characteristic Classes and the Riemann-Roch Theorem 

I. Grothendieck Groups. In this section we shall consider algebraic or analytic super- 
manifolds (supervarieties) X with a condition on Xred: the natural homomorphism K'(Xred) § 
K.(Xre d) of the Grothendieck groups of the locally free Ored-modules K'(Xred) and coherent 
Ored -modules K. (Xred) is an isomorphism (for example, Xre d is a nonsingular algebraic vari- 
ety). 

Perhaps it is worth recalling the definition of the Grothendieck groups in our context. 

Definition. Ks(X) [Ks(X)] is the factor group of the free Abelian group generated by 
all coherent locally free (simply coherent)6~x -modules modulo the subgroup generated by 
all expressions of the form ~--~'--~", where 0-+~'-+~-+~"-+0 is a short exact sequence of 
locally free (coherent) Ox-modules. 

The class of a s ~ in the appropriate Grothendieck group will be denoted by 
c]~(~, cls.{~ , of simply cl (~ if no confusion can arise. 

2. Remark. Of course, by Gx -modules here we mean Z~-graded CYx-modules, and Z2-grading 
splits each of the groups Ks(Xred) , KS(Xred), and KS(x) into two isomorphic direct summands. 
We have K. s (Xred) ---- f($ {Xrea } = /~"  (Xred}~II/~" (Xred)- 

3. Remark. Relative to the operation .:~| K'~(X) is a commutative (not in the super- 
sense) ring with identity 1=cl~(CYx) and element II=cI~{IICYx), I12=|. 

4. Definition. Given a proper morphism f:X § Y, we define a group homomorphism/~: 
K. s (X) -+ K;. {Y) by the formula 

/~ (el ~): = z  ( -  1)~ct (Rtf,~r), 

where ~ is an arbitrary coherent ~x-module. 

5. Proposition (see [19]). The homomorphism i~:Ks.(Xred)-+f;(X), where i:Xre d § X is the 
natural embedding, is an isomorphism. 

.S 
Proof. It is readily verified that the inverse of x I is the homomorphism ]:d(~) ~c| 

(d~). [] 
This proposition states that the group KS(x) does not reflect the existence of a super- 

structure on X. The group Ks(X) , however, is too big and difficult to evaluate, as sho%n% 
by the example of a projective superspace (see below). These disadvantages are true to a 
lesser degree of the group KS(X), which we shall now define. 

6. Definition. Let j:K~(Xr,d) -+ K~(Xr~d) be the homomorphism cl(~)~+Cl(~), where ~: ----- 
90 

i~0~lldPz~/ddt+~, dV is the ideal ((Yx)~@((Tx)~. Then, by definition, KS(X):=ImjcK',(X~). The 

class of the locally free (Tx-module ~ in KS(X) will be denoted by ](cI$) or simply cI($). 

7. Let N*:-~-cI(N*x):=cI(dF/~ ) be the class of the conormal sheaf of the embedding 

Xr,a-+X, ~t(N*):~-XcI(IItS~(N*~)) , i f  rkN~:=01n. Then e~(N*)=cl(gr~x)and we have  
t - - 0  

Proposition. a)  KS(X)cot(N*).K'a(Xrea ). 
b) If there exists a projection p:X § Xred, then 

~ s  ( x ) =  ~ (N*). ~(; (X~) .  

Proof .  a) For any l o c a l l y  f r e e  ~x-module  ~j(cl$).----cl(grg)=cl(~a)cl(~Yx)_.---~cl(~ed)C~(N*). 
b) For  e v e r y  l o c a l l y  f r e e  a r e a - m o d u l e  ~ cI(~)Xex(N*)~t(S(X), s i n c e  c l (~ ' ) ,  gt (N*)  ----- 

cl($)cl(gr~A=cl(g| and the  ~7~-module p * ~ i s  l o c a l l y  f r e e .  [] 

8. Example. Let X=CPm~ n. Then K (X)--K (X,~) --K;(Xroa)--Zltl/(1--t) ~ ( Z l t l / ( 1 - - t  ) ). 
The r i n g  K~(X),  as  f a r  as  we know, has  not" been  e v a l u a t e d ,  b u t  t h e  group  [ P i c X ] ,  w h ich ,  as  " 
u s u a l ,  i s  n a t u r a l l y  embedded i n  t h e  m u l t i p l i c a t i v e  g roup  o f  i n v e r t i b l e  e l e m e n t s  o f  K~(X),  i s  
f a i r l y  b i g  f o r  m -- 1: [picxl__.Z2eZ~S~-~(C2~90 ( s e e  [ 8 ] ) .  X i s  s p l i t  ( s e e  [5 ,  Chap. 4,  Sec .  

m 

3 . 5 ] ) ,  and so KS(X)----cil(N*).K's(Xrea), m o r e o v e r  at ( N * ) =  (l + t-~)n, t - ~ = X (  l _ t ) t .  
t w 0  
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9. The group KS(X) also has such familiar properties of K" as the existence of the 
operations of multiplication and inverse image. 

Proposition. a) The formula 

cl' (~,) *cI(~2) : =cl  (~I |  

for locally free O~-modules ~1, ~2 determines a well-defined ring structure on KS(X) with 
identity element I =cl(G~) =~l (N*) 

b) For any x,, x~%l(S (X) , 

c) Define 

x ,  * x2 = x ,  . ( N *  ) . 

f.(x) : =  
where the multiplication on the right is that of the ring K~(Xred). Then the formula 

f~ (d (~):----el (f*C~)) 

for an arbitrary morphism of supermanifolds f:X § Y and locally free ~y-module ~ determines 
a well-defined ring homomorphism/~:KS(Y)-+KS(X). 

d) For any y 6KS(Y) , 
| ' * * 

f, (V)----- fred (V/~t (NF))" ~l (]Vx), 

where f~ed is the usual inverse image for the morphism fred:Xred + Yred- 

Proof. Let Xi=cl(~l), X2-----s Then cl(~10@ x ~2) = CI~ (gr (~l~x~2)) -- cl~ (~i. red | ~2, red_@ 
~red ared 

grGx)  = cl;(gr~t).cl;(gr*2)/cl;(grOx)=x~.x2/,~(N*). This  implies (b)  and ( a ) .  The p r o o f  of  (c )  
and (d)  i s  s i m i l a r .  D 

10. D e f i n i t i o n .  For  a p r o p e r  morphim f :X + Y, d e f i n e  a group homomorphism f~:K~(Xred).--> 
K~(Fred ) by the formula 

f~(x): =-- (fred)l (X). 

ii. Remark. If one identifies K~(X) with K~(Xred) and K~(Y) with K~(Yred), Definition 
4 is equivalent to Definition i0. 

12. Proposition (pro~ection formula). For a proper morphism f:X § Y and x~K](Xrea), 

y e K; (r;,d), 
f~( f2(Y)*X)=Y*f~(X)  �9 

The proof is a simple calculation. [] 

13. Characteristic Classes. We first describe the set of values of characteristic 
classes. Given a y-filtration F l D F 2 m ... of the ring K'(Xre d) (see [4]), we form a fil- 
tration {F~}={FI@~F ~} | Q of the ring K~(Xred)| Q, which we again call a y-filtration. 

Define GKs(X) as the Z-graded ring associated with the y-filtration 14. Definition. 
of the ring K;(Xred)| 

15. Definition. a) Put 

f* (v): = frL (v) 
f o r  an a r b i t r a r y  morphism of  s u p e r m a n i f o l d s  f :X § Y and any y6GKa(Y).  

b) Put 

f. (x) -~-- (fred). (X) 

for a morphism f:X § Y which is projective on the underlying manifolds and any x6GK,(X). 

It is readily verified that f* is a ring homomorphism, f, is a Z-graded group homomor- 
phism of nonzero degree, and one has the projection formula 

16. Definition. Let $ be a locally free ~x-module, Sred-----~0@~ I and(~):=01)~:=~ rkn~t. 
Then: 
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a) the i-th Chern class is the class c~ (~): = (If) C i ($n--II~)-- (II) ~ (C| $o--CI][]$1--rk $o@rk II$~} 
~lodF~ +I , where yi is the standard operation in K'(Xred) (see [4]), co(~:=01); 

b) the Chern polynomial is 

ct (b3 : = (II) ct (~o-- IIf~) = ~ c~ (g') t; 
i = 0  

c) the exponential Chern character is the class 

rk~'e rk1~'~ 

ch (~): =oh  (~o)--IIch ( I I S ~ ) ~  eaR~'~ Z e-na'(~")' 
~=1 i = I  

where a, (~0) and a, (f,) are found from the relations c, (fr0)~- ~[ (lq-a, (f0) t) and c, (f~)= ~[ (ll~-a~ 
i=1 i=1  

($~)t) , defined by virtue of the splitting principle (see [4]) for Xre d. 

The classes c~(~ and ch($9 are elements of GKs(X), the class ~(g9 is an element of the 
multiplicative group 1 + tGKs(X)[[t]]. 

17. The formula for c~ (~ is motivated by the following lemma. 

LEMMA. Let f be a locally free ~Yx-module, ~fe4=fo~l. Then cl(Ber~)--(ll)~(H)y~(clf0 - 
c! Hf~ -- rk fo + rk H~)~-- ~ 72 (clfo-{- cl H ~-- rk fo ~ rk H$0 rood F~. 

Proof. By the corresponding statement of even geometry, cl (det f0) -- 1 ~y~ (cl ~0-- rk $0) rood F ~ 
and cl(dei(--IIf~))~1--vl(cl(--11f~)+rkll$~)modF ~. At the same time, c|(BergO--Oq)=cI(Ber$~ed)--(II)----- 
(H) cl (dei$0det (- IIf~)) -- ~I) ___ Of) (cl (del f0) -~ cl (det (-- II~)) -- 2) rood F~, whence the first congruence fo l- 
lows. The second is proved in similar fashion, if one notes that cl(Ber~=([l)cl(de%$0.detlI$~). 
[] 

18. Remark. This lemma provides yet another way of defining characteristic classes: 
c~(~):=([l)c~(~o-~Hf~) , and according to the same scheme - the Chern polynomial and exponen- 
tial character. Using the lemma, one readily shows that the classes thus obtained are the 
same as the old ones. 

19. Remark. Our definition of ch$ coincides, up to H, with that of Quillen [17]: if 
K is the curvature form of a connection on f (that is, of a connection on ~0@Hff~) , then 

ch f---- sir e ~  ~ ~ rood (1 -- H). 

20. The following proposition is an immediate consequence of the definitions and the 
corresponding propositions of classical geometry. 

Proposition. Let ~, ~, ~ be locally free ~z-modules, ~ a locally free ~x-module 
of rank ii0 or 011. Then their characteristic classes have the following properties: 

a) ch 1 = l, ch H=--H; 

b) / c l~__ l ,  if rk~----l[O, 
c ~ ( ~ ) = [ l i _ c l ~ ,  if rk~=O[1;  

c) c~ (~*)= --c~ I~), c~ (~ = --c~ ($9 W~~ ch (II~ = -- H ch (~); 

d) for any morphism of supermanifolds f:X § Y, 

e) if 0-~-+f-~2_+ 0 is exact, then c~ (~)=ct (~i)'ct~(~2) ; in particular, ci (~)=ci (~i) ~I(~ ~- 

Cl (~@ (~)~, OI)~=Co~(~---Co~).Co(~2)----~I)~.~I)~, C i (~*)----- --C, (~) and, in addition, ch~=ch~1~-ch~; 

f) ch (~i| ~-ch fl.ch ~2; 

g) ch:KS (X)| is an embedding of superrings if F~ = 0 for sufficiently large 
d - in particular, if Xre d is projective and nonsingular, n 

21. Remark. If we extend the character ch from KS(X) to K~(Xre~)| by the formula 

ch (x): =ch  (x.aT' (N*))=ch (i~ (x)), 
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where x@K'~(X,ea)| then under the assumptions of Proposition 20(g) ch:K'~(Xr~d)| 
is an isomorphism of superrings relative to the (commutative) multiplication in Kj(Xt~d)| 
xt,x2:-----xl.Xz.OT1(N *) (compare with Proposition 9). 

22. Definition. Define the Todd class 

id:KS (X) ~ OKs (X), 

subject to the following conditions: 

a) td(I)---- (--l l t--Ty- / , x~c t ( -~ ) ,  l ~ c l ( ~ ) ,  r k ~ l l O ;  

b) td( / )=cht% {s = l - - b e  nx, x-=c1 f.~), l = c l  (L~), r k ~  ---=- 011, a~ {~* ) :=1  +c l  ~ * ) ;  

c)  tdo/~==/*otd  f o r  any morphism f :X -> Y; 

d) ~td (xt+x=) =.i,d xl ..t~t x=. 

(Existence and uniqueness are proved in the standard manner. ) 

23. Remark. The Todd class is obviously chosen in such a way as to ensure validity of 
the Grothendieck-Riemann-Roch theorem for the embedding i:Xre d + X: 

ch (i~x) = i .  (r x . t d  (-- N)) 

for all xeK~ (Xt,a)| 

24. Remark. It is immediately evident from the definition that for a locally free G x.- 
module ~ td (cl~ = t d  (it~ (cl ~)) = t d  {cg (fir,@)" 

The class tdx is extended to Kj(Xr,a)| by the formula 

td x: = td (x. o~- t ' (N*)), 

where xEK's (Xre~| .' 

25. Grothendieck-Riemann-Roch Theorem. THEOREM. Let f:X ~ Y be a smooth morphism 
of nonsingular algebraic supervarieties, and assume that the morphism fred and varieties 
Xre d and Yred are projective. Then for any x~K's(Xre~| , including x6KS(X), the following 
equality holds for elements of GKs(X): 

ch 0f[ (x)) =f, (ch (x).Id (~71)), ( 1 ) 

where ~-~: =cl~'z--elf*(3-y)is the virtual tangent sheaf of f. 

Proof. A direct check, using the definitions and the results of this section, shows 
that (i) reduces to the Grothendieck-Riemann-Roch theorem for the morphism fred" D 
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SUPERCELL PARTITIONS OF FLAG SUPERSPACES 

A. A. Voronov and Yu. I. Manin UDC 512.743 

A description is given of the partition of flat superspaces, which correspond to 
classical simple Lie supergroups, into Schubert supercellso The relative positions 
of Schubert supervarieties are studied and their singularities are resolved. 

The goal of this paper is to achieve further understanding of the structure of flag 
superspaces, an important class of supermanifolds which arises quite naturally. We begin 
(Sees. 1-4) by constructing the partition of superspaces of complete flags into Schubert 
supercells, requiring the latter to satisfy a certain universality condition which is triv- 
ially valid in the classical case. The Weyl supergroups that arise in this context, among 
whose elements are reflections with respect to odd roots, index the supercells, and the di- 
mension of each supercell equals the superlength of a suitable element of the Weyl super- 
group. The superlength is defined combinatorially; that the definition is legitimate is a 
nontrivial combinatorial fact, for which we furnish a geometric proof. 

Before generalizing the results to incomplete flags, which are superanalogs of the spaces 
G/P, where P is a parabolic subgroup of a simple algebraic group G (in Sec. 6), we describe 
the structure of parabolic subgroups of supergroups of types SL, OSp and Q interms of root 
systems - see Sec. 5. This description shows that the spaces of incomplete G-flags consti- 
tute all G-equivariant factors of superspaces of complete flags. 

In Sec. 7 we define an order in the Weyl supergroup, and prove that this order corre, 
sponds to the inclusion relation among Schubert supervarieties, i.e., closures of Schubert 
supercells. 

Schubert supervarieties furnish natural examples of supervarieties with singularities. 
In Sec. 8 we shall present a construction that resolves these singularities , generalizing 
the classical Bott-Samelson construction. In the purely even case the Bott-Samelson con- 
struction enables one to prove that the singularities of Schubert varieties are rational; 
in supergeometry, however, the very existence of an analog of the construction is apparently 
a nontrivial property of singularities of Schubert supervarieties. The question of the 
rationality of singularities of Schubert supervarieties has not yet been fully investigated. 
At present it is not even clear just what a rational singular point of a supervariety is. 
(Recall that in the classical case every rational singular point is normal, implying that the 
local ring of the point contains no nilpotents.) 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie 
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