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SUPERCELL PARTITIONS OF FLAG SUPERSPACES 

A. A. Voronov and Yu. I. Manin UDC 512.743 

A description is given of the partition of flat superspaces, which correspond to 
classical simple Lie supergroups, into Schubert supercellso The relative positions 
of Schubert supervarieties are studied and their singularities are resolved. 

The goal of this paper is to achieve further understanding of the structure of flag 
superspaces, an important class of supermanifolds which arises quite naturally. We begin 
(Sees. 1-4) by constructing the partition of superspaces of complete flags into Schubert 
supercells, requiring the latter to satisfy a certain universality condition which is triv- 
ially valid in the classical case. The Weyl supergroups that arise in this context, among 
whose elements are reflections with respect to odd roots, index the supercells, and the di- 
mension of each supercell equals the superlength of a suitable element of the Weyl super- 
group. The superlength is defined combinatorially; that the definition is legitimate is a 
nontrivial combinatorial fact, for which we furnish a geometric proof. 

Before generalizing the results to incomplete flags, which are superanalogs of the spaces 
G/P, where P is a parabolic subgroup of a simple algebraic group G (in Sec. 6), we describe 
the structure of parabolic subgroups of supergroups of types SL, OSp and Q interms of root 
systems - see Sec. 5. This description shows that the spaces of incomplete G-flags consti- 
tute all G-equivariant factors of superspaces of complete flags. 

In Sec. 7 we define an order in the Weyl supergroup, and prove that this order corre, 
sponds to the inclusion relation among Schubert supervarieties, i.e., closures of Schubert 
supercells. 

Schubert supervarieties furnish natural examples of supervarieties with singularities. 
In Sec. 8 we shall present a construction that resolves these singularities , generalizing 
the classical Bott-Samelson construction. In the purely even case the Bott-Samelson con- 
struction enables one to prove that the singularities of Schubert varieties are rational; 
in supergeometry, however, the very existence of an analog of the construction is apparently 
a nontrivial property of singularities of Schubert supervarieties. The question of the 
rationality of singularities of Schubert supervarieties has not yet been fully investigated. 
At present it is not even clear just what a rational singular point of a supervariety is. 
(Recall that in the classical case every rational singular point is normal, implying that the 
local ring of the point contains no nilpotents.) 
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This paper may also be considered a first contribution to the study of algebraic topo- 
logy of flag superspaces. A great many questions still remain open. For example, for a 
meaningful generalization to the supercase of such results of Bernshtein, Gel'fand and 
Gel'fand [i] and Demazure [14] as the combinatorial intersection index of Schubert varieties 
and comparison of classes of Schubert varieties with characteristic classes of flag sheaves, 
one needs, first and foremost, a regular cohomology theory, in which the classes of Schubert 
supercells would lie. The role of such a theory might possibly be fulfilled by bordism 
theory for supermanifolds (see Voronov and Zorich [5]) or by the cohomology theory of 
Barabov, Shvarts, Voronov and Zorich (see [4]). 

In the exposition of our results we have favored purely geometric arguments, reducing 
the use of group-theoretic constructions to a minimum. We have thereby avoided the difficul- 
ties involved in factorization modulo the action of a supergroup. Moreover, the group- 
theoretic point of view does not always produce correct notions in the supercase. Thus, 
representation theory (see Kac [17]), Borel-Weil-Bott theory (see Penkov and Skornyakov 
[19], Penkov [ii]) and the results of this paper indicate that the analogs of Borel subgroups 
are generally not maximal solvable subgroups but stabilizers B of complete flags. In con- 
tradistinction to the classical case, not all subgroups B are conjugates of one another, 
and consequently the superspace of complete flags splits into connected components (another 
manifestation of the difference is that one cannot define a system of representatives of the 
Weyl supergroup in G). The components appearing in this paper are somewhat more numerous 
than the conjugate classes of subgroups B - we find it more convenient to consider certain 
components corresponding to the same subgroup B as distinct. It should also be noted that 
the intuitive view of root systems in the supercase does not always accord with reality, 
since the root system of a simple Lie superalgebra need not be an abstract root system. 

The role played by Schubert cells in classical geometry and representation theory de- 
termines the application of the results of this paper. In this connection we note that 
Schubert supercells have proved useful in understanding the geometry of supergravity (see 
[9]) and in the construction of reflections with ~espect to odd roots (see [ii, 19]). 

The main results of this paper were announced in [2, 3]. 

We are indebted to I. B. Penkov and I. A. Skornyakov, with whom we were in constant 
contact during the preparation of the paper. 

i. Classical Supergroups and Flag Superspaces 

i. Classical Supergroups. Let T-~C ml~ be the space of the standard representation of a 
classical algebraic supergroup G of type SL, OSp, HSp or Q. A type OSp group leaves invariant 
a nonsingular even symmetric form b:T § T*, a type NSp group - a nonsingular odd antisymmetric 
form b:T § T*, a type Q group - an odd involution p:T § T, p2 = id. Henceforth we shall 
assume that the corresponding morphism b or p is fixed. In cases HSp and Q, the stipulated 
properties of this morphism imply that m = n. All these supergroups G, with the sole ex- 
ception of OSp(2r, 2s) are connected. The group OSp(2r, 2s) splits into two connected com- 
ponents. 

2. Connected Components of Flag Superspaces. Let SLI be the set of all sequences of 

the form (Sz, ...,6,) 61-~-P]q, ~8,-~-m]tZ, r..<m+n. Fix ]~sLI. 
i--I 

Definition. Let S be a superscheme (over C - henceforth we shall take this for 
granted). A flag 0=$r ... Cg~r_zc-,9'r-----Ts=T@cOs of locally free locally direct sub- 
sheaves in T S is of type I if rk~i--rk~_1~-Si for all i: ]<i<r. 

I 

Thus the rank of the i-th constituent of the flag is dl-----~Su. 
k--I 

Definition -Lemma [7]. The functor GF I on the category of superschemes over C that 
associates to each superscheme S the set of flags of type I in T S satisfying the conditions 
(for G r SL) 

(b|  ( ~ o c  . . .  c ~ r ) . - ~ , - t c  . . .  c ~ o  x for OSpandllSp, 

(ponds) (9'oc . . .  c.,~ =.,~oC . . .  c ~ ' ~  for Q ,  

is represented by the superspace GF I of flags of type I. [] 
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3. LEMMA. If I is the type of a flag in GF I, then 

iS,~+l_t (l) for OSp, 
8, r nSp, 

tS~ (I) for Q, 

where ( a l b p  = (bla) .  

The proof follows directly from the definitions. 

4. Complete Flags. A G-flag is said to be complete (or full) if it has the maximum 
possible length r. The set of types of complete G-flags is denoted by GI n . The structure of 
the set GI n is given by the following simple lemma. 

LEMMA. 

. . . . .  = 11 o or 0 1 6 , =  I n ,  
i=1 

SLI ospi~ = {(61 . . . . .  6re+n) ( ~ n [ 6i = ~ra+n+l-t}, 
nSPln ={(81 . . . . .  SL ' e 8,,,+,,)(~ I,, 181=8~+n+I-~}, 

Q/'.-----{{1 i 1 . . . . .  11 I)}. [ ]  

Definition. The superspace of complete G-flags is defined as the disconnected union 

aF---~ .ti aFz. 
/(~Gf n 

Remark. All the GF I are connected, except in the case G = OSp(2r, 2s), where GF I splits 
into two components for each I. In the case G = Q(m), GF is connected. 

2. Relative Position of a Pair of Complete Fla~ 

i. Definition. Let ~z.., ~4. be two G-flags of types I, JEaln. We shall say that they 
are regularly positioned relative to each other if for all i, ] ~z,~n~Jd are locally direct 
locally free subsheaves in T S of constant rank. The relative-position type of flags ~L. and 
~&. is the matrix with elements 

d o = r k ( ~ z , ~ n ~ j , i ) ,  O~<i,]..<r, 

where  r = m + n f o r  G = SL, OSp, HSp, r = m f o r  G = Q. 

2. LEMMA. a)  The m a t r i x  ( d i j )  h a s  t h e  f o l l o w i n g  p r o p e r t i e s :  

do j----- 0 [ O, die = 01 O, d,~ = dj (J), &,  = dt (l), 
O[OKd~y--dt_l,]..<8i (I), O[O..<dti--di,:_~-.<8i (J), 

di,io=/=d~-l,yo=~dq--/=dl-l,y for J:~ Jo, 
dt, ,i --/= dt,,]-i =>" d U ~= dl~-I for  i >~ i 0, 

where  alb..<a'lb'  i f  a..<a' and b~<b'. 

b)  I n  c a s e s  G = OSp, HSp t h e  m a t r i x  ( d i j )  h a s  t h e  f o l l o w i n g  a d d i t i o n a l  symmaetry p r o p e r -  
ties: 

dq=dm+n_~,m+n_i--m I n+dm+n_~ (I) + dm+n-i (Y) for  O = O S p ,  

d ~ j = d S m - . ~ - i - - m  l m q-d~_i  (I) + d ~ _ ]  (J) for O = H S p .  

The proof is by a direct check. [] 

~~ Weyl Supergroups. Define an action of Sm+ n on SLI n by the formula 81(wf}=3=-~(O(f ). 
The action of S m on the singleton QI n is by definition trivial - the only possibility. 

Definition. The Weyl supergroup GW of G is defined as 

a) Sm+ n for G = SL(m, n), 

b) ~6se(m'n)W]~(~ for G = OSp(m, n), 

c) {~SL(m'm)V/l~(~ for G = ESp(m), 

d) S m for G = Q(m). 
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0[i or ii0, up to the (m + n)-th element of the first column, which is dl(J) = ~l(J) = 011 
or i[0. Hence there is exactly one jump in the first column - of 61(J). To its right, by 
property 2, there are also inequality signs. 

Suppose now that there are k - i inequality signs in the (k - l)-th column and to the 
right of each of them along the rows there are only inequality signs. Then, since the zeroth 
element of the k-th column is 010, the last is dk(J) and the vertical jumps are at most 
6i(I) = ii0 or ii0, it follows that in this case there are exactly k inequality signs. In 
other words, exactly one new inequality sign will appear in the k-th column, and it will 
be the leftmost in its row, proving our assertion. 

d) Completion of Proof. By step (c), given any matrix (dij) with properties 2, we can 
construct a corresponding triple (I, J, w). We shall prove that this is a map of the sets 
2) § 3) in the statement of the lemma, i.e., that w(J) = I. In the notation of part (b), 
we have to show that ~i(Y)=6~-~(1)(f)-----6k~(f). This follows from the following property of the 

matrix (dij): if di:=/=dl_l,/ and dz.:-l---d~-1,j-t, then d~j--/=d~,/_~ and dt-I,:'l---di-i,: (see Fig. 2; 

this is a simple corollary of properties 2). Indeed, by the construction of k~ dk~,~=/=dk~-i,~ 
and dkt,i_l=dk~il,~_I, and sodk~a=/=dkri_i and dki-Lt-l=d~t-l , t~ whence 6k~(f).-=dk~,~--d~i_l,i-~-d~,~-- 
d~i,~_~t~-f~(J). We thus have constructed a map 2) § 3), which is easily seen to be the inverse 

of the map 3) § 2) constructed in part (a). 

The inverse i) § 3) of the map 3) § i) constructed in (a) is constructed as follows. 
The matrix of the relative position type of two complete flags has properties 2. The map 
2) § 3) constructed above carries this matrix into a triple (I, J, w) such that w(1) = J. 

We have thus proved the Combinatorial Lemma in the case G = SL. 

II. Cases G = OSp(m~ n), HSp(m)~ As we have already proved the lemma for the group 
SL(m, n), we can associate to every matrix (dij) with properties 2(a) corresponding to G a 
triple (I, J, w), l, Jfis~, w~s~w/, J=w(1). Since I= (di, m+n), J= (d~+n,~), it is clear that I, 
J6~fn. Properties 2(b) of the matrix (dij) guarantee that the permutation w carries a flag 
type in SLIn which is symmetric about the midpoint into a similar type, i,e., w6oW/. Thus 
we have a map 2) § 3). The inverse of the latter is precisely the map 3) § 2) constructed 
for G = SL(m, n). The fact that a triple (I, J, w) corresponding to G yields a matrix (di) 
with properties 2(a), (b) is clear from the construction. The reasoning for the maps I) § 
and 3) § i) is the same as for G = SL. 

III. Case G = Q(m). The proof here is the same as for G = SL(m, n), except for some 
slight modifications concerning the dimensions of the flag constituents. [] 

3. Schubert Supercells: Definition 

i. Throughout this section we fix G and write F = GF, W = GW. For each element wGI~ 7 , 
let di7.= denote the following function on ~ FIXFj with values in Z[Z , constant on each 
F I • Fj: J=~(:) 

dl:,~[p:• 

-- the matrix elements corresponding to the triple (I, J, w) by the Combinatorial Lemma. Let ~. 
be the tautological flag on F. Consider the sheaves ~ N~j.-=p~A p~jcTp•174215 where 

C 

Pl, P2 are the projections of F • F onto the first and second factors, respectively. Define 
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IYw]c{C- points of ~ F, XFj} 
J=w(1) 

as the set of all C-points x over which dimx(5~iN~i)=dij.w. By the Combinatorial Lemma, 
]Ywi exhausts the set of all C -points of F • F. We introduce a subsuperscheme struc- 

W~W ' 

ture on IYwl following the general construction of the flattening partition [18]. 

2. THEOREM. a) On each IYwl there exists a canonical structure of a locally closed 
subsuperscheme Yw~F xF such that the morphism ~ Yw~FXF is a flattening partition for 

W~W 

the system of sheaves {~i~]}. This means that an arbitrary morphism of superschemes g:S + 

F x F (S is Noetherian) has the property: {all g*(~iN~j) are locally direct locally free 

subsheaves in T S of ranks dij,w } if and only if g factors through the embedding w~wYw~FxF. 

P~ 
b) All Yw are bundles over F: Y,-+F , each fiber p~l(x) being isomorphic to the super- 

cell C els (P2 is the natural projection onto the second factor in the product F x F). 

c) Yw is a functor from the category of Noetherian superschemes over C to the category 
of sets, which associates to any superscheme S the set of S-points of the superscheme 

F I • Fj over which ~tN~j are locally direct locally free subsheaves in T S of ranks dlj,~. 

Remark. Part (c) is obviously a reformulation of part (a). 

The proof relies on the construction of the supereell partition of a relative projective 
superspace, to which we now proceed. 

3. Supercell Partition of a Pro~ective Superspace. Let X be a fixed Noetherian super- 
scheme, ~r a locally free sheaf of rank mln on it, and ~. a fixed complete flag in ~-. In 
the relative projective superspace Px(ll0; ~-) , consider the following chain of embedded sub- 
superschemes - projectivizations of the bundles ~i: 

@cPx (1 IO; g~x)cPx (1 [0; ~ : ) c . . .  cPx ( l  ]0; if'). 

On each of the nonempty open subsets Px(I I0; ~)r~\Px(l i0; ffk-i)r~d of Px(I I0; ~k)red , define the 
natural structure of an open subsuperscheme Z~CPx(110;~k). 

Proposition. a) The morphism ~Zk~Px(ll0;@- ) is a relative flattening partition for the 
k 

system of sheaves {~N~i}~, where ~, is the O(--l)-tautological sheaf on Px(l]0; ~). 

b) Z k is a relative affine space of dimension rk$~--|10 over X. In other words, the 
fiber of the natural projection Z k + X is isomorphic to C rk~-ll0. 

Proof. Part (b) is obvious from the construction: Z k is a big cell in Px(i]0;~). 

To prove (a), we have to show that for any morphism of schemes over X,g:S-+Px (I]0;~-) 
(S Noetherian), the sheaves g*(~A~) are locally direct locally free subsheaves in ~s of 
rank 010 for i < k and of rank ii0 for i ~ k if and only if g factors through the embedding 
Zk~Px(|I0;~T). Necessity follows from the fact, known from classical geometry, that the re- 
auction gred of such a morphism g factors through Px(ll0;~)~d\Px (II0;~_~)r~d=(Z~)r~d, and 
from the obvious fact that g factors through Px (II0;~). 

Sufficiency becomes obvious if one notes that ~ are locally direct locally free sub- 
sheaves in ~-z~ of the indicated ranks. This completes the proof. 

4. COROLLARY. Under the assumptions of Subsec. 3, there exists a relativeflattening 
partition ~F~ of the supermanifold Px(I[0;~)XFx for the system of sheaves {~t} , where 

x 
is the tautological sheaf on Px (I]0;~), ~. the tautological flag on F x - the superspace 

of complete flags in ~ over X. Under these conditions, the fiber p~(x) of the projection 
p2:~Y~-+F x over the X-point x6Fx (X) represented by the flag ~. in~-is canonically isomor- 
phic to ~Z~. [] 

5. Proof of Theorem 2 I. Case G = SL. The proof proceeds by induction, considering 
the superspace of complete flags as a relative superspace of complete flags of smaller length 
over a projective superspace. To make the inductive step possible, we shall prove a relative 
version of Theorem 2, that is, we shall work in the category of superschemes over a certain 
Noetherian superscheme X on which a locally free sheaf if- of rank mln is defined. [The for- 
mulation of parts (a) and (c) of the theorem is the same, except that all morphisms are un- 
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Jerstood as morphisms of superschemes over X and all products as fibered products over X. 
The formulation of part (b) needs no modification.] 

If m + n = I the space F x F is X, and the flattening partition obviously consists of a 
single component Yw,=FXF, w=e,,d11, w=mln=l[O or 0[i. 

Suppose the theorem has been proved for m + n = ~ - I. We shall prove it for m + n = s 
gonsider the natural projection F-+P, P----Px (1[0;d~if m > 0 and P=Px(011;~ j if m = 0. 
Relative to this projection, F is the superspace Fp of complete flags in ~/~ over P , where 

is the tautological sheaf on P:F~-Fp. The inductive hypothesis gives us a relative flat- 
tening partition (roughly speaking, a flattening partition in a fiber) of the superspace Fp 
on P for every flag ~iC ...~m+n on X, since the flag ~. induces a flag ~I/~7~ .... ~+=/~ 
of length m + n - 1 on P. By Proposition 3, the same flag ~. yields a flattening partition 
of P over X. Thus we obtain a supercell partition of F over X, corresponding to ~}- an X- 
point Of the supermanifold F over X. 

In order not to consider a functor of points, we describe the construction of a flatten- 
ing partition of the product FXF=FpXFp. The correspondence q:~.~./~, where ~. is the 

X X , , l d x q  , 

tautological flag on F, ~ the taugological sheaf on P , determines a morphism FpXFa---+FpX 
X P 

Fp whose base, by the inductive hypothesis, admits a flattening partition. The natural pro- 
, px ld  

jection p:Fp-+Pdetermines a morphism FpXFp---+PXFp=PXF, whose base, by Corollary 4, 
X X X 

admits a flattening partition. Taking the inverse images of the components of both flatten- 
ing partitions under the respective morphisms, we obtain two partitions of the superspace 
FxF. The components of the required partition are now defined as the (scheme) intersec- 

X 

tions of the components of both partitions. It remains to index the components of the par- 
tition by the elements of the Weyl supergroup SLw and to prove parts (a) and (b) of the theo- 
rem. 

Fix ~@sew and let (dij) be the matrix corresponding to w by the Combinatorial Lemmao 
Let (d~j) be the matrix obtained from (dij) by deleting the first row and subtracting rk~ 
from dij if i > 2, and deleting the k-th column and subtracting tk$ ~ from dij if j > k, k = 
w(1). As this matrix has properties 2.2(a), there exists a corresponding element w ~ of the 
Weyl supergroup SLw~ of SL(m - i, n) or SL(m, n - I). By the inductive hypothesis, w' de- 
termines a component Y~ of a flattening partition of PpXFp. Consider also the component of 

P 

the flattening partition of the superscheme PXF corresponding to the first row of (dij) i.e., 
X 

Yk/ Then rk(~A~i)!rk=010 ifj <kand rk(~f1~i)IrkSA010 ifj ~k (cf. the proof of Proposition 
3 and Corollary 4). Define the component Yw of the flattening partition of FXF as Y~---~-{idXq) -I 

X 

Ym'O ~Xid)-IYk. It is clear that, given any pair (w', k), we can construct w in such a way 
that this correspondence is the inverse of the correspondence w § (w', k) described previously. 
To prove that Yw satisfies condition (a) of Theorem 2, it suffices to observe, first, that 
g*(~in~i) are locally direct locally free subsheaves in Is of ranks dij (for the notation 
see the assumptions of the theorem) if and only if ((|dXq)og)*(~iN~/l~7~ are locally direct 
locally free subsheaves in ~-s/((id *- >~q)og) 5~ of ranks dij and ~Xid)og)*(5~5~]) are locally 
direct locally free subsheaves in ~Z's of ranks 0]0 if ] < k and if0 or 011 if j>~ Second, 
g factors through the embedding Fw-+~ XF if and only if (id~qlog and (pXid)og factor, respec- 

X 

tively, through the embeddings ~=,-+FPXFp and Y~-~PXF - this follows from the construction 
of Yw- ~ x 

We now prove (b). The general fiber of the projection p~:F/F-~F is the space of com- 
X 

plete flags, which can be represented as the relative space of complete flags of smaller 
length over a projective superspace. Viewed thus, every Schubert supercell in p=-~(~), x~F(C) 
is a Schubert supercell of the relative space of complete flags over a Schubert supercell of 
the projective superspace. Hence one can use Proposition 3 and proceed by induction. 

!I. Cases G = 0Sp, HSp~ Q. The same proof goes through, provided that the statements 
of Proposition 3 and Corollary 4 are suitably modified: for G = OSp, HSp one replaces the 
projective superspace Px(f[o;~r') by the superspace Px(l[O;~-,b) of subsheaves of rank ii0 in 
~- isotropic relative to the form b:~--+~-*; for G = Q one must consider the super-Grass- 
mannian Gz(1[l;~-,p) of p-symmetric subsheaves of rank I[i in ~-, where p:~---~- is the ap- 
propriate odd involution. The exact formulation is left to the reader. [] 
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In classical geometry, the partition of a flag space F into Schubert cells is simply 
the partition of F = G/B into B-orbits, where G is a suitable simple algebraic group and B a 
Borel subgroup. In our approach this clearly corresponds to the partition of F • F into G- 
orbits. [Indeed, having fixed a point x~P(C) in the second factor, we fix a subgroup B of 
G - the stabilizer of the point. Consequently, the fiber of a G-orbit Y over x is a B-orbit 
in F.] 

The next lemma shows that Schubert supercells are also G-orbits in the superscheme 
sense. 

6. Transitivity Lemma. Let S be a superscheme, TS=T| Let ~, ~.[ be two com- 
plete G-flags in TS (G = SL, OSp, ~Sp or Q) with the following properties (of. Definition 
2.1): i) ~[ and ~." are regularlypositioned relative to each other, 2) the type of their 
relative position is (dij). Let ~., ~. be another pair of complete G-flags with the same 
properties [and the same (dij)], with the type of ~-equal to that of ~[ and the type of ~[ 
equal to that of$~ (cf. Definition 1.2). Then every point s �9 S has an affine neighborhood 
U =Spec A such that there exists an element g60 (A) carrying the pair of flags ~Iu, ~[lu 
in T U into the pair ~o/~, ~[lu- 

Proof. I. Case G = SL. Let U = SpecA be a neighborhood of 8~S such that the sheaves 

~Iu, ~jlu, ~Iu, ~jlu, (~;n~))Iu, (~;n~)Iu are free and are direct subsheaves in T U. To sim- 
plify the notation, we shall henceforth omit the symbol IU and identify all sheaves over U 
with their spaces of global sections over U. 

We shall construct the required element g@O (A} explicitly, using induction on. the in- 
dexes i of the constituents of the flag ~[. On ~i we define the map g so that ~l~+~ (this 
is possible because the flags ~[ and ~[ have the same type). When this is done the restric- 
tion of the (as yet unconstructed) map g to ~ carries ~in~[ into ~ ]  (the intersection 
~N$ ~. is treated as a degenerate flag ~n,~1~N~2~...~_~$~ ~,~._,), since the elements dij 
are the same for the pairs of flags ~[, ~[ and ~[, ~[ . 

Now suppose that g has been constructed on the constituent ~i and carries ~1'C...C~ 

into ~< $.. <~k and~k ~[into ~[. We shall construct an extension of g to ~+i, satisfy- 
ing the same conditions for k = k + i. 

Let J0 be the least j for which d~+1. i~d~l. In the A-module ~+I ~;o take an element 

ek+ I in the complement of ~%~)0, and in the A-module ~+1~jo an element ek+l in the com- 
plement of ~7~ (dimensional arguments show that this is legitimate). Define g on e~+~: 

~e~+l=e~+~. Extended by linearity to ~,~+I, g carries ~IC ... C~+~ into ~ic...C~+~- 

We claim that ~+~[ is carried by g into ~+, in ~+~[. If j < J0 it follows 

from dimensional arguments that ~+~ O~=~k(}~; and ~k+~;=~k~; �9 and so, by the induc- 

tive hypothesis, ~(~+~))-----~+~7. ~(~+i~},)-----~k+l~;0 by construction. Finally, if 

J > J0, 

which by construction is equal to ~+~R~ 7, 

The last step of the inductive construction yields a map g with the desired properties, 
except for Berg = i. This may be remedied by correcting g, e.g., at the last step: ~(e k) = 
(Bar g)• (the exponent will be -i if e k is even, +i otherwise). 

II. Case G = OSp, Hap. Up to [(m + n + i)/2], where m[n = dimT, the inductive con- 
struction is the same as for G = SL. One then chooses e k and ek so that b ~, ~+n+~)~ 

~, e~+=,~_a)=l, b(e~, e~)=b(~a,e])~-O for all other j (b is a suitable bilinear form). It is 
now clear that the element g taking e k into ek for all k lies in G(A), since it preserves the 
Gram matrix of the bilinear form. By construction, g has the desired properties. 

III. Case G = Q. The construction is the same as for G = SL, except that at each in- 
ductive step s dimension of the space ~k on which g is being defined is increased by iii. 
More precisely, considering the complement to ~j~ in ~+i~ J, one simultaneously chooses 
two elements: an even one ek+ ~ and an odd one P(ek+ ~) (the same for ~.). These are carried 
into elements ~a~, p(~§ respectively, and thus ~@Q (A), i.e., ~op~-po~. [] 
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. 

Definition. 

o = oi, then 

Schubert Supercells: Dimension 

I. Definition. A basis reflection o is one of the following elements of the group GW: 

a) G = SL: o is a permutation of neighbors in {I, 2,...,m + n}, o i = (i, i + I); 

b) G = OSp, HSp: o is a simultaneous permutation of neighbors in the left half of 
the sequence {I, 2 ..... m + n} and of mirror neighbors in the right half, o i = (i, i + 

r m + n ]  [ m + n ]  with l)(m + n + 1 - i, m + n - i), i+1<[--~j , or the transposition of l= ---2-- 

its mirror reflection,~t=(/,m+n+1--1); 

c) G = Q  :a,=(i, i+l)ES~. 
2. We can now define the superlength of an element of the Weyl group. 

a) Let 1,16~, and let o6~W be a basis reflection such that J = o(I)o If 

and if o = Ts then 

i1]O, if l = J ,  G----SL, OSp, liSp, 
Itj  (a) ---- 1, if  1 4= J,  G = SL, OSp, liSp, 

I1, if O=Q, 

1110, 
!111, 
Jot o, 

lzj(~) = l l  [ 0,  
IOtl, 
(ot o, 

i f  6t (J) = 1 I 0, G = OSp (2r + 1, 2s), 
i f  8z(J)-----0[1, O--OSp(2r+l,2s), 
if- 6z(J)=110, O=OSp(2r ,  2s), 
i f  ~l (J) ----011, U =OSp (2r, 2s), 
if 81 (J) = 1 [0, G =BSp (m), 
i f  6t(J)=011,  G----IISp(m). 

b) Under the same conditions, let ~=a*... 036~W be a reduced factorization into basis 
reflections (i.e., the number k of basis reflections into which w is factored is minimal), 
J = w(1). Put I i = oi...o1(1). 
bers 

Then the superlen_g_~ s is defined as the pair of hum- 

4: (W): = ~/;i,fi+, (eft+l), 
i = 0  

and the length as the number k. 

3. THEOREM. If J = w(1), then 

dlm Y,~ N (F~, X FA = l l :  (w) + dim Fs. 

Remark. Using induction on m + n and formulas for the dimension of G-Grassmannians (of. 
[8, Theorem 5.6.3]), one can verify that 

|(r2+ s2l s (2r + lD, G=OSp l2r + l, 2s), 
dim FI ](r (r-- 1) +s212rs ), O = OSp (2r, 2s), 

this dimension is independent of I, and 

G----IISp (m), 

where rls=dm(1) is the dimension of the maximal isotropic constituent in a flag of type I, 
r+s=m. 

Before proving the theorem we state two corollaries. 

4. COROLLARY. The superlength s is independent of the choice of the reduced fac- 
torization w = ok...o I. [] 

5. COROLLARY. 

Ixz (w) +dim F,=Ij~ (w -~) +.dim Fj. 
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Proof. Y~n(FIXFj) =Y~-In(FJXFI). This follows from the definition of the space Yw - 
the isomorphism is established by permuting the factors of the product F I x Fj. m 

6. The proof of the theorem proceeds by induction on the length k of the element w = 
ok...o I of the Weyl group. Denote the tautological flags on the first and second factors of 
F I x Fj by ~i,. and ~,., respectively. 

Let k = 0, i.e., ~=e, J=], lll~)=0[0 , and it will suffice to prove that Yen(FIXFI)" 
F I. Now Ye is the diagonal A in F x F. Indeed, by Sac. 2.5(a), dU,e.lz=dm~n(~d)(f). On the 
other hand, (~l.i~[.])IA=~f,,In(i,i)[a , and so these sheaves are locally free locally direct 
subsheaves in T h of ranks dmm(~,y)(/), Therefore, if g:S § F x F is a morphism of superschemes 

which factors through A~FXF , then all ~*(~01~),]) are locally direct locally free sub- 

sheaves in T S of ranks du,e.ll. Conversely, if all g (~f.i~l.)) are locally free of ranks 

dll,e,ll, then ,kg*(~1,i~.])=di([) for all i and I, that is, ~*(~l,i)=g*(~I.l). It is clear 

that in this case g factors through A~FXF. 

Now for the induction step. Suppose the dimension formula true for any w = ok...o ~ 
(reduced factorization into basis elements). We have to prove the formula for elements of 
the Weyl supergroup of length ~4c|: w~=~+~...~ ~. Put w0=~...ff t, ]0=w0~/). We shall need the 
following lemma. 

7. LEMMA. i) Let o k+~ = aq be a basis reflection. Then ~$t(q)<~$t(q~_1)" 

2) Let 6~+*=~,I= [ m ~___~n ]. Then w[ 1 ~) <,St (m ~-n +I -- O. 

To prove the lemma, we observe that each of the Weyl supergroups under consideration is 
isomorphic to a classical Weyl group, and moreover the basis reflections correspond to re- 
flections with respect to elements of some system of simple roots. Hence Lemma 7 is simply a 
restatement, in terms of permutations, of the following classical lemma: 

7' LEMMA (see [i, 20]). Let w be an element of a classical Weyl group of type A, B 
or C, ~ a positive root. If l(w)=l(o~w)--l, where s denotes length, then w-~(~) is a positive 
root. 

We introduce new notation: if ff~§162 then ~=~t(q), b_~_~l(q~-l) and if ff~+~-~l., then 
a----w$'(1), b=w~l(~-l-n-Fl--l). By Lamina 7, a < b. 

I. Case o k+~ = aq. We compare the matrices (diT.,,f~) and (dU,=0,H ~. 

8. LEMMA. d~r (]@--6r (Jo) i f  i >  b, 

d~r162 (Jo) if a~<i <b, 
with symmetric relations for G = OSp or ~Sp, 

d~],~,l]=dtj,.o,iJ~ for other ~, j. 

The proof follows at once from the definition of dij,w,I J [see Sac. 2.5(@)]. 

Thus, we have formulas 

~Sp, 

for other i, j. 

rk ----rk a, (]a +a,+, (Ja i f  i,~.~, (i) 

=rk(~'~,in~)e,q)[rw--ar if;a-.<i<b, with symmetric relations for G = OSp, 

rk (~ ; ,n .~ . , j )  I ~, = r k  I,,,. 

Consider the natural projections FJ0 + F and Fj § F onto the superspace F of incomplete 
G-flags obtained by "forgetting" the q-th constituents ~0.q and ~,q and the dual consti- 
tuents in the cases G = OSp, ESp. Formulas (i) show that the projections of the supermani- 

folds Yw0 and Yw under Po :FrXF~o-+FtX-F and p:FIXF~-+FzXP coincide: Po(Ywo)=p(Y~)=Y. 
(Recall that the partition on Yw was defined as a flattening partition for the system of 

sheaves {~z,iN~j./}; it is obvious that the projections of Yw onto FfXP form a flattening 

partition for {~z,in~y}, where ~,. is the tautological flag on F, p*~q~i.i=~o,j, p*~j~-~]q, 
j ~ q.) In fact, Yw0 is isomorphically projected onto Y, while Yw is a big cell relative to 
a projective superspace of dimension Ij.j(ff ~+*) over y (if G = Q - the super-Grassmannian of 
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p-symmetric ill-dimensional planes in a 2]2-dimensional superspace with odd involution p). 
This again follows from the properties of the matrices (dij) and formulas (I), rewritten as 
follows: 

0 [ 0  if i<a, 
rk aq (4) i > a ,  

. . . .  (JO .Jr- 6q§ (JO) if i :~ b, 

' 'q 'q-- ] tn I, Oq+l (Jo) if i > b, 

rk n I.=0 
fo r  a l l  i .  

(2) 

(3) 

(4) 

(5) 

Indeed, formula (2) implies 

~'~..~ W'~-..~_~ [z~, C~5., ,  n ~';,0.~+,/9'~,o,~_ , I~',,o. 

whence, by (3), the last inclusion becomes an equality. This mean that the tautological 
sheaf ~,~0.q/~.q_~ of the superspace Yw0 over Y is exactly the sheaf $~).a n~',q+~/~,,~_ I lifted 

from Y, and therefore dimFw--dinlY=O[0. Similarly, formulas (4), (5) and (3) yield the con- 
clusion that the tautological sheaf $~,q/~.q-1 of rank 6q+~ {Y0) of the superspace Yw over Y 

must be embedded in the sheaf $~).bf]~,q+~,r of rank 6q(Yo)-4c~r lifted from Y, and 

that it cannot intersect the sheaf ~' b_~N$~,q+i/~w_~ of rank 8q(Yo), also lifted from Y. 

Thus, dimY~--dimYm=dlrnY~--dimY=14~(ak+~) , and finally dimY~=/~ (w)+dim F~ by the induc- 
tive hypothesis. 

II. Case o k+l = ~s Consider the natural projections 

superspace ~ of incomplete G-flags obtained by "forgetting" 

~J.l, respectively, and the dual constituents in the case G 

Fj,--->-F and Fs-+F onto the 

the s constituents ~0 d and 

= OSp(2r + I, 2s) (this is the 
only supergroup G for which the constituent dual to ~J. , l  is not '~'o,t itself). Reasoning 

as in the previous case, one can show that the projections of the super-manifolds Yw0 and Yw 

under p o : F z X F A ~ F f x P  and p : F ~ x F s ~ F I X I  ~ coincide ~0(Yw~)-----p(Y,}-----}~ and "that dimY m- 

dimY, while Yw is a big cell of the relative (over Y) projective superspace P(6t(J);6t{Y)~ 
61+~(Y)--~61+2(Y),b) for O=OSp(2r+l, 2s) and P(6t(Y); 6t(d)+at+l(Y),b) for other G. Here P ( x ; y , b }  
denotes the superspace of x-dimensional isotropic (relative to b) lines in a y-dimensional 
superspace. The relative dimensions of these superspaces are given in Table I below (el. 
[8, Theorem 5.6.3] ). This dimension coincides with [4] ~gk+J) and by the inductive hypothesis 
dim Y~-ll.r (W) +dimFI. 

5. Structure of Parabolic Subgroups 

The list of known homogeneous spaces of a complex simple algebraic supergroup G, be- 
ginning with the spaces of complete G-flags described above, can be extended by including also 
spaces of incomplete G-flags, including super-Grassmannians. In the purely even situation 
these exhaust all possible homogeneous spaces, if the latter are defined as complete quotient 
spaces of G modulo closed subgroups. In the supercase, there are more homogeneous spaces than 
flag spaces; their structure is described by the following simple proposition. 

Proposition. Let G be a complex algebraic supergroup, whose underlying group Gre d is 
reductive. Let G act transitively (in the superscheme sense - see Sec. 3.6 or [6, Sec. 
4.1.17]) on some superscheme X, and let P be the stationary subgroup of a closed point X 
(in this case we write X = G/P). The variety Xre d is complete if and only if Pred is a 
parabolic subgroup of Gre d. The structure of parabolic subgroups of reductive groups was 
described in [15] (cf. [13]). u 

In classical geometry there is an equivalent definition of homogeneous spaces, as quo- 
tient spaces modulo parabolic subgroups, i.e., closed subgroups containing a Borel subgroup. 
Our topic in this section is superanalogs of parabolic subgroups. It will follow from our 
results that they are all stationary subgroups of incomplete G-flags. As an application we 
shall derive the following proposition (see [ii]): The reflection of an invertib!e sheaf on a 
space of G-flags with respect to an odd root, used in proving the superversion of the Borel-- 
Weil-Bott theorem, carries the sheaf into an invertible sheaf, again on a space of G-flags. 
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TABLE 1 

Group 

OSp (2r + 1,2s) 

Projective 
snperspace 

PO I o; a I o, b) 
P(oI1; 112, a) 

Dimension of 
projective 
superspace 

IIO 
I11 

OSp (2r, 2s) 

IISp (m) 

P(1 IO; 21o, b) 
P (011; o12, b) 

P (11 o; 

O 0  
1 0 

01] 
010 

i. Borel and Parabolic Subgroups. A Borel subgroup of a simple algebraic supergroup 
G of type SL, OSp, HSp or Q is the stabilizer of a complete G-flag in the space of the stan- 
dard representation T. In all cases except Q, every Borel subgroup is obviously represented 

(;~ in O ~OLc (T). If G = Q the Borel sub- by a subgroup of upper triangular matrices ".., 

groups are represented by subgroups in O~ GLc (T) of the following form: 

o'...l o... i 
o "~1 o"~1 

(the block subdivision c ,rresponds to parity). A parabolic subgorup of G is a closed subgroup 
containing a Borel subgzoup. Below we shall describe these subgroups (for G ~ HSp and under 
some less essential restrictions3 in terms of root systems; Borel subgroups will be treated 
in Subsecs. 5, 8 and parabolic subgroups in Subsecs. 6, 8. However, before we can deal more 
thoroughly with roots, we must lay the ground accordingly. 

2. Root Systems. From now until Subsec. 7, 9 will denote a classical Lie superalgebra 
over C of type A(m, n), m ~ n, m,n>~O, B(m,n), m>.O, n>O, C(n), n>~2, D(m,n), m>~2, 
n > 0, D(2, i; a), F(4) or G(3). [Type A(m, n) corresponds to the Lie superalgebra ~(mJrl, 
n + i), type B(m, n) to 0~(2m+l,2n), type C(n) to 0~(2,2n--2), type D(m, n) to 0~(2m, 2n), 
types D(2, i; a), F(4) and G(3) are exceptional; type Q(n), which corresponds to the Lie 
superalgebra q(n+l), will be considered in Subsec. 8.] If we fix a Cartan subalgebra ~ of 
g, then g factors into root subspaces (see [16, 2.5.3]): g=~g=, where A is the root system 

of g, This factorization has the following properties. 

Proposition (Kac, [16, Proposition 2.5.5]). 

(a) ~=~; 

(b ) ,d im ~ = 1  V ~ O ;  

(c) up to a multiplicative factor, there exists on g exactly one nonsingular invariant 
symmetric bilinear form ( , ); 

(2) (~,~,)=o w ~ - ~ ;  
(3) the form ( , ) defines a nonsingular pairing of g~ with g-~;~ 

(4) the form ( , ) is nonsingular on ~; 

(5) [e~, e-~}= (e~, e_=)h=, where h a ~ 0 is defined by (h=,h)=~(h), he~, e•177 

(6) =eA~--aeA. [] 

3. Systems of Simple Roots and Positive Roots. Definition (Kac~ [16~ 2.5.4]). A sub- 
set H={=I, .... ~}cA is called the system of simple roots if there exist vectors ei6~i, f~O8-=i, 

hiE~ such that [ei, fj] = 6ij6i, the vectors e i and fi, i = I ..... r, generate g, and ~ is 
the minimal system with these properties. 
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Examples show that for all classical Lie superalgebras except A(m, n) the root system 
A \ {0} is not an abstract system of complex roots. Nevertheless, Proposition 2 and the fol- 
lowing proposition furnish sufficient properties of root systems to carry the classical proof 
of the fundamental result (see [13, Chap. VIII, Seco 3.4]) over to the supercase. 

Pr__~osition. The system of simple roots H has the following properties: 

I) II is a basis of the vector space ~*; 

2) all roots ~6A may be expressed as linear combinations ~=~r~=.~ with integer coef- 
=@r~ 

ficients m s of the same sign (i.e., either all r/z=~>0 or all rn=~<O), 

Proof. We begin with the second part. 

2) Since e i and fi, i = 1 ..... r generate ~, any element g@g~, g~kO can be written as 

g-~-lc/;l(el, .... er, fl ..... fr), where oj is a commutator of elements of ~. Since [e~, fj~-~-~lh~ 
and [~j, e~]-----= i (hf) e~, [~7, fi]----- --=~ (~i) f~,  [kt, hy]=O i t  f o l l o w s  t h a t  g-~-Zdj6y(ea . . . . .  er)-+-Zd~6~(/~ . . . . .  
/r)-}- Zaffz~,where 6j and 6~ are commutators of the elements el,...,e r and fl ..... fr, respec- 
tively. If g@g~, ~=0, dimg~=l by Proposition l(b), and therefore g=ri6j(e~ ..... er) or a6~ 

(fl,...,fr) for some 6j and 6 k. Hence ~= r, zic~i, where m i is the degree of the monomial 6j 
i=I 

! 

in e i (or of 6 k in fi), i.e., m~@Z and all r~O (or-%0). 

I) That the elements of H are linearly independent becomes obvious if one looks at the 
systems of simple roots written out [16, 2.5.4]. 

The set H spans ~* as a vector space over C. Indeed, for any ~6~* one can define h a 
by requiring that (k=, /t)== {~), /~@~, and the fact that ~ is spanned by the elements e I ..... e r 

r 

and fl .... ~fr implies that h== Z c/~i. Since hi=[e~, f~]-----(ei, f~)h= i, where (~%, [z)~---~{~) for 
t~I s r 

a l l  ~ I )  [ P r o p o s i t i o n  2 ( d ) ,  ( 5 ) ] ,  i t  f o l l o w s  t h a t  ~ = =  c~.(e~,f~)lt%, whence  r f~)o;~, 
as required. [] ~=~ ~=~ 

We define the re__ t of positive roots A+ as the set of nonzero linear combinations of 
simple roots with nonnegative integer coefficients: A+=(ANZ+II)\ {0}. A symmetric definition 
gives A- : A-=(A~(--Z+)II)\{0}. By Proposition 3, A=A+UA-U{0}, A+~A-=Zo 

4. In decomposable and Simple Roots. Definition. A root ~A + is said to be decom- 
posable if ~{~,?%A + :0~=~-~; otherwise we shall say that ~ is an indecomposable root. 

LEMMAo The set of indecomposable roots is precisely the set of simple roots .~. 

Proof. i) Each element =~[I is indecomposable, for if =~=~-?, ~=Eb~=~, ~=Ec~=~, b~0, 

c~0, <z~61I, then ~=E(b~-~c~)~, and since the simple roots are linearly independent we get 
b~-}-c~=O Vi=/=], br~-c~=!l. Since the coefficients bk, c k are nonnegative integers, it follows 
that $ = 0 or y = 0, contrary to the assumption that 6, 7%A +. 

2) Let =~A +, =~IIo We claim that ~ is decomposable. Indeed, consider any nonzero vector 
g~. Then g i=x.s ..... e~) by the definition of ~ [here x6C, ~(e~,...,er) is some commutator of 
the elements el,...,e r figuring in the definition of the system of simple roots). Since 

C~@]'I, 6(ei ..... er)~----{6t(el ..... er), 6~(et .... er)] for certain commutators 6~ and 6 2 . Since[~r, ~] cg~+y 
we have a = ~ + y, where ~ and 7 are such that ~l(el ..... er)6~, ~(el, .... er)~, and hence 
~, ~,eA +. [] 

5. Borel Subalgebras and Borel Subgroups. The Borel subalgebra of a classical Lie 
superalgebra ~ [relative to a fixed Cartan subalgebra - see above, Subsec. 2] is the sub- 
algebra b= @ 8=. A parabolic subalgebra is any subalgebra of S containing k 

= 6 a§176 } 

Let G be a complex algebraic supergroup of type SL(m, n), m ~ n, OSp(m, n) its component 
of the identity [G O = G always, except in the case G = OSp(2r, 2s)], g the corresponding Lie 
superalgebra. 

Proposition (Skornyakov, cf. Kac [17]). Under the natural one-to-one correspondence 
between subalgebras of g and closed subgroups of G o , Borel subalgebras correspond in one-to- 
one fashion to Borel subgroups in the sense of Subsec. i, and parabolic subalgebras to para- 
bolic subgroups. 
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Proof. I) Let 5 be the Borel subalgebra of g corresponding to the set of positive roots 
4 + . There is a fuller analog of Lie's theorem for the Lie superalgebra ~ than for arbitrary 
solvable Lie superablgebras: Every finite-dimensional irreducible representation of ~ is one- 
dimensional. Indeed, any highest weight vector of an arbitrary finite-dimensional representa- 
tion of b is a characteristic vector, and thus any finite-dimensional irreducible representa- 
tion of b is one-dimensional. Applying this fact successively to the restriction to b of 
the standard representation T of g and its quotient representations, we infer that ~ leaves 
invariant some complete SL-flag f in T. If G = SL this means that the closed subgroup B of G 
with Lie superalgebra ~ is contained in the stabilizer StG(f) of the flag, i.e., in a Borel 
subgroup. In fact, B = StG(f), for otherwise the root system of the Lie superalgebra of 
StG(f) would contain roots ~ and -~ for some a~A\{0}. This is impossible, as is readily 
seen, e.g., by considering the matrix representation. 

If G = OSp, the analog of Lie's theorem for b must be applied in a somewhat different 
way. To this end, we note that every weight vector in the standard representation of ~ is 
isotropic (this is also true in every subfactor of the restriction of this representation to 
~). Indeed, none of the weights of the standard representation vanish, and if vfiT is a vec- 
tor of weight ~, then O=b(hv, v)-~b(v, hv)=2~(h)b(v,v) for all h~, whence it follows that b(v, 
v) = 0 (b is the symmetric g-invariant bilinear structure form of T), that is, v is isotropic. 
We now use induction to construct a complete G-flag in T that is invariant under ~, beginning 
with a ~-invariant one-dimensional weight subspace V (which, as just shown, is isotropic), 
and considering the subfactor V• of the representation T of ~ where V • is the orthogonal 
complement of V relative to b. We then apply the same arguments to u177 and so on. The 
final result is a complete isotropic flag in ~={OcUc...~VIcT}. As in the case G = SL, 
the closed subgroup B of G o corresponding to 5 is precisely StG0(f), that is to say, a Borel 
subgroup, 

2) Let B be a Borel subgroup of G o . As already remarked, if ~ is a root of its Lie 
superalgebra ~, then -~ _s not a root of ~. Therefore, if A + denotes the ssstem of nonzero 
roots of ~ and A- the complement of A+U{0} in the root system A of 8, then A -------A-, :A----- 
~+UA~U{0} . Let ~{~i ..... ~r} b'~ the set of indecomposable elements of 4 + �9 We claim that 

is the system of simple roots in the sense of Definition 3. Choose nonzero vectors ei@~=p 

fief-= l and put hi:=[e~, /~] - by Proposition 2(d), (5) this is an element of ~ . In addition, 

if i ~ j, [ei, fj] = 0, for otherwise ~--~i=~6A\{O}, contrary to the assumption that ~i and 
~j are indecomposable. Obviously, the vectors e i span the subalgebra G ga; symmetrically, 

the vectors fi span the subalgebra @ g~. The vectors h i span the space ~, since N generates 
~A- 

,~*, and by Proposition 2(d), (5) the vectors h i are dual relative to the form ( , ) to the 
roots ~i (up to a multiplicative factor). Thus, the elements el, fi span ~. Yinally, 
is the minimal set with these properties, since a minimal subset ~'___~ would be a system of 
simple roots and the corresponding Borel subalgebra ~' would be contained in K But in the 
first part of the proof we proved that in this situation b'~ implies ~'~, whence it fol- 
lows that ~' = ~. Thus H is the system of simple roots and ~ is indeed a Borel subalgebra. 

3) The assertion concerning parabolic subgroups and subalgebras follows trivially from 
the proven result for Borel subgroups and subalgebras. 

6. THEOREM. Let g be a classical Lie superalgebra, ~ a Borel subalgebra, N the cor- 
responding system of simple roots. Then for any parabolic subalgebra ~Db there exists a 

subset I c H such that ~-----~ l ~ 8=I' where AI is the subset of the set A- of negative roots 

generated by I as a semigroup. 

Proof. Since ~ is an Abelian subalgebra of ~, ~----- @ ~= for some subset A c 4. We must 
=6A 

show that A=A§ for some I c H. 

Define I to be the set of all simple roots appearing in the decomposition of roots in 
AQA- as sums of simple roots. We claim that I c A. Let =6A~A- and let -~ be decomposable, 
i.e., for some ~, ~s + --==~d-y. Then --~, --~A~A-, since [~,~]=8-v and [~=,~I~-~" by 
Proposition 2(d), (i), and as ~,y@A+cA it follows that ~,--y~A. It now follows by induc- 
tion that I c A. Hence AF~A. By the definition of f A~A-cA?, and therefore A--=A +U{~U 

7. COROLLARY (Skornyakov). All connected parabolic subgroups of G are stabilizers of 

G-flags in T (G of type SL or OSp). 
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Proof. Let B be a connected Borel subgroup which is the stabilizer StG0(f) of some 
comple-~ee Gl-flag f={0~...~+n=T}, where Tml n is the space of the standard representa- 
tion of G. We distinguish two cases. 

I. Case G=SL(m, ~, OSp(2r-{-1, 2s) or OSp ~r, 2s); ifO-~-OSp(2r, 2s) dim~r+s--dimat+~_~=0[l. 
Let f' be a (not necessarily complete) G-flag that can be extended to f (i.e., all consti- 
tuents of f' are constituents of f). It is clear that St~o{ff)DStoo(f)~-B, i.e., St~ ( f  ~} is 

a (connected) parabolic subgroup. Thus the set of stabilizers of G-flags extending to f 
is a subset of the finite set of (connected) parabolic subgroups containing B. It will suffice 
to prove that these sets contain the same number of elements. By Proposition 5 and Theorem 6, 
the number of parabolic subgroups containing B is equal to the number of subsets of the cor- 
responding system of simple roots ~. The number of elements of ~ for G = SL(m, n) is m + n - 
i, and for G = OSp(m, n) - [(m + n)/2] (see [16, 2.5.4]). Clearly, for every G this is pre- 
cisely the number of (isotropic in the case G = OSp) constituents of the complete G-flag f, 
not counting 0 and T. The number of G-flags f' extending to f is obviously equal to the 
number of subsets of the set of (isotropic) constituents of f, not counting 0 and T. In 
addition, to different f~ and f~ correspond different subgroups StG0(f ~) and StG0(f~). 
Otherwise these subgroups would both coincide with the subgroup StG0(f') for the flag f' 
composed of all constituents of f~ and f~. This would imply that the space of G-flags of 
the same type as f' is precisely the space of G-flags of the same type as f~ (recall that 
the type of a flag is the ordered sequence of dimensions of its successive factors); but 
this is impossible, because constituents of a flag f' not occurring in f~ can always be in- 
finitesimally displaced in such a way that the resulting flag is still a G-flag (at this 
point it is essential that we are in Case I). We have thus proved that the number of sta- 
bilizers of G-flags that can be extended to a fixed complete G-flag f equals the number of 
connected parabolic subgroups containing B = StG0(f). This proves the corollary for Case I. 

!I. Case G--~-OSp(2r, 2~, d.im~r+s--dim~r+s_l--llO. Here the argument is somewhat more 
complicated, since different G-flags f~ and f~ extending to the same complete G-flag f may have 

l 
the same stabilizers StG0(f~) and StGP(f~). Example: f2 = f, f] = {f without the Lagrangian 

(maximal isotropic) constituent ~r+s}. If Sto~{fl}~Sto0 (f~ then the Lagrangian constituent of 

f~ can be infinitesimally displaced, which is impossible - in fact, f~ can be extended to a 
complete flag by adding a Lagrangian subspace in exactly two ways. Hence is fellows, be ~ 
sides, that the same Borel subgroup B is the stabilizer in G o of two distinct complete G- 

flags: f=~c~1~.-~ ~t+~_IC~r+~C~r+s+1~ �9 ~ �9 cT} and f'={0C~1~o ~176 C~t+~_~C~+sc~t+~+~... ~F}, 
the latter differing from f only in its Lagrangian constituent. We shall make use of this 
fact in proving the remainder of the corollary. 

As in Case I, we note that the set of stabilizers of G-flags that can be extended to f 
or to f' is a subset of the set of connected parabolic subgroups containing E--=Sto~ 
StG0(f'). These sets coincide, since they are finite and contain the same number of elements. 
Indeed, the second set contains 21NI = 2 r+s elements, where K is the system of simple roots 
of the suPergrou p G = OSp(2r, 2s), while the number of elements in the first is obtained by 
adding the following: i) the number of G-flags containing the constituent ~r+s but not ~r+s-l; 
2) the number of G-flags containing ~+s but not ~r§ ; 3) the number of G-flags containing 
~r+s-t and ~r+s; 4) the number of G-flags containing neither ~r+~_1, ~r§ nor ~r+s (in all 
cases the flags in question are assumed to be extendable to f or f'). Obviously, the sta- 
bilizers of all these flags are distinct and each of the four components of the sum equals 

8. In this subsection we briefly summarize some results concerning parabolic subgroups 
of the supergroup G = Q(n). The corresponding Lie superalgebra is~=q(n)={X~gl(n,~)I[X,p]=0}, 
where p is a given K-symmetry in the standard representation Tnl n, p2 = i. The proofs, which 
will be omitted, are analogous to those for G = SL and S = OSp. 

8.1. Let g=r ~3, and let ~ be a Cartan subalgebra of the even part g~l(~. 
For b~ we have a decomposition ~= e ~= into root subspaces (see Penkov [i0]), where & is the 

root system of the reductive Lie algebra g~, so that A is a root system of type An_ ~. We 
define the Cartan subalgebra of ~ to be the subalgebra ~=~@~K:=~" The root decomposition 
has the following properties. 

Proposition (Penkov [i0]). 

(a) dim~==lll v~-~-O; 
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8.2. Since Ac~ is the root system of the Lie algebra gl(~, ~ is an abstract system of 
complex roots in the subspace of linear forms on ~ that vanish on the center of @l(n) (see 
[12, 13]). We may therefore call a subset ~={~i ..... a~}cA the system of simple roots of the 
superalgebra fl if it is an abstract system of simple roots (see [12]). We also define the 
set of positive roots A+:=(A~Z+~)\{0} and the set of negative roots A-:=(An(wZ+)H)\{0}. 

Then A=A+~A-U{O}, A+~A-=Z. 

8.3. The Borel subalgebra of g is defined as ~= ~ g~. A parabolic subalgebra is 

any subalgebra of g containing b- ~EA+U{O} 

Proposition. Under the natural one-to-one correspondence between subalgebras in g and 
closed subgroups of G, the Borel subalgebras correspond in one-to-one fashion to the Borel 
subgroups in the sense of Subsec. i, and the parabolic subalgebras to the parabolic sub- 
groups, n 

8.4. THEOREM. Let g-~-q(n), n>8, and let b be a Borel subalgebra and H the correspond- 
ing system of simple roots. Then for any parabolic subalgebra P~b there exists a subset 
I c H such that ~-----bO ( @ g~, where Al is the subset of the set A- of negative roots gen- 

~6~7 
crated by I as a semigroup. 

Proof. The set of roots of the superalgebra ~ relative to ~ is indeed a parabolic set 
of roots, and the theorem easily follows from the description of parabolic sets of roots - 
see [12, Proposition VI.I.7.20]. [] 

8.5. COROLLARY. All parabolic subgroups of G = Q(n) are stabilizers of G-flags in T. o 

Remark. The truth of the theorem and the corollary is readily verified for the super- 
algebras q(T~ and q(2) . If ~q(n)~q(n) is the subsuperalgebra consisting of all endomorphisms 
of Tnl n that commute with p and have zero odd trace, the assertions are true (and the proofs 
are the same word for word) for n~>3 , but for n = 2 there is a counterexample: the parabolic 
subalgebra of ~q(2) of all elements 

9. The structure of the parabolic subgroups in the case G = HSp(n) is not known. It 
should be noted that the root systemof the superalgebra $=~(~) is even less similar to 
an abstract root system than that of the superalgebra ~(m,e). An idea of the difficulties 
arising here may be gained from the root description of Borel subgroups of ~ presented by 
Penkov [ii]. 

6. Superspaces of Incomplete Flags 

In this section we summarize results relating to Schubert supercells in the case of 
superspaces of incomplete flags. 

I. The basic objects of our investigation will be G-flags. We retain the notation of 
Sec. i: Tml n is the space of the standard representation of G, GI is the set of types of G- 
flags, i.e., the set of sequences (61,...,8 r) such that for some G-flag 0=~0~Ic...~T=T, 
8~=dim~i--dim~i-1. IfI~ of , then GF I denotes the superspace of G-flags of type I. As in 
the case of complete flags, all the supermanifolds are connected, with the exception of G = 
OSp(2r, 2s), when GF I may spit into two components. 

LEMMA. 

SLI-= { (81' "" Sr)i l ~< r "< ra'~t'n' 8~ > O l O' (~ 8'= rn ' n} 

OSPl ={I(51 . . . .  ' 8r)ESLI 18~ = St+l-t}, 
nsPI ~-  {(61 ..... SL e 6r)(~ I ] 81=8,+i-1},  

ql----- {(81 . . . . .  8r){~ sLI I 8t ~--- all  gt}. [ ]  
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Fix the number of constituents r and a sequence of natural numbers U=(=1,...,~r) such that 

~u~=tt~-~t~. Let~O~GO(r,U) denote the subset of GI consisting of all f-----(~1 ..... ~r) such 

that [6~l=a~ for all i, where [(=Ib)[=~+@. The superspace of incomplete G-flags correspond- 
ing to o~) will be denoted by aFe: 

oFo: = II eFt. 
I~Ge 

2. Position of an Incomplete Flag Relative to a Comp.lete Flag. Definition. Let ]~,. 
be a complete G-flag in T S of type Is a G-flag of type Ifi~ (S is a superscheme 
over C). We shall say that these flags are regularly positioned relative to each other if 
for all i, ] ~,~$~;,7 are locally direct locally free subsheaves in T S of constant rank. 
The type of the position of ~,. relative to ~,. is the matrix with components d~i~-rk(~,~{~ 
~. i), O..<j..<r, O..<i~<t, where 

t--~ m-~ n for O =SL ,  OSp, 

t=2m for O=llSp, 

t~---fiT for G=Q, 

- this notation will be retained throughout this section. 

3. Properties of Relative Position Matrices. LEMMA. The matrix (d~i)o<~<~ of the posi- 
O~,j<r 

tion of an incomplete G-flag relative to a complete flag has the following property: (dij) is 
obtained from some matrix (dii)0<~, i~ which is the relative position type of complete G-flags 
by deleting the t - r rows with the same indexes as in the natural "forgetful" map ~f _+G~). 

one. 
The proof follows from the 

O 

4. Definition. Let @cO 

a) We is the subgroup of 

fact that any incomplete flag can be extended to a complete 

(r,u), as in Subsec. i. 

GW whose elements are the permutations that carry each of the 

sets {I ..... ii}, {iln u I, .... i2} ...... {ir-1~- | ..... t} into itself, where ik: = ~ ~j. 
7=i 

b) w(1) will denote the image of a pair {~, [), ~6GW/We, fs under the map {o~7]W4X 
Gifn-~@ induced by the action ~WxGI_~aIa ~ 

5. Combinatorial Lemma. There exists a bijection between the following sets: 

a) the geometrically realizable types of position of incomplete flags of all typesI@~O 
relative to complete flags; 

b) the matrices (dU)0~.~ ~ with properties 3, hence satisfying the following symmetry 

conditions in cases G = OSp or ~Sp: 

OSp: d~l =d,_~.~_ I- m ln+d,_~ (I) +d,_j (Y), 

[TSp: d~i-----_ d~-~.r_j -- m } m + d~_~ (I) + d~_j (J); 

c) the triples {(/, J, ~))I~r@~ ]60~), zg~GW/Wo, ]=9)(Z)}. 

Proof. It is readily seen that each of these sets is obtained from the corresponding 
set for complete flags by a suitable "forgetful" projection. The fibers of these projections 
are mapped bijectively onto one another by the bijections whose existence was established in 
the Combinatorial Lemma for complete flags, o 

6..Schubert Supercells. Put F 
flag on F', ~. the tautological flag 

For every class ~@W/We let dij 
which is constant on eachFiXF~: 

- the matrix component corresponding 
Lemma. 

:-----GF, F':---~aFe, W:=~W., Let ~ be the tautological 
on F. 

,wdenote the function on . it FIXF', with values in Z)<Z 

to the triple (I, J, w) by virtue of the Combinatorial 
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Let I}:,~IC(:~u>FIXF'~)(C ) be the set of all C-points x over which dimx(~in~))----d~j.=. 
Obviously, it l]z,l covers all points of (FXF')red. 

=~UZlWo 

THEOREM. a) On each [Yw[ there exists a canonical structure of a locally closed sub- 
superscheme Y.,cFXF' such that the morphism it Y.~PXF ~ is a flattening partition for 

-f~wm'o 
the sheaf system {~iN~}. This means that an arbitrary morphism of superschemes g:S + F x F' 
(S Noetherian) has the property: 

{ all g* (~, ~ ~)) -- are locally direct locally free sub- } 

sheaves in T S of ranks di]., 

if and only if g factors through the embedding II Y,,c..FXF'. 
-(~wlwo 

pt  
b) A l l  Yw are bundles over F: Yw-~F, and the  t y p i c a l  f i b e r  p ~ l ( x )  o f  the bundle i s  

i somorph ic  to  the  open s u p e r c e l l C  rls. 

c) Yw i s  a f u n c t o r  from the ca tegory  of  Noether ian  superschemes over C i n t o  the cate-  
gory of sets: given a superscheme S, it determines the set of S-points of the superscheme 
j it FIXF ~ over which ~in~'/ are locally direct locally free subsheaves in T S of ranks du.,. 
=~(I) 

d) d l m Y . = d i m F +  rnin life'), zv6W/Wo. 

The proof is based on the observation that the fibers of the natural projection F I • 
F:,-+FIXF~ are superspaces of complete G-flags (where fiE~ is an extension of J to the 

type of a complete G-flag). [] 

7. As in the case of complete flags, Schubert supercells will be G-orbits in the prod- 
uct of the space of complete flags and a space of incomplete flags. 

Transitivity Lemma. Let S be a superscheme, Ts-----T|163 ~[, ~~ two regularly relatively 
positioned G-flags in T S of types /6~ and J~oO, respectively, and let the type of the posi- 

tion of ~: relative to ~[ be (dij). Let ~:, ~[ be another pair of G-flags with the same 

properties [the same (dij), the same types: types: ~P[ = type ~[, type ~[= type ~.]. Then 
every point 8~S has an affine neighborhood U_~Spec A such that there exists an element g of 
the group G(A) of A-points of G carrying the pair of flags 

into the pair of flags 

The proof coincides almost word for word with that of the Transitivity Lemma for com- 

plete flags. [] 

7. Order in the Weyl Supergroup; Relative Position of Schubert Supercells 

The Schubert supercells of superspaces of complete flags are indexed by the elements 
of the Weyl supergroup, and also by the relative position matrices (see Sees. 2, 3). Hence 

the relation Yw,,l~cgw,t~ (where ~ is the superscheme closure, Yw,I+:=Ywn~ OF+) defines 
an order in the Weyl supergroup and on the set of relative position matrices. In this sec- 
tion we shall give an intrinsic description of these orders. Using the fact that all Yw,IJ 
are G-orbits, one readily shows that (Y~,1~)~d = I Yw, xsl are the Schubert cells of the space 
(F1)r~X (Fj)~d. It is therefore clear that the Schubert supercells are "distributed" over 
F x F in the same way as the Schubert cells over Fre d • Fre d, 

It remains unclear whether a single supercell which lies in the closure of another at 
the underlying level can be of higher odd dimension than the other supercell. If this were 
possible, the partition into Schubert supercells would not be a supercell complex in a rea- 
sonable supersense. The fact that this is nevertheless not the case follows from one of our 

results (see Theorem 3): 

(r='.--)redC#=.'+)~,d~r='.'+Cf=.'" 
i. Let 1, J~ Ww= {W~ GWIw(I) = J}, and let l(w)=lo(=)[ll(w)@ZxZbe the superlength 

of an element w of the Weyl supergroup GW. It is evident from the definition of the Weyl 
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supergroup that there is an isomorphism of groups Wjj~___OredW , hence also a bijection of sets 
WI~__~redW. In fact, we shall define an order relation not on GW but rather on the subset 
W~aW , which indexes the Schubert supercells in the space aFIXGFJ. 

Let us call w~W a reflection if w is conjugate in GW to a basis reflection (see Defi- 
nition 4.1). 

Definition. (For G * OSp(2r, 2s) - for this supergroup see the remark following the 
definition.) 

(i) Let wl, w2~Wz~, ~W~j a reflection. Then wl-,-m2 means that om1=m~ and 10(m2)= 

(ii) We put w < w' if there exists a chain ~=wl--~wz-~o..--~w~=w'~ 

Remark. In the case G = OSp(2r, 2s) the group Gre d = O(2r) x Sp(2s) is the union of two 

connected components. By definition, the Weyl group is Gredw = N(H)/C(H), H a maximal torus 
in Gred, N and C its normalizer and centralizer, respectively, in Gre d. Let W ~ denote the 
Weyl group of the component of the identity (Gred)~ of Gre d. W ~ is a subgroup of index 2 

in Gredw ~ Wjj. For our purposes, it will be convenient to define an order not on the set 
WIj but on each of the two left cosets WIj and W~j c Wij modulo the subgroup W ~ c Wjj. Thus, 
in the. case G = OSp(2r, 2s) the above definition must be modified as follows: instead of WIJ 
take W~j, i = 1 or 2, and instead of Wjj the group W ~ 

2. Before formulating the theorem, we present a few definitions which are simple gen- 
eralizations of the classical ones to the supercase. 

Definition. a) Let ~: Y-+Z be a morphism of superschemes. The superscheme image of Y 
under ~ is defined as the closed subsuperscheme ~(Y) of Z uniquely determined by the prop- 
erties: ~ factors through the natural embedding 9(Y)~Z , and if X~Z is a closed embedding 
through which ~ factors, then the embedding ~(Y)~Z als0 factors through X~Z: 

Y .... ~ X 

b) Let Y be a locally closed subsuperscheme in Z. Its closure v7 is defined as the super- 
scheme image of Y under the natural embedding Y c-Z. 

c) Let X and Y be locally closed subsuperschemes in Z. We shall say that X m ~ if the 
embedding X ~-Z factors through yr 

3. THEOREM. If f, Y~fn, w, ~'6WI~, the following conditions are equivalent: 

(i) w'<~) in the sense of Definition i; 

(ii) du,m',rJ>di],w,iJ vi, ], where (dij,w,iJ) is the relative position matrix correspond- 
ing to the triple (I, J, w) according to the Combinatorial Lemma 2.5; 

(iii) Y.'.HcY=,I~, 

(iv) (Y,,.,~) redo ~zw,Ij) red. 

Remarks. a) The equivalence (i)~=F (iv) means, in particular, that the order in the 
group Wjj coincides with the standard order (see [i, 20]) in the Weyl group W ~ of the com- 
ponent of the identity in Gred, if W ~ is identified with Wjj as in Subsec. i. 

b) Recall that, according to the remark at the.end of Subsec. I, if G = OSp(2r, 2s) we 
replace the set WIj throughout by one of the sets W~j, i = i, 2, and Wjj by the group W~ 
In order to avoid complicated notation, we adopt the following convention. When dealing with 
(super)manifolds which are connected if G ~ OSp(2r, 2s) and disconnected if G = OSp(2r, 2s), 
we shall always refer in the latter case not to the manifolds themselves but to either one 
of their components~ In that case Gre d should be replaced by G~ . 

4. Scheme of the Proof: 

5. (i)~ (iv). 

U,) <=> (/ ,v)<= I'~i,i) 
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LEMMA. a) There exists a unique element w06WH such that ~(m0)=0. 

b) {Y~w~red --~-Ored Yw (under the canonical isomorphism aFrea~~ for all ~EWj~=W o. 

c) The order in the set WIj coincides with the standard order in the group W (see [i, 
20]) under the identification W~ for all wEW~ 

Proof of the Lemma. Observe that if Q~-Q(e), f=Y=(111 ..... 111), ~n=e, Wjj=~ and 
the lemma is obvious. We may therefore assume that G ~ Q(n). 

a) The Schubert supercells Yw,IJ form a partition of the supermanifold GF I x GFj and so 
the set of underlying manifolds (Yw,IJ)red is precisely the set of Schubert cells Yw of the 

space GredF • GredF. Among the cells Yw there is exactly one of dimension Oq-dim~ But 
this is just the dimension of the underlying manifold of the corresponding supercell Yw0,ij, 
which by Theorem 4.3 is equal to ,~(~o)+dim (OFf)red, and so l o ( ~ : O .  

c) is a corollary of (b), since under the assumptions of (b) ~ (~w~=dlm~=~,iDTed-- 

dim~F~)red----dim~ is the classical length (see [i, 20]) of the element 

~@W~ relative to the set of basis reflections corresponding to choice of the Borel 
subgroup B~=Si~ed(fJ), where fj is a standard G-flag of type J [see part a) in the proof of 

Lemma 2.5]. Then the orders in W ~ and WIj coincide by definition. 

b) The idea of the proof is based on the observation that the correspondenceWtj-+~reaW 
under which ~,_~t ~6WIJ and w' is uniquely determined by the equality ~176 
may be expressed as ~t~=~z~ 0. Then, by the uniqueness part of (a), ~0=~$I. ~ 

Thus, let ~6WI~, ~t@~red~c'and %~dY~,=~Y=,rj),~d. It is clear that w' is determined by 
the relative position type of the pair of Gred-flags ~(fl), f~ in the space Tml n of the stan- 
dard representation of G, where (fl, f~)~(Yw',~)re~, and ~(fl) is a certain rearrangement of the 
flag fI into a flag of i ~pe J. This rearrangement is accomplished as follows. Each consti- 
tuentt~ of fI is the direct stun of its even and odd parts: ~==(~)0~($~.~h. We now use induc- 
tionon i to construct a flag ~(/~)=~. of type J from these components: suppose that4Ti has 
already been constructed and ~- (~,)0~,)~. Then if 8~+~(~)=I]0, we put ~+~:~(~0~(~, 
where k is the least integer such that k>i 0, 6~{I)-----II0. But if ~+~(J)~-0]l, then ~+~:= 

(~0~(~h, where k is the least integer such that ~>i~, ~(II----011. (If G = OSp or HSp we 

also demand that i~-I, k-.<[ m+n+l.]2 , then considering the unique completion of the flag to 

an isotropic flag.) In order to find the permutation w' corresponding to the relative posi- 
tion matrix of the Gred-flags ~([~) and fj, we note that for any i the vertical jump in the 
i-th column of the matrix occurs between rows w(i 0) - 1 and w(i 0) if ~($)=I[0, and between 
rows w(i I ) - i and w(i 2) otherwise. By the definition of w' this implies that 

~ ' (0=  (6), i f  6~(J)=OI1. 

Consequent ly ,  t he  pe rmuta t ion  w0 under  which i i s  the  image of i 0 i f  8 i ( J )= l ]O and of i~ i f  
8,(J)--i---O]l, i=I ..... m q-n, satisfies the required equality w' = w~ 0. By construction, O 0 
depends on I and J but not on w and w'. This completes the proof of the lemma. 

The equivalence (i) ~=~ (iv) now follows easily from a theorem of Steinberg [20], which 
states (in our notation) that areaY~'~~ < ~ ,  ~, ~'~~ 

6. (iv)=>(ii). The stalk of the coherent sheaf ~,~ ~5~.~ over a point yf(Y~,~)re~(~ 
~ is of dimension du,w,l~ (~l,. and ~, are the tautological flags on the first and 
second factors, respectively, of the product ~ This dimension function is upper 
semieontinuous, implying the desired conclusion. 

7. (ii) =~ (i). Consider the set of basis reflections in Gredw corresponding to the 
choice in Gre d of the Borel group Bj = StGred(fj), where fj is a standard G-flag of type J 
[see part (a) in the proof of Lemma 2.5]. Let E denote the image of this set under the 

canonical isomorphism ~redW~Z2y. 

LEMMA. For any a~ , if d~.~,t~> d~.m,d~ for all i, j then either d~.~=,l~d~l,~',l~ or 
d~1,~,x~>~dil,o,~,,t~ for all i, j. 

Proof of the Lemma. It is readily seen that ~6E if and only if o = (i, Ji) for G = SL, 
~_~(~j~)(mq-~J.l--i, mq-~q-l--]O for G=OSp, lisp, or ~-~,lq-~, l----r~-s~or O~-OSp(2r~-,l, 2s), 
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u~(l, l+l), l=rnUs for O-----OSp ~r, 2s), s=(i, i~-I) for G = Q, where i is any integer and J i 

the least integer such that it>i, ~4(J)-----~(J), and ifO-----OSp~ ~Sp i, ]~<[m+$+l]. The as- 

sertion now follows from properties 2.2 of relative matrices. The details are left to the 
reader. 

We can now prove the implication (ii) =~ (i). Suppose that for all i, j d~j.~,,l~>d~L=,H. 
We shall prove that w'~<w , reasoning by downward induction on ~(w 9. By Lemma 5(c) and the 
corresponding classical assertion (see, e.g., [20, Lemma 53]), if ~'----s~W~ has the largest 
~(s), then sT~w , and so d~],s.z~<dii,=,t~ for all i, j [since we have already proved that (i)=~ 
(ii)]. Therefore, if d~j.s,l~>dU,,,l~ for all i, j, then d~1,s,~=d~i,~,z~, and s = w by the Com- 
binatorial Lemma 2.5. Thus the assertion is true if w' = s. 

Let lo(w')<l o~). Again by Lenuna 5(c) and the corresponding classical assertion (see, 
e.g., [i, Proposition 2.7]), there exists a reflection o@Z such that w' < ow'. By Lemma 7, 
either d~i.~,H>~d~7,~,~ ~ or d~lw~,,~7~>d~1,,~,l~ for all i, j. In the first case, by the inductive 
hypothesis, o~'~,~, so that ~'<~.~. In the second case, by the inductive hypothesis o~'~. 
It follows from this inequality that either ~'~<~ or ~'~ (use the corresponding classical 
result - Lemma 2.5 in [i]). In any case we have ~'~, as claimed. 

8. (ii) =~ (iii). Using the already proven equivalence (i) 4=~ (ii), one easily reduces 
the problem to the case d~j,~,l~>d~j,~w,t~, ~ Z c W ~  E the set of reflections with respect to 
simple roots of the group Gred, defined in Subsec. 7. We shall deal with the case G = SL(m, 
n), ~-----(t0, J~, t0<]0; the remaining cases are similar, only involving more complicated nota- 
tion. 

Consider the two projections ~176176 u~, defined as the identity on the 
first argument and by the following formulas on the second: 

where ~N:=~j,N is the tautological flag. Consider the relative position of the intersec- 
tions of the Schubert supercells Yw,IJ and Yow,IJ with the fibers of these projections. We 
first observe that the superscheme images ~(Yw,~j) and ~(Yaw,~J) are equal, since they are 
Schubert supervarieties (i.e., closures of Schubert supercellS) for the space of incomplete 
flags F" and the matrices (~j,~,iJ) and (dij,~,is) defining them coincide up to the i0-th column 
and after the (J0 - 1)-th column. 

The superscheme images ~(Yw,z~) and ~{Yo=,ry) are again Schubert supervarieties for rela- 
tive projective superspaceP ~ , ( J ) ;  ~o1~ . -1 )  over ~(Y=,w)=~(Ya.,ls). [Here 8 t , ( J )~=~k~ . - -  
rkffzo-~. ] The co r r e spond ing  s u p e r c e l l s  a r e  de t e rmined  b y t h e  c o n d i t i o n s  o f  t h e  r e l a t i v e  p o s i t i o n  
3f t he  sheaves  fft./~i,-1 and ~z~k/~t0-~, O~k~m+n. These c o n d i t i o n s  a r e  u n i q u e l y  de te rmined  by 
:he matrices (dil,w.l~) and (du,~,~,tj). The matrix (d~j,,~,t~l gives the condition:~i~ (~z,~-~(~) n ~J,)/~i,-I 
~j~[~i,-I plus a certain general position condition, while (dij]~,12) gives ~l,/~l,_iC(~z.w-,(i,) ~ 
IU,m,l~7~dti,om, t~ for all i, j. This implies the inequality ~-*(/0)<~-x(]~ [cf. the properties 
3f the matrix (dii,,,t~) in part (d) of the proof of Lemma 2.5 and part (b) of the same iemma]. 
this inequality shows that ~[,|176 , whence ~(Y~,w)cr162 

Finally, the Schubert supervarieties Yw and Yow are intersections of the same Schubert 
supervariety of the relative superspace of complete flags GFj § F' with the inverse images 
~-~(~) and ~nl~(y~). This follows from the fact that the horizontal equality and inequal- 
ity signs between elements of neighboring columns~ beginning with the i0-th col~nn and ending 
with the (J0 - l)-th, are identically placed. 

Thus Y~cY~ if ~w. 

9. (iii) =~ (iv). Trivial. [] 

10. COROLLARY. Let f,Y~G1n, w,w'6Wz~. Then fo(~')<,~lo(m)~=>[(m')~[(~). 

Proof. This follows from Theorem 4.3 (dimension of supercells) and the equivalence 
~iii) ~=~ (iv) in Theorem 3. [] 
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8. Resolution of Singularities of Schubert Su~ervaritie s 

Singularities of Schubert varieties, i.e., closures of Schubert cells, are in a sense 
linearizations of fairly general singularities of algebraic varieties. To be precise, the 
jump in the dimension of the Zariski tangent space U + U' at a singular point may sometimes 
(e.g., in the case of an intersection of two nonsingular varieties) be visualized as a change 
in the position of a certain vector space V, whose intersection with some fixed vector space 
forms the Zariski tangent space U: U = V n W, into a less general position: U' = V' ~ W, 
dimV' = dimV, dimU' > dimU. This is in fact a typical case of singularity of a Schubert 
variety lying in the Grassmannian of the subspaces of some enveloping vector space. 

An analogous situation obtains in supergeometry as well, and so one expects the investi- 
gation of singularities of Schubert supervarieties to reveal a general pattern of supersin- 
gularities which, in view of Kac's classification of simple Lie superalgebras [16] and the 
well-known classification of simple singularities of hyperspaces via Dynkin diagrams, promises 
to be of some interest. 

i. Definition. Let X be a supervariety. A point x6X~ is said to be nonsingu!ar if 
there is an open neighborhood U c K such that x6U and U is a nonsingular supervariety. The 
set Of singular points of X is the complement of the set of nonsingular points in Xre d, 

Recall that a Schubert supervariety is the closure Yw,IJ (see Definition 7.2) of a 
' ; " O . 

Schubert supercell Yw I T in the superspace GF I • GFj, where I, J6 l,, w is an element of the 
Weyl supergroup W of an~algebraic supergroup G, w(I) = J. Since Yw,IJ are nonsingular, 

Schubert supervarieties Yw,IJ have singularities only at points of 0",,U)red\(Yw, XJ)red, and 
they certainly have singularities wherever this is true of the Schubert varieties (Y,./Jirld. 

2. Bott-$a~nelso n Superschemes. Let w = Sk...s~ be a fixed reduced factorization of 
an element ~6~ f as a product of basis reflections, ~)i:-----sl ... $i, 1-_<i<k. We define a se- 
quence of projectivizat: ~ns GPI~Zo+-ZI*-..o +-Za of vector bundles by an inductive construc- 
tion, as follows. Suppose that Zj has been constructed, and let ~. be a flag on Zj of type 
wj(I) in Tz/:~-T|162 I, where T ig the space of the standard representation of the supergroup 

G. If G = SL(m, n), then sj = (i, i + i) for some i, and we define Zj+l to be the relative 
projective superspace Pzj (6i (~)/+I (1)); ~i+i/~_i) of relative dimension l~i(1), ,/+~(i) (s/). In TZj+I 
we consider a complete flag ~., in which all $~p(p~i) are lifted from Zj, while ~i is uniquely 

defined by the tautological sheaf ~d$~i_iC~t§ of the projective superspace Pzj(61(~/+, ([)); 
~i+i/S~,i_i) and the extension 0-~.,i_I-+~i+i-+~§ 

If G OSp(m, n) or ~Sp(m) then if s]=(i,i+l)(n~nu~z+| i, nz+~_O ' i<[m+n] = , -- ~ we de- 

fine Zj+ I to be the relative projective superspace Pzl(6~(~)/+~([)); ~i+,7~-*) of relative dimen - 

sion l~/(z).wj+,(/)(sj). To form a flag in Tz/+r we lift all constituents ~ (p~Ai, n~+~--i) from 

Zj ; we definers, as before, by the tautological sheaf on Pz/(61 (~)/+, (f)); $~+~/~i-i), while 

~m+=-~ is defined by $~+,_~:=~# (relative to the bilinear structure form b in T). If sj = 

"b" indicates that we are considering a superspace of isotropic lines relative to the form 
b. The dimension of Zj+~ over Zj is lw/(1),~i+,(O($]). The constituents ~(p.~<[--| or p~- 
~@|--/) are lifted onto Zj+ I from Zj, while ~ is defined by the tautological sheaf on 

Pz/(6~X(~/+~ (])~;~,~,+~.fl@~_~, b). If m + n is even, then ~0 is a complete G-flag in Tzj+, ; if it 

is odd, then ~. is extended to a complete flag by adding ~l§ 

Finally, if G = Q(m), sj = (i, i + i) for some i, and we put Zj+t=Orz7(lll; ~/$~-I, P) - 
the super-Grassmannian of ill-dimensional subspaces of ~+i]~-~ symmetric with respect to 
the structure ~-symmetry p. The dimension of Zj+~ over Zj is I I|~[,~fll),wj+,U)(sj). The flag 
~. in Tz/+, is constructed as in the case G = SL(m, n). 

By construction, all the Zj are nonsingular. 

Definition. Z,v:-~-Z~ is called a Bott-Samelson superscheme (it clearly depends on the 
choice of a reduced factorization of w). 

�9 _+(~ 3. Bott-Samelson Horphism. Define a morphlsm ~:Z~ ~! X~ as the canonical mor- 
phism under which ~'{~i,.~ =8"(~i, .), where O:Z,~-~-Z~-+Zo-~- ~I is the natural projection, and 
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~*(~:..)=~., ~. is the flag constructed above of type J = w(1) on Z w. Clearly, the diagram 

Zw-+oFIXQFj is commutative, i.e., ~ is a morphism of superschemes over GF I. 

e OF, 

Definition. ~ is known as the Bott-Samelson morphism. 

4. A morphism of algebraic supervarieties f:X * Y is said to be s urjeetive if the cor- 
responding morphism of algebraic varieties fred:Xred + Yred is surjective and the superscheme 
image f(X) is Y. 

THEOREM. The Bott-Samelson morphism 9:Z=-+eFIxQFJ is a resolution of the singulari- 
ties of the Schubert supervariety Yw,IJ, i.e., ~:Z w + Yw,IJ is defined, surjective and in- 
duces an isomorphism of an open supervariety in Z w onto Yw,IJ" 

Proof. Step i. We construct an open subsupervariety U w in Z w which is mapped isomor- 
phically into Yw,IJ by ~. We shall proceed as in Subsec. 2, i.e., constructing a sequence of 
open subsupervarieties Uj c Zj, j = 0 ..... k, such that 07[~+ :U]§ where ~j is the natural 

projection Zj+z § Zj. Let ~j denote the natural morphism Zj-+OFIX F=j(O constructed in the 

same way as 9 in Subsec. 3. Put Uo:-=Zo~-~ Clearly, }0 defines an isomorphism of U 0 onto 

the diagonal of~176 , i.e., onto Ye,II" 

Suppose now that Uj has been constructed and let 9j[~:Uj-+Y~d.~(! ) be an isomorphism. 
Define Uj+ l to be a big supercell in the relative projective superspace (if G = Q - super- 

Grassmannian) Z]+I:--~O71(Uj}-+Uj (we are assuming thatthe partition into supercells is deter- 

mined by a flag of type I lifted from GF I relative to the morphism Z)+~-+Uj-+Uo=aFI). Since 
~Jlvl maps Uj isomorphically onto Y~.Lwj(r) and the Schubert supercell Ywf+,,L~+~ff) is a big 

supercell in a relative projective superspace over Yw],l,wj(1) (see 4.8), and moreover ~j+1 is 

induced by a morphism of tautological sheaves, it follows that 9j+l is an isomorphism. 

U 1 �9 Putting U=:-----Uk, one proves by induction that ~] =~k]~. Uw-+Yw,zj is an isomorphism. 

Step 2. It follows from Step 1 that 9 defines a morphism ~/w-+Y=,r:, and moreover ~(U--~)= 

F=,~. By construction, Z w = U-w, and all that remains is to verify that 9red:(Z~w)re~-+~=,mlre~ 
is a surjective morphism. Indeed, the variety (Zw)re d is complete, and so the geometric (not 

scheme-theoretic!) image 9re~((Zw)rea) is closed in (Ywd:)re~. On the other hand, this image 
contains (~{~,~V)rea, implying the desired assertion. [] 

5. Remark. The important results obtained using Bott-Samelson schemes (see Demazure 
[14]) - rationality of the singularities of Schubert varieites, the Demazure character for- 
mula - depend essentially on the theorem stating that the cohomology of inverse sheaves on 
Schubert varieties is trivial. For Schubert supervarieties of codimension 010 this theorem 
is a particular case of a superversion of the Borel-Weil-Bott theorem (see [ii, 19]). It 
is therefore reasonable to suppose that, in combination with the construction of Bott-Samel- 
son superschemes, this should make it possible to prove correct superversions of Demazure's 
results. 

6. Example~ Consider the Grassmannian X = Gr(2[0; T) of 2[0-dimensional planes in a 
3]l-dimensional vector space T. Obviously, dimX=2[2, Xred~P 2. Let p:X ~ P(110; A~(T))~P ~ 
be the Pl~cker embedding. For any complex superalgebra A=AoeAt, the image p(X(A)) consists 
of lines in A~(T) generated by even decomposable bivectors Q(A~.(T). Let {el, e2, ea, f} be 
a homogeneous basis in T. We wish to find conditions in terms of the coefficients of the 
representation of Q in the basis 

{e, Ae~, e,Af, [A~, (1) 

i, j = i, 2, 3, i < j, of the space A~(T), under which the bivector Q=Q~+Q~A~+L[A~, where 

Q~: =~e~Ae~+~e~Ae~+M~e~Ae3,Q~: =~e~+X~e~+Me~, ~,~Ao, L~A,~ i, 1=1 ,2 ,3  , is decomposable. 
D e c o m p o s a b i l i t y  o f  O means t h a t  Q =  (R+af) A'(S+b/) =RAS +('bR--aS)Af--abfAf, where  R and S 
lie in the span of ei, e2, e s and a, b e A~. Any bivector QI independent of f is obviously 
decomposable, i.e., the equality Q~ = R A S imposes no restrictions on Q~. Assume, then, 
that is the case. The condition (Q2 = bR - aS for some a and b) is equivalent to the condi- 
tion QI A Q2 = 0. Finally, the condition ~ = -ab is equivalent to Q~/~Q=+2%Q~=0. We finally 
obtain equations for the image p(X) in homogeneous coordinates (%~2:%~:l~s:%[~l:L~:%a) in Ps~s: 
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~,~X2 + ~,Z,I= =0 ,  

X2X~ -~ XX23 = O. 

Consider the Schubert supercellW/={A=l~ , where u ~ is the space 
spanned by vectors el, es. The corresponding Schubert supervariety is defined in p~i~ by the 
equations 

/~Z2~ + ~aX~2= O, 

/Xz---~ O, (2 )  

[Indeed, it is not hard to verify that if(~re~A:ed the condition dim(A~V)>ll0 is equiva- 
lent to el~ea~Q---O, where Q is a bivector corresponding to the Dlane A. This last equation 
is equivalent to the system ~ = k = 0. On the other hand, Wc{AeI~ 
and the open analytic set {Q~A=(T) I the coefficient ~12 in the representation of Q in the 
basis_(1) satisfies the condition (%�92 is dense in the affine superspace A2(T). There- 
fore W is defined in X~P ~I~ by the equations %~ = % = 0.] 

All points of the supervariety Fred, except the point s with homogeneous coordinates 
kxz=l ,  ~2=~=~----I=----%3----%----0, are nonsingular. In the corresponding inhomogeneous coor- 

dinate system {h1% ~=s, k, %:, %2, %@ in the neighborhood of s, the equation of W can be written 

Clearly, dimW = 211. 

7. 

i + f L== o, 
~----0. 

Bott-Samelson Resolution of the Singular Point s6W. For the Schubert supervariety 
W, a natural choice of the Bott-Samelson superscheme is the relative projective superspace 
Z=PM(I[0; ~s/~l) , where M=Pc (ll0; V21~ c (I]0; T/V), ~v is the tautological sheaf on the 
first factor, ,9'3 is a sheaf on the second factor such that V~s and ~s/V is the tautological 
sheaf. The Bott-Samelson morphism ~: P~{I]0; ~3/~I)-+Gr{2]0; T) is a canonical morphism such 
that the inverse image of the tautological sheaf on Gr (2]0; T) is a sheaf~=:~1~2~3, ~2/~I 
the tautological sheaf on Pm (|]0; ~s/~Tl). It is clear that the supercell W is dense in the 
(superscheme) image Im~ and thus Im~=iW. 

We now describe the Bott-Samelson morphism in terms of coordinates. Let UcP ~13 be a 
neighborhood of the singular point s. We shall find local equations for the Bott-Samelson 
s u p e r s c h e m e  ZcUXP'I~ ]0; V) X P  ~ (1 10; T/V) in  c o o r d i n a t e s  (112, 12a, l, ll, 12, I~, (al:a0 and (b  I $) on 
t h e  f i r s t ,  s e c o n d  and t h i r d  f a c t o r s ,  r e s p e c t i v e l y  ( t h e  c o o r d i n a t e s  on t h e  f i r s t  two a r e  i n -  
homogeneous ,  t h o s e  on t h e  t h i r d  homogeneous ) .  B e s i d e s  t h e  e q u a t i o n s  f o r  t h e  Grassmannian  
X----Or(210;T ) i n  U, t h e r e  a p p e a r  i n c i d e n c e  r e l a t i o n s :  ~ 1 C ~ 2 C ~ 3 .  More e x p l i c i t l y :  i f  ~ 1 =  
( alel+a~3 ), ~a= < bf*+~e~ > •  where  {e~, e~, e~, f*}  i s  t h e  b a s i s  d u a l  t o  {el, e2, e3, f}  in  T*, 
and t h e  b i v e c t o r  c o r r e s p o n d i n g  t o  ~2 i s  Q----ti~elAe2-4-elAe~+123e2Ae3+llelAf-i-12e2Af .-~-13e~Af+ 
l f A f ~ A  ~(T), t h e n  ~ c ~ =  i s  e q u i v a l e n t  t o  (a~e~+a=e~ AQ----0, and ~=c~3  t o  i(bf*+~e~) Q - - 0 ,  
where  i ( . ) .  i s  t h e  i n n e r  p r o d u c t .  In  t h e  f i n a l  a n a l y s i s ,  t h e  l a s t  two e q u a t i o n s  can be  w r i t -  
t e n  as  a s y s t e m :  

a~l~q-a2ll2=O, [bla--~lm=O, 

a~lz = a~l~ = O. 12bl -q- ~l~ = O, 
~l = azl = O, [bl~ = O. 

Thus the equations of Z in UXP~I~176 are 

ai123 + a21m-~ O, 
blx--~Im=O, 
bl~ + ~lm = O, 
l=12=0. 
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It is explicitly clear from these equations that the superscheme Z is nonsingular in U x 
p~lO X pO~1. 

The Bott-Samelson morphism is expressed in coordinate form as follows: (~m, ~23, ~, ~i, ~2, 

~)=~(112, 123, l, 11, 12,1Zal:a2; bl~):=(ll2, /23, /, /i, Iz [~). The inverse image E:----~-I(s) is defined 
by the equations 112=f23=I=I,=12=13=0, and so it is isomorphic to p,t0>poll Thus, we can say 
that in our example the Bott-Samelson morphism has glued the supervariety pil0><p011 to the 
singular point. 

8. Inflation. Let M be a nonsingular complex supervariety of dimension m[n,m~l, s~Mr~ 
a point of its underlying variety, z = (zi, .... Zm, ~i .... ,~n) holomorphic coordinates in a 
neighborhood U c M of s. An inflation of M at s is defined to be a complex supervariety 
obtained by gluing to M \ {s} (M \ {s} is an open subvariety in M with underlying variety 
Mre d \ {s}) the supervariety 

D = { ( z ,  t)~UX P"-'I" I z6/} 

by means of the identification ~]\{(z,l) lz==O}'~U\{s}, under which (z,l)~+z. In this situation 
pm-,n is considered as the superspace of lines in C mln with coordinates (z I .... ,Zm, ~i,..., 
~n)- The map (z,l)~,z extends to the natural projection =:M-+M, which is an isomorphism 
over M \ {s}. The inverse image E: ==-1(s) is isomorphic to pro-tin and is called the excep- 
tional divisor of the inflation. 

In terms of coordinates (z I ..... Zm, ~i,-",~n) in U and suitable homogeneous coordinates 
(fl : ... :/miLl : ... : ~) in pm-IIn, the subvariety U is defined by the equations 

fz~6 = z : .  
Z - 

for all possible i, j. 

As in classical geometry, inflation is a way of resolving singularities of supervarie- 
ties. This can be illustrated in the case of our previous example. 

9. Resolution of the Singular Point s61~ Using Inflation. The supervariety ~p~l~ 

is defined by Eqs. (2) in homogeneous coordinates (~i~:g13:~3:%[%1:2%2:%3), so we may assume that 
W is embedded in P21~={$%=0, ~=0} and defined in terms of the corresponding inhomogeneous 
coordinates (%~, %~3, %,, %3) in a neighborhood Ucl ~I~ of the singular point s = (0, 0, 0, 0) by 
the equations 

{A~ + ~ = 0, 
~3-----0. (3) 

We now construct an inflation U of the supervariety U~P ~I~ at s. In UXPtI2(a~:a~loq:o%) 
this inflation U will be defined by the equations 

We now determine the inverse image ~-i(~) under the natural projection z:[~.f-~U. Con- 
sider a cover of the superspace p~12 by charts ~z,~A0 and a~sA0. In the first chart a~sA0 and 
we may put a,=1. Substituting Eqs. (4) into (3), we obtain %~=(~ae~-=~)=0, ~2=~2=0, %=3 == 
%~2a~, ~i-----%1~, %3----%~2~2 (dependent equations are omitted) - the equations of v-X(W). In the 
second chart, Dutting a2=l, we obtain the following equations for ~-~(W): %~3(a~-~-=~a~)=0, 

~3~==0, ~m-----%~za:, %1---- ~2~, %~-----%2~. In this situation we shall say that the inverse image 
~-~(W) splits into the union of the exceptional divisor ~ ~I~ ----- {L~- ~3 = ~ ~ ~ = 0}~ P (taken with 
multiplicity 2) and the proper inverse image of the supervariety W, defined in the first and 
second charts on UXP If-~ respectively, by the equations 

/ ~z~a~ + ,~ = O, [c~ + c,~a~ = O. 
L 2 3 =  X12~2, , L12 = X,?.3al, 
~I ----- X12Cq, and XI = X2:h, 

These equations clearly define a nonsingular subvariety of UXP *m. 
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BOREL -WEIL -BOTT THEORY FOR CLASSICAL LIE SUPERALGEBRAS 

I. B. Penkov UDC 512.743 

The paper is devoted to a systematic construction of the elements of Borel-Weil- 
Bott theory in the supercase. The main result is a presentation of the cohomology 
of typical irreducible G~ on G~ where G o is the connected component of 
the identity in a classical complex Lie supergroup and B ~ G o an arbitrary Borel 
subsupergroup. Also presented are some simple known results concerning the co- 
homology of irreducible G~ on G~ for a parabolic subsupergroup P. 

The present paper is a survey of fairly general results known to the author relating 
to the cohomology of irreducible g-sheaves on supermanifolds G~ where G O is the component 
of the identity in a classical complex Lie supergroup G, 9=Lie G and B~G ~ is a Borel sub- 
supergrouD. In the case of a complex reductive Lie group G', the irreducible g'=LieG' - 
sheaves on (G")~ ' are simply invertible, and their cohomology theory is described by the now 
classical Borel-Weil-Bott theorem, or briefly Bott's theorem [12-14]. With details omitted, 
it may be stated as follows. The cohomology groups of the g"-sheaf O(a,)0/8 (~) determined by 
a weight % are all trivial, with the possible exception of one, which is an irreducible 
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