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SUPERCELL PARTITIONS OF FLAG SUPERSPACES

A. A. Voronov and Yu. I. Manin UDC 512.743

A description is given of the partition of flat superspaces, which correspond to
classical simple Lie supergroups, into Schubert supercells. The relative positions
of Schubert supervarieties are studied and their singularities are resclved.

The goal of this paper is to achieve further understanding of the structure of flag
superspaces, an important class of supermanifolds which arises quite naturally. We begin
(Secs. 1-4) by constructing the partition of superspaces of complete flags into Schubert
supercells, requiring the latter to satisfy a certain universality condition which is triv-
ially valid in the classical case. The Weyl supergroups that arise in this context, among
whose elements are reflections with respect to odd roots, index the supercells, and the di-
mension of each supercell equals the superlength of a suitable element of the Weyl super-
group. The superlength is defined combinatorially; that the definition is legitimate is a
nontrivial combinatorial fact, for which we furnish a geometric proof.

Before generalizing the results to incomplete flags, which are superanalogs of the spaces
G/P, where P is a parabolic subgroup of a simple algebraic group G (in Sec. 6), we describe
the structure of parabolic subgroups of supergroups of types SL, 0Sp and Q in terms of root
systems — see Sec. 5. This description shows that the spaces of incomplete G-flags consti-
tute all G-equivariant factors of superspaces of complete flags.

In Sec. 7 we define an order in the Weyl supergroup, and prove that this order corre-
sponds to the inclusion relation among Schubert supervarieties, i.e., closures of Schubert
supercells.

Schubert supervarieties furnish natural examples of supervarieties with singularities.
In Sec. 8 we shall present a construction that resolves these singularities, generalizing
the classical Bott —Samelson construction. In the purely even case the Rott—Samelson con-
struction enables one to prove that the singularities of Schubert varieties are rationalj;
in supergeometry, however, the very existence of an analog of the construction is apparently
a nontrivial property of singularities of Schubert supervarieties. The question of the
rationality of singularities of Schubert supervarieties has not yet been fully investigated.
At present it is not even clear just what a rational singular point of a supervariety is.
(Recall that in the classical case every rational singular point is normal, implying that the
local ring of the point contains no nilpotents.)

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie
Dostizheniya, Vol. 32, pp. 27-70, 1988.
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This paper may also be considered a first contribution to the study of algebraic topo-
logy of flag superspaces. A great many questions still remain open. TFor example, for a
meaningful generalization to the supercase of such results of Bernshtein, Gel'fand and
Gel'fand [1] and Demazure [14] as the combinatorial intersection index of Schubert varieties
and comparison of classes of Schubert varieties with characteristic classes of flag sheaves,
one needs, first and foremost, a regular cohomology theory, in which the classes of Schubert
supercells would lie. The role of such a theory might possibly be fulfilled by bordism
theory for supermanifolds (see Voronov and Zorich [5]) or by the cohomology theory of
Barabov, Shvarts, Voronov and Zorich (see [41]).

In the exposition of our results we have favored purely geometric arguments, reducing
the use of group-theoretic constructions to a minimum. We have thereby avoided the difficul-
ties involved in factorization modulo the action of a supergroup. Moreover, the group-
theoretic point of view does not always produce correct notions in the supercase. Thus,
representation theory (see Kac [17]), Borel—Weil —Bott theory (see Penkov and Skornyakov
[19], Penkov [11]) and the results of this paper indicate that the analogs of Borel subgroups
are generally not maximal solvable subgroups but stabilizers B of complete flags. In con-
tradistinction to the classical case, not all subgroups B are conjugates of one another,
and consequently the superspace of complete flags splits into connected components (another
manifestation of the difference is that one cannot define a system of representatives of the
Weyl supergroup in G). The components appearing in this paper are somewhat more numerous
than the conjugate classes of subgroups B — we find it more convenient to consider certain
components corresponding to the same subgroup B as distinct. It should alsc be noted that
the intuitive view of root systems in the supercase does not always accord with reality,
since the root system of a simple Lie superalgebra need not be an abstract root system.

The role played by Schubert cells in classical geometry and representation theory de-
termines the application of the results of this paper. In this connection we note that
Schubert supercells have proved useful in understanding the geometry of supergravity (see
[9]) and in the construction of reflections with respect to odd roots (see [11, 19]).

The main results of this paper were announced in [2, 3].
We are indebted to I. B. Penkov and I. A. Skornyakov, with whom we were in constant
contact during the preparation of the paper.

1. Classical Supergroups and Flag Superspaces

1. Classical Supergroups. Let T>~C™" be the space of the standard representation of a
classical algebraic supergroup G of type SL, OSp, TSp or Q. A type OSp group leaves invariant
a nonsingular even symmetric form b:T - T*, a type NISp group — a nonsingular odd antisymmetric
form b:T » T*, a type Q group — an odd involution p:T + T, p? = id. Henceforth we shall
assume that the corresponding morphism b or p is fixed. In cases 0ISp and Q, the stipulated
properties of this morphism imply that m = n. All these supergroups G, with the sole ex-
ception of 0Sp(2r, 2s) are connected. The group 0Sp(2r, 2s) splits into two connected com-
ponents.

2. Connected Components of Flag Superspaces. Let SLI be the set of all sequences of

the form (5,,...,8,) §,=plq, 26,=m‘|n, r<m-n. PFix 161,

ima]

Definition. Let S be a superscheme (over‘ C — henceforth we shall take this for
granted). A flag 0=F,cFC... C?,_1C9,=TS=T§03 of locally free locally direct sub-

sheaves in Tg is of type I if rk®;—rk&, =6, for all i 1<ir.

1
Thus the rank of the i-th constituent of the flag is d,=2 Oz.
=1

Definition — Lemma [7]. The functor GFI on the category of superschemes over € that
associates to each superscheme S the set of flags of type I in Tg satisfying the conditions
(for G # SL)

0®ids) (P, ... CP)=FFC ... Py for OSpandlSp,
(P®ids) (PoC ooe CP)=PyC ... CF, for Q,

is represented by the superspace GFI of flags of type I. o
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3. LEMMA. If I is the type of a flag in GFI, then

8ru1-1 () for OSp,
6; (1)={ r41—1 () for MSp,
Y] (H for Q,
where (a|b)e= (bla).
The proof follows directly from the definitjions. o

4. Complete Flags. A G-flag is said to be complete (or full) if it has the maximum
possible length r. The set of types of complete G-flags is denoted by GIn. The structure of
the set GIn is given by the following simple lemma.

LEMMA.

m--r
SL[n= B1yavns 5m+n)l61=110 or Oil, 2 61=mln},

=1
osp1n={(61’ sowy 6m+n)ESLIn I 61 = 6m+n+1—i}!
ns”fn={(61, cies 6m+,,)ESL1n [8:7=8mtnt1—ils
U={1,..., 1|} O
J S —. S

m

Definition. The superspace of complete G-flags is defined as the disconnected union

‘F— 1 GF[.
IEG!n

Remark. All the GFy are connected, except in the case G = 0Sp(2r, 2s), where OFy splits
into two components for each I. In the case G = Q(m), GF is connected.

2. Relative Position of a Pair of Complete Flags

1. Definition. Let &,., #us. be two G-flags of types [, J&®I,. Ve shall say that they
are regularly positioned relative to each other if for all i, j %r:iNPs; are locally direct
locally free subsheaves in Tg of constant rank. The relative-position type of flags &, . and
#;. is the matrix with elements

dy=1k (%1 N¥s.), 0Lij<Lr,
where r = m + n for G = SL, OSp, ISp, r = m for G = Q.
2. LEMMA. a) The matrix (dij) has the following properties:
do]=0[01 dio';OiO, drj"_"‘dj (J)t dir=di (I)a
010<d);—di,;<8: (), 010<d;;—d;,;-1<5; (),
dijoFdij,=dFdi,; for J>jo
Q1. F igjr1=>dijFdi 1 for i3y
where alb<a’ |0’ if a<a’ and b

b) In cases G = OSp, IISp the matrix (dij) has the following additional symmetry proper-
ties:

dli=drn+n—_i,m+n-i‘—m|n+dm+n_i () +dmyny (/) for G=08p,
dij=dsmiom—j—m|M+dsm_; )+ d5m_; (J) £or G=IISp.
The proof is by a direct check. o

3. Weyl Supergroups. Define an action of Sy, on SLI, by the formula &, (@/)= 8z (/).
The action of S, on the singleton QIn is by definition trivial — the only possibility.

Definition. The Weyl supergroup OW of G is defined as
a) Sp4n for G = SL(m, n),

b) {we W \w (1) =1} for G = 0Sp(m, n),

) (@™ ™MW w C1)=C°I} for G = nSp(m),

d) Sy for G = Q(m).
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0|1 or 1|0, up to the (m + n)-th element of the first column, which is d,(J) = §,(J) = 0}1
or 1|/0. Hence there is exactly one jump in the first column — of §,(J). To its right, by
property 2, there are also inequality signs.

Suppose now that there are k¥ — 1 inequality signs in the (k — 1)-th column and to the
right of each of them along the rows there are only inequality signs. Then, since the zeroth
element of the k-th column is 0]0, the last is dyg(J) and the vertical jumps are at most
§;(I) = 1|0 or 1{0, it follows that in this case there are exactly k inequality signs. In
other words, exactly one new inequality sign will appear in the k-th column, and it will
be the leftmost in its row, proving our assertion.

d) Completion of Proof. By step (c), given any matrix (dij) with properties 2, we can
construct a corresponding triple (I, J, w). We shall prove that this is a map of the sets
2) > 3) in the statement of the lemma, i.e., that w(J) = I. In the notation of part (b),
we have to show that &; (J) =84y (Iy="0g, (/). This follows from the following property of the

matrix (dij): if d;;%diy,; and di,jo1=di—1,j—1, then dyjFd; -1 and diy,; 1=d; 1,; (see Fig. 2;
this is a simple corollary of properties 2). Indeed, by the construction of &, @r.i%ds—1.
and dg,,;i-1=dp,~1,i—1 » and so dr,1 7 dr,i-1 and dp;~1.1—1=dpr,~1,1, whence O, (I)zdki,i""dki—-l,i—":dki.i_:“

A, im1=0; (/). We thus have constructed a map 2) + 3), which is easily seen to be the inverse

of the map 3) » 2) constructed in part (a).

The inverse 1) + 3) of the map 3) + 1) constructed in (a) is constructed as follows.
The matrix of the relative position type of two complete flags has properties 2. The map
2) » 3) constructed above carries this matrix into a triple (I, J, w) such that w(I) = J.

We have thus proved the Combinatorial Lemma in the case G = SL.

II. Cases G = OSp(m, n), MSp(m). As we have already proved the lemma for the group
SL(m, n), we can associate to every matrix (dij) with properties 2(a) corresponding to G a
triple (I, J, w), L JESLL, weSLW, J=w(l). Since I=(di,min), J= (@m+n,3), it is clear that I,
J€6I,. Properties 2(b) of the matrix (dij) guarantee that the permutation w carries a flag
type in SLIn which is symmetric about the midpoint into a similar type, i.e., w€W. Thus
we have a map 2) > 3). The inverse of the latter is precisely the map 3) » 2) constructed
for G = SL(m, n). The fact that a triple (I, J, w) corresponding to G yields a matrix (diy)
with properties 2(a), (b) is clear from the construction. The reasoning for the maps 1) - 3)
and 3) > 1) is the same as for G = SL.

IITI. Case G = Q(m). The proof here is the same as for G = SL(m, n), except for some
slight modifications concerning the dimensions of the flag constituents. o

3. Schubert Supercells: Definition

1. Throughout this section we fix G and write F = GF, W = GW. For each element weW s

let d;j,» denote the following function on , J_L([ F;XF,; with values in Z|Z , constant on each
Fr x Fy: ==

dijow | rpxr,=8ij,w.1s

— the matrix elements corresponding to the triple (I, J, w) by the Combinatorial Lemma. Let &,
be the tautological flag on F. Consider the sheaves .9’1n?j-—:pf?iﬂp;.?’jCTpxp=T§0’FxF, where

P1s P, are the projections of F x ¥ onto the first and second factors, respectively. Define
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1Y, |c{C- points Of,='[7;,L(,)F1><FJ}

as the set of all C-points x over which dim,(#;N%)=d;j,»- By the Combinatorial Lemma,
I ¥, exhausts the set of all C-points of F x ¥. We introduce a subsuperscheme struc-

wEW
ture on |Yw! following the general construction of the flattening partition [18].
2. THEOREM. a) On each |Y,| there exists a canonical structure of a locally closed
subsuperscheme ¥V, .F X F such that the morphism 'léLW Y, .FXF is a flattening partition for
@ .

the system of sheaves {#;N¥;}. This means that an arbitrary morphism of superschemes g:S >

F x F (S is Noetherian) has the property: {all g* (yingz.) are locally direct locally free
subsheaves in Tg of ranks d;j y} if and only if g factors through the embedding EWY‘”C’FXF'

b) All Y, are bundles over F: Y,,,-—>F , each fiber p;'(x) being isomorphic to the super-
cell C¢* (p, is the natural projection onto the second factor in the product F x F).

c) Yy is a functor from the category of Noetherian superschemes over C to the category

of sets, which associates to any superscheme S the set of S-points of the superscheme ; Ju-:L(l)

Fr x Fj over which #N¥; are locally direct locally free subsheaves in Tg of ranks d;; q.
Remark. Part (c) is obviously a reformulation of part (a).

The proof relies on the construction of the supercell partition of a relative projective
superspace, to which we now proceed.

3. Supercell Partition of a Projective Superspace. Let X be a fixed Noetherian super-
scheme, J a locally free sheaf of rank m|n on it, and &. a fixed complete flag in J. In
the relative projective superspace Px(1|0; 77) , consider the following chain of embedded sub-
superschemes — projectivizations of the bundles &;:

PCPx(1]0; F)cPx (1|0; PYc...cPx1]0; 7).

On each of the nonempty open subsets Px(1|0; Pi)rea\Px (1|0 Pr_1)rea Of Px(1|0; Pi)reqs » define the
natural structure of an open subsuperscheme Z,CPx(1]|0; %5).

Proposition. a) The morphism _U_ch..PX (110; 9) is a relative flattening partition for the
system of sheaves {#NP}, where F 1s the O (—1)-tautological sheaf on Px(1]0; 7).

b) Zy is a relative affine space of dimension rk%,—110 over X. In other words, the
fiber of the natural projection Zi - X is isomorphic to CrPe—110,

Proof. Part (b) is obvious from the construction: Zy is a big cell in Py (1|0; #x).

To prove (a), we have to show that for any morphism of schemes over X, g:5—Px (1]0; J)
(S Noetherian), the sheaves g* (57”0.?,-) are locally direct locally free subsheaves in I s of
rank 0|0 for i < k and of rank 1|0 for i > k if and only if g factors through the embedding
Z,~Px(110; 7). Necessity follows from the fact, known from classical geometry, that the re-
duction gyeq of such a morphism g factors through Px(1|0; P4)ea\Px (1]|0; Pi_)rea= (Zi)rea » and
from the obvious fact that g factors through Px (1{0; #,).

Sufficiency becomes obvious if one notes that #N¥; are locally direct locally free sub-
sheaves in Jz, of the indicated ranks. This completes the proof. =©

4. COROLLARY. Under the assumptions of Subsec. 3, there exists a relative flattening
partition 1_|_Y,2 of the supermanifold Py (1|0; g')xFX for the system of sheaves {9’09’} » Where

P is the tautolog1cal sheaf on Px (1|0; 7), ?. the tautological flag on Fx — the superspace
of complete flags in 7. over X. Under these conditions, the fiber p,*(x) of the projection
pe:uY;—~F, over the X-point X6Fx (X) represented by the flag &. in J is canonically isomor-
phic to i‘LZk' O

5. Proof of Theorem 2 I. Case G = SL. The proof proceeds by induction, considering
the superspace of complete flags as a relative superspace of complete flags of smaller length
over a projective superspace. To make the inductive step possible, we shall prove a relative
version of Theorem 2, that is, we shall work in the category of superschemes over a certain
Noetherian superscheme X on which a locally free sheaf 7 of rank m[n is defined. [The for-
mulation of parts (a) and (c) of the theorem is the same, except that all morphisms are un-
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lerstood as morphisms of superschemes over X and all products as fibered products over X.
The formulation of part (b) needs no modification.]

If m + n =1 the space F x F is X, and the flattening partition obviously consists of a
single component Y,=FXF,w=¢, dy;, ,=m|n=1[{0 or 0|1.

Suppose the theorem has been proved for m + n = ¢ — 1. We shall prove it for m + n = ¢.
Consider the natural projection F—P, P=Px(1|0;J) if m > 0 and P=Px(0[1; 9) if m = 0.
Relative to this projection, F is the superspace Fp of complete flags in TIP over P, where
. is the tautological sheaf on P:F:=Fp. The inductive hypothesis gives us a relative flat-
tening partition (roughly speaking, a flattening partition in a fiber) of the superspace Fp
on P for every flag #,C ...CPmi on X, since the flag &. induces a flag P,/ P «..CPmsnlF
of lengthm+ n — 1 on P. By Proposition 3, the same flag & . yields a flattening partition
of P over X. Thus we obtain a supercell partition of F over X, corresponding to &, - an X-
point of the supermanifold F over X.

In order not to consider a functor of points, we describe the construction of a flatten-

ing partition of the product FXF FpXFP The correspondence §:F.—~P./F , where P. is the
idxg

tautological flag on F, & the taugologlcal sheaf on P, determines a morphism FpXFp~->Fp
P

Fp whose base, by the inductive hypothesis, admits a flattening partition. The natural pro-
r , , pxlid .
jection p:Fp->P determines a morphism Fp))in—»P%{(Fp:Pi_(F, whose base, by Corollary 4,

admits a flattening partition. Taking the inverse images of the components of both flatten-
ing partitions under the respective morphisms, we obtain two partitions of the superspace
FXF. The components of the required partition are now defined as the (scheme) intersec-

tlons of the components of both partitions. It remains to index the components of the par-
tition by the elements of the Weyl supergroup Sy and to prove parts (a) and (b) of the theo-
rem.

Fix w€ MW and let (dij) be the matrix corresponding to w by the Combinatorial Lemma.
Let (dlj) be the matrix obtained from (dij) by deleting the first row and subtracting tk F
from dij if i > 2, and deleting the k-th column and subtracting tk# from dij if j > k, k =
w(l). As this matrix has properties 2.2(a), there exists a corresponding element w' of the
Weyl supergroup SLW' of SL(m — 1, n) or SL(m, n — 1). By the inductive hypothesis, w' de-
termines a component Yy: of a flattening partition of FpXFp. Consider also the component of
P

the flattening partition of the superscheme PXF corresponding to the first row of (dij), i.e.,

Yi/ Then k(PN ) lr,=0]0 if j <kand 1k (9’(1-7,) lr,#010  if j > k (cf. the proof of Proposition
3 and Corollary 4). Define the component Yy of the flattening partition of FXF as Y,=@dX ¢
X

Yu N(pXid)y 'Y, It is clear that, given any pair (w', k), we can construct w in such a way
that this correspondence is the inverse of the correspondence w > (w', k) described previously.
To prove that Y, satisfies condition (a) of Theorem 2, it suffices to observe, first, that
g¥(F.NP)) are locally direct locally free subsheaves in s of ranks djj (for the notation
see the assumptions of the theorem) if and only if ((iqu)og)* NS; /P are locally direct
locally free subsheaves in 7,/((id X g)og)*¥# of ranks d} ij and {pXid) og)* (9’(]9’1) are locally
direct locally free subsheaves in 95 of ranks 0|0 if 5 < k and 1]0 or G|1 if j>%. Second,

g factors through the embedding ¥V, —F XF if and only if (id X ¢)og and (pXideg factor, respec-

tlvely, through the embeddings ¥, —Fp ><Fp and Yk-—>PXF — this follows from the construction
of Yy

We now prove (b). The general fiber of the projection pe:F >)<{F—>F is the space of com-

plete flags, which can be represented as the relative space of complete flags of smaller
length over a projective superspace. Viewed thus, every Schubert supercell in py!(x), x6F(C)
is a Schubert supercell of the relative space of complete flags over a Schubert supercell of
the projective superspace. Hence one can use Proposition 3 anc} proceed by induction.

ITI. Cases G = 0Sp, ISp, Q. The same proof goes through, provided that the statements
of Proposition 3 and Corollary 4 are suitably modified: for G = 0Sp, IISp one replaces the
projective superspace Px(1]0;97) by the superspace Px(1|0;7,b) of subsheaves of rank 1|0 in
J isotropic relative to the form b:7—-F *; for G = Q one must consider the super-Grass-
mannian Gx(1{1;7,p) of p-symmetric subsheaves of rank 1|1 in &, where p:7—J is the ap-
propriate odd involution. The exact formulation is left to the reader. =
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In classical geometry, the partition of a flag space F into Schubert cells is simply
the partition of F = G/B into B-orbits, where G is a suitable simple algebraic group and B a
Borel subgroup. In our approach this clearly corresponds to the partition of F x F into G-
orbits. (Indeed, having fixed a point x€F(C) in the second factor, we fix a subgroup B of
G — the stabilizer of the point. Consequently, the fiber of a G-orbit Y over x is a B-orbit
in F.]

The next lemma shows that Schubert supercells are also G-orbits in the superscheme
sense.

6. Transitivity Lemma. Let S be a superscheme, TS=T®0S. Let £, &. be two com-
plete G-flags in TS (G = SL, 0Sp, ISp or Q) with the following properties (cf. Definition
2.1): 1) & and #." are regularly positioned relative to each other, 2) the type of their
relative position is (dij). Let 7., # be another pair of complete G- flags with the same
properties [and the same (d13)1, with the type of P.~equal to that of &. and the type of &.
equal to that of &. (cf. Definition 1.2). Then every point s € S has an affine neighborhood
U = SpecA such that there exists an element g€60d (A) carrying the pair of flags Z.|ln, Z.lv
in Ty into the pair %./u, #. lu-

Proof. I. Case G = SL. Let U = SpecA be a neighborhood of $&S such that the sheaves

Ziln Pilos Pilos Pl PiNPNos PiNP )Y are free and are direct subsheaves in Ty. To sim-
plify the notation, we shall henceforth omit the symbol |{j; and identify all sheaves over U
with their spaces of global sections over U.

We shall construct the required element g6QG (A) explicitly, using induction on the in-
dexes i of the constituents of the flag #.. On &P; we define the map g so that Fi»P; (this
is possible because the flags #. and &. have the same type). When this is done the restric-
tion of the (as yet unconstructed) map g to #; carries & NF. into PiNP. (the intersection
?;ﬂ.?’ is treated as a degenerate flag gain@lcg’msozc_,_ cg’xngﬁmn ,)» since the elements dij
are the same for the pairs of flags g. . and P, .

Now suppose that g has been constructed on the constituent P, and carries PV C...C%
into #1C:..CPr and P, NP into F,NP . We shall construct an extension of g to Pry, satisfy-
ing the same conditions for k = k + 1.

Let j, be the least j for Wthh dri1, j7dy In the A-module 9”'k+1ﬂ9’,0 take an element
ek+; in the complement of FuNF; jo» and in the A-module ?k+1ﬂ9’“ an element &p4, in the com-
plement of mkng’,, (dimensional arguments show that this is legltlmate) Define g on ep:
gek+1-—ek+1 Extended by linearity to .9'k+1, g carries 9’1CZ .. C9’k+1 into Pic=-.. C9~”k+1

We claim that .9’k+lﬂ.9’ is carried by g 1nto ?k+1 in 9’k+1ﬂ.7 If j < j, it follows
from dimensional arguments that 9’k+1 {‘19’ 9’,@1’9" and SVHI(’}? 5",@09’, , and so, by the induc-
tive hypothesis, g(.?’k+1ﬂ9,)—.?k+1n.? (9’k+1ﬂ?n)-9’k+1ﬂ9’h by construction. Finally, if
J > 30

PeriNF = Aee B (TN P, (1)

and moreover €p€PeriNF},CPes1NF), but €eubPDPeNP; By (1), 8 PenNF))= Aee ®Z2NF;
which by construction is equal to Sﬁkﬂﬂy,

The last step of the inductive construction yields a map g with the desired properties,
except for Berg = 1. This may be remedied by correcting g, e.g., at the last step: g(ek)
(Ber g)E1* &y (the exponent will be —1 if ey is even, +l otherwise).

II. Case G = 0Sp, ISp. Up to [(m + n + 1)/2], where m|n = dimT, the inductive con-
struction is the same as for G = SL. One then chooses ey and &; so that b (ers Cmnyie) =
bt Cminaid)=1, bler €)=b (er €)=0 for all other j (b is a suitable bilinear form). It is
now clear that the element g taking e} into &g for all k lies in G(A), since it preserves the
Gram matrix of the bilinear form. By construction, g has the desired properties.

III. Case G = Q. The construction is the same as for G = SL, except that at each in-
ductive step the dimension of the space % on which g is being defined is increased by 1|1,
More precisely, considering the complement to FeNF5 in Pan ﬂg’,, » one simultaneously chooses

two elements: an even one ey4, and an odd one p(egs;) (the same for P). These are carried
into elements ép.1, P (€r1) » respectively, and thus g£6Q(A), i.e., gep==pg. []
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4., Schubert Supercells: Dimension

1. Definition. A basis reflection ¢ is one of the following elements of the group Gy

a) G = SL: o is a permutation of neighbors in {1, 2,...,m + n}, o3 = (i, 1 + 1);

b) G = 0Sp, NISp: ¢ is a simultaneous permutation of neighbors in the left half of
the sequence {1, 2,...,m + n} and of mirror neighbors in the right half, o5 = (i, i +

D(m+n+1-1, m+n — i),i+1<[”‘+"'

2
its mirror reflection, =, m+nrn+1—1j

¢) G=Q:o0,={(i,i+1)€Sy,.

2. We can now define the superlength of an element of the Weyl group.

], or the transposition of l=:[££§li] with
4

Definition. a) Let I, J€6l,, and let o66W be a basis reflection such that J = o{(I). If
o = 03, then

: 110, if J=J, G=SL, OSp, ISp,
Irr(@)=10|1, ¥ [+J, G=SL, OSp, TISp,
11, if G=Q,

and if o = 1y, then

110, if &, (J)==110, G=08p 2r 1, 2s),

1[1, if §,())=0|1, G=0Sp @r-1, 2s),
! 0\0, i §,()=1]|0, G=0Sp 2r, 2s),
@=110, i & (J)=0]1, G=0Sp @r, 2s),

0|1, if §,(/y=1|0, G=DSp (m),

00, ir & (J)=0|1, G=IISp (m).

b) Under the same conditions, let z@::ck...tﬂGGWV be a reduced factorization inte basis
reflections (i.e., the number k of basis reflections into which w is factored is minimal),

J =w(I), Put Ij = ot...0%(I). Then the superlength £1j(w) is defined as the pair of num-
bers

k=1

Ly (@)= 2 lli’]iﬂ (™),
=0

and the length as the number k.
3. THEOREM. If J = w(I), then
dimY NEF; XF)=1;; (w) +dimF,.

Remark. Using induction on m + n and formulas for the dimension of G-Grassmannians (cf.
[8, Theorem 5.6.3]), one can verify that

—1 —1)i
(m(m2 )_[__ ”(”2 l)imn), G=SL (m, n),

e (r?+s2|s @r4-1)), G=0Sp @r 41, 2s),
dm*F 1=\ (- — 1) + 52| 2rs), G=0Sp @r, 2s),

(m(m2+1) I m(n;+1)), G=Q (m),

this dimension is independent of I, and

, — (s—1 —1
dxm0F1=(rs+ r(r2 1) + 3(32 ) ! (r+2])r + s(:r2 1) +rs),
G =1Sp (m),

where r|s=dn(I) is the dimension of the maximal isotropic constituent in a flag of type I,
r+ s =m.

Before proving the theorem we state two corollaries.

4. COROLLARY. The superlength £1j(w) is independent of the choice of the reduced fac-
torization w = ok...g!, o

5. COROLLARY.

l];(W) +dim F]“l.r[ (w_l) +d1m Fy.
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Proof. YuN(FIXFs)=Yua\(FsXFr). This follows from the definition of the space Y, —
the isomorphism is established by permuting the factors of the product Fy x Fj. @

6. The proof of the theorem proceeds by induction on the length k of the element w =
ok, ..ol of th,e Weyl group. Denote the tautological flags on the first and second factors of
F1 x Fy by &r,. and #,,., respectively.

Let k = 0, i.e., w=e¢e, J=/, I;;(¢=0|0, and it will suffice to prove that Y, N(F;XF=
Fr. Now Y is the diagonal A in F x F. Indeed, by Sec. 2.5(a), dij,c.rr=dumnu,j ). On the
other hand, (9;,;09’;,;)\A=?},m1n(i,j) [s , and so these sheaves are locally free locally direct
subsheaves in T, of ranks dmfn(i,;‘) () Therefore, if g:S > F x F is a morphism of superschemes
which factors through A<~FXF , then all g* (9’},1(‘19’;,;) are locally direct locally free sub-
sheaves in Tg of ranks dijerr- Conversely, if all g* (9’},,{19;_,-) are locally free of ranks
dijesr, then 1kg*(#1,:NF7;)=di() for all i and I, that is, g*(9;,)=g* (). It is clear
that in this case g factors through A<F XF.

Now for the induction step. Suppose the dimension formula true for any w = ok, ..ot

(reduced factorization into basis elemenps). We have to prove the formula for elements of
the Weyl supergroup of length k+1:w:=c*"igk .  gl. Put We=c*...q', Jy=ws(]). We shall need the
following lemma.

7. LEMMA. 1) Let ofFt = oq be a basis reflection. Then wyt gy <willg-+1).
2) Let oFtl=w,, [= [—'%'—"—] Then wjl{)<wg!(m+tn +1—-1.

To prove the lemma, we observe that each of the Weyl supergroups under consideration is
isomorphic to a classical Weyl group, and moreover the basis reflections correspond to re-
flections with respect to elements of some system of simple roots. Hence Lemma 7 is simply a
restatement, in terms of permutations, of the following classical lemma:

7'. LEMMA (see [1, 20]). Let w be an element of a classical Weyl group of type A, B
or C, Yy a positive root. If l(w)=I(o,w)—1, where % denotes length, then w™'(y) is a positive
root.

We introduce new notation: if ¢**'=g,, then a=w;l(g), b=w;'(g+1) and if o** =g, then
a=wy'(l), b=wy'(m+n +1—10). By Lemma 7, a < b.

I. Case cktl = oq. We compare the matrices (d;j,w,rs) and {d;ij w070+
8 . LEM:M.A. dlq,w,[.f:diq‘wo,ljo‘i‘ﬁq.{.]_ (Jo) —‘6q (‘]0) if i} b,
diq,w,!.l==diq,w.,llo—‘6q (Jo) if a<i<b,

with symmetric relations for G = 0Sp or 1Sp,
dijow,rr=08ij,wg1s, for other i, j.

The proof follows at once from the definition of dij v, 13 [see Sec. 2.5(a)l.

Thus, we have formulas

tk(Z; 0] )| p, = 1K (PP 0e) |7y, — 8 U +8pa ) i i3, (1)

rk (9}'iﬂ.9’."_,,q)‘yw=rk (y}liﬂ?;mq)[yw'—*% (V9 if a<i<b, with symmetric relations for G = OSp,
ISp,

k(2,077 )y, =1k (Z1,09] )y,
for other i, j.

Consider the natural projections Fj, - F and Fy > F onto the superspace F of incomplete
G-flags obtained by "forgetting" the q-th constituents #, , and &)  and the dual consti-
tuents in the cases G = 0Sp, NISp. Formulas (1) show that the projections of the supermani-
folds Yy, and Yy under Po:FrXF ,~>FXF and p:F;XF;—+F;XF coincide: PV u)=p¥,)=Y.
(Recall that the partition on Y, was defined as a flattening partition ~for the system of
sheaves {9’},109’;,;}; it is obvious that the projections of Yy onto F;XF form a flattening
partition for {9’}’1.(]97’7.]}, where 9’}'_ is the tautological flag on F, pf,gf}'j_—_y’_',wj, P*g’"f_i:?;,iv
j #q.) In fact, Y,  is isomorphically projected onto Y, while Yy is a big cell relative to
a projective superspace of dimension I, ;(6*") over Y (if G = Q — the super-Grassmannian of
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p-symmetric 1|1-dimensional planes in a 2|2-dimensional superspace with odd involution p).
This again follows from the properties of the matrices (dij) and formulas (1), rewritten as
follows:

rk (y[,’in?},,qlgf.r,,q—l) iYm:{gqt Sjljf ifL i:a, (2)
- 0[0 i i<a,

el e \Y‘“'z{gi U)o 16 G5 ®

IR (P NP P s 0m1) ‘Yw__' (5):}:1) (ijfo) L1f< f,> b, (4)

k(P N F gt Fra) h,w=rk (1N 011! P 70 0-1) ¥, (5)

for all |,

Indeed, formula (2) implies
y}o:q /9}04“1 [oncy’[na n y;mq-i—l/g}.,,q—l Iymu’

whence, by (3), the last inclusion becomes an equality. This mean that the tautological

L4

sheaf Q}D'q/?,a,q_l of the superspace Y, over Y is exactly the sheaf &, NP 0wl L s, -1 Lifted

from Y, and therefore dimY,—dim¥=0]0. Similarly, formulas (4), (5) and (3) yield the con-
clusion that the tautological sheaf &) /%, ; of rank 8 (/o of the superspace Y, over Y
must be embedded in the sheaf ¥;,N¥, . /#, | of rank 8 (/o) + 8 (J) lifted from Y, and
that it cannot intersect the sheaf 9}’1,__1(].9’}’”1/9’",,4_1 of rank §;(/;), also lifted from Y.
Thus, dimY,—dimYy,=dmY,—dimY =1, , (0**) , and finally dim¥V,=I;,; (w)+dim F; by the induc-
tive hypothesis.

II. Case off! = 1g. Consider the natural projections F; —F and F;»F onto the
superspace F of incomplete G-flags obtained by "forgetting' the 2-th constituents Py, and
#’,,, respectively, and the dual constituents in the case G = 0Sp(2r + 1, 2s) (this is the
only supergroup G for which the constituent dual to ¥, , is not &, , itself). Reasoning
as in the previous case, one can show that the projections of the super-manifolds Yy, and Yy
under p:F ;X Fs~F1XF and p:FiXF;—F;XF coincide #(Vu)=p(Vy)=Y) and that dimYe,=
dimY, while Yy, is a big cell of the relative (over Y) projective superspace B@ W, 8, ()+
811 (V) +8u2 /), B} for G==08p @2r4-1, 2s) and P (5, {J); &; (/) + 01 (), B) for other G. Here P(x:y, b
denotes the superspace of x-dimensional isotropic (relative to b) lines in a y-dimensional
superspace. The relative dimensions of these superspaces are given in Table 1 below (cf.
[8, Theorem 5.6.3]). This dimension coincides with lsr {o*™ and by the inductive hypothesis
dim Yo ={Ir; (@) +dimF,;. ]

5. Structure of Parabolic Subgroups

The list of known homogeneous spaces of a complex simple algebraic supergroup G, be-
ginning with the spaces of complete G-flags described above, can be extended by including also
spaces of incomplete G-flags, including super-Grassmannians. In the purely even situation
these exhaust all possible homogeneous spaces, if the latter are defined as complete quotient
spaces of G modulo closed subgroups. In the supercase, there are more homogeneous spaces than
flag spaces; their structure is described by the following simple proposition.

Proposition. Let G be a complex algebraic supergroup, whose underlying group Greg is
reductive. Let G act transitively {(in the superscheme sense — see Sec. 3.6 or [6, Sec.
4.1.17]1) on some superscheme X, and let P be the stationary subgroup of a closed point X
(in this case we write X = G/P). The variety Xyred 1s complete if and only if Prgq is a
parabolic subgroup of G,.gq. The structure of parabolic subgroups of reductive groups was
described in [15] (cf. [13]). =@

In classical geometry there is an equivalent definition of homogeneous spaces, as quo-
tient spaces modulo parabolic subgroups, i.e., closed subgroups containing a Borel subgroup.
Our topic in this section is superanalogs of parabolic subgroups. It will follow from our
results that they are all stationary subgroups of incomplete G-flags. As an application we
shall derive the following proposition (see [11]): The reflection of an invertible sheaf on a
space of G-flags with respect to an odd root, used in proving the superversion of the Borel-—
Weil —Bott theorem, carries the sheaf intc an invertible sheaf, again on a space of G-flags.
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TABLE 1

Projective Dime'nsign of

Group superspace projective

superspace
P(110; 30, b) 110
OSp (2r +1,25) PO|1;1]2, ) 11
P(1 0;2[0,.1:) 010
0Sp @r, 26) POIT: 02 5) [0
PA[0;1]1, ) 01
Sp (m) p(0|1;1‘;1, 5) 0jo

1. Borel and Parabolic Subgroups. A Borel subgroup of a simple algebraic supergroup
G of type SL, OSp, ISp or Q is the stabilizer of a complete G-flag in the space of the stan-

dard representation T. In all cases except Q, every Borel subgroup is obviously represented
® %

by a subgroup of upper triangular matrices (0 .. ) in G «.GLc (T). If G = Q the Borel sub-

L]

groups are represented by subgroups in Ge GL.c (T) of the following form:

», *
0w
*,
*

*
*
.
.

0
(the block subdivision ¢ rresponds to parity). A parabolic subgorup of G is a closed subgroup
containing a Borel subgioup. Below we shall describe these subgroups (for G # ISp and under
some less essential restrictions) in terms of root systems; Borel subgroups will be treated
in Subsecs. 5, 8 and parabolic subgroups in Subsecs. 6, 8. However, before we can deal more
thoroughly with roots, we must lay the ground accordingly.

2. Root Systems. From now until Subsec. 7, § will denote a classical Lie superalgebra
over C of type A(m, n), m # n, m,n=0, B(m,n), m>=0, n>0, C(n), n=2, D(m,n), m=2,
n>0, D(2, 1; a), F(4) or G(3). I[Type A(m, n) corresponds to the Lie superalgebra sl(m-1,

n + 1), type B{m, n) to osp(2m-+1,2n), type C(n) to osp(2,2n—2), type D(m, n) to o0sp(2m, 2n),

types D(2, 1; o), F(4) and G(3) are exceptional; type Q(n), which corresponds to the Lie

superalgebra ¢(n-+1), will be considered in Subsec. 8.] If we fix a Cartan subalgebra } of

8, then 8 factors into root subspaces (see [16, 2.5.3]): g=éBAga, where A is the root system
' 2

of 8. This factorization has the following properties.
Proposition (Kac, [16, Proposition 2.5.51).
(a) go=D;
(b) dim g,=1 Va=+0;

(¢) up to a multiplicative factor, there exists on 8 exactly one nonsingular invariant
symmetric bilinear form ( , );

(d) (1) [0 88] =gats=ra, B, a-BEA, a-}-p7#0;
(2) (gar gs) =0 Vaz= —B;
(3) the form (, ) defines a nonsingular pairing of @« with g3

(4) the form ( , ) is nonsingular on B;
(5) [ea, ea}=(€w €~a)ha, where hy # 0 is defined by (h,, h) =a(h), h€h, €+a€8a;
(6) abA=>—a€A. O

3. Systems of Simple Roots and Positive Roots. Definition (Kac, [16, 2.5.4]). A sub-
set II={a,...,a}A is called the system of simple roots if there exist vectors e:€ga, , f,-Eg_,,i,
h:€h. such that [ei, £j] = 8§i1j8i, the vectors ey and f;, i = 1,...,r, generate § and I is
the minimal system with these properties.
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Examples show that for all classical Lie superalgebras except 4{m, n) the root system
A\ {0} is not an abstract system of complex roots. Nevertheless, Proposition 2 and the fol-
lowing proposition furnish sufficient properties of root systems to carry the classical proof
of the fundamental result (see [13, Chap. VIII, Sec. 3.4]} over to the supercase.

Proposition. The system of simple roots I has the following properties:
1) I is a basis of the vector space §*;
2} all roots fiEA may be expressed as linear combinations §=2 me-o with integer coef-
agn }
ficients my of the same sign (i.e., either all ma>0 or all m.<0).

Proof. We begin with the second part.

2) Since ey and fj, i = 1,...,r generate ¢ any element g€gs, g0 can be written as
g=2Ci0; (1 «++s€rs f1r .., f4), Where oj is a commutator of elements of II. Since le, F =081
and [&;, e)]=a,; (h) e, [A;, fil= —au(h) [is [Ri ;]=0 it follows that g=3d (1, ..., &)+ 2 (f1s--0s
Fd+ Za;h;, where 8§ and 8§ are commutators of the elements e,...,e, and f,,...,fy, respec-
tively. If g€gs, P40, dimgg=1 by Proposition 1(b), and therefore g==ab;( ....¢) or  ag,

(fl,...,fr) for some (Sj and 61'{. Hence 5:2 mq;, where my is the degree of the monomial Sj

i=1
in e; (or of & in f;), i.e., m6Z and all m;>0 (or <0).

1) That the elements of I are linearly independent becomes obvious if one looks at the
systems of simple roots written out [16, 2.5.4].

The set II spans §* as a vector space over C. Indeed, for any a€h* one can define hy
by requiring that (4, #)=a (%), h6), and the fact that § is spanned by the elements e;,...,e,
r

and f,,...,f. implies that :’la=2 c;h;. Since hi=le,, fi]=le; f) ha, where (e, B =0, {#) for
1==1 r r
all A€y [Proposition 2(d), (5)], it follows that iz“=2 ci-len i ks, whence a—.:E ci-len f1)
as required. o =1 i=1
We define the set of positive roots AT as the set of nonzero linear combinations of
simple roots with nonnegative integer coefficients: A*={ANZ.II)\ {0}. A symmetric definition
gives A-:A-={(AN(—Z,)I)\{0}. By Proposition 3, A=A*JA-U{0}, ATNA-=Z.

4, Indecomposable and Simple Roots. Definition. A root afAY is sa2id to be decom-
posable if HB,vyEA*:a=B-+y; otherwise we shall say that a is an indecomposable root.

LEMMA. The set of indecomposable roots is precisely the set of simple roots I.

Proof, 1) Each element o;6Il is indecomposable, for if a;=p-+y, p=2b:a; y=2IZcix:, 0220,
€;=0, o.€ll, then a;=3(b,4c;)a;, and since the simple roots are linearly independent we get
bi4-c;=0 Vi#j, b;-+c¢;=1. Since the coefficients bk, ck are nonnegative integers, it follows
that B = 0 or v = 0, contrary to the assumption that B, pEA*,

2) Let a6A*, afIl, We claim that o is decomposable. Indeed, consider any nonzero vector

£%. . Then g =x.§(ey,..., &) by the definition of I [here x€C, &(ey,...,e) is some commutator of
the elements e,...,e, figuring in the definition of the system of simple roots). Since

abll, 8(er,...,e)=[bi(er, ..., &), 8s(en,...,e)] for certain commutators d; and 8,. Since{g, g] <gssy
we have o = B + Yy, where B and y are such that 8i1(er, ..., e) 8, Balen...,e) €8, and hence

B, yEA+. O

5. Borel Subalgebras and Borel Subgroups. The Borel subalgebra of a classical Lie
superalgebra ¢ [relative to a fixed Cartan subalgebra — see above, Subsec. 2] is the sub-
algebra b= @ g,. A parabolic subalgebra is any subalgebra of § containing 5,

=EATAO}

Let G be a complex algebraic supergroup of type SL(m, n), m # n, OSp(m, n) its component
of the identity [G° = G always, except in the case G = 0Sp(2r, 2s)], 8§ the corresponding Lie
superalgebra.

Proposition (Skornyakov, cf. Kac [17]). Under the natural one-to-one correspondence
between subalgebras of § and closed subgroups of G°, Borel subalgebras correspond in one-to-

one fashion to Borel subgroups in the sense of Subsec. 1, and parabolic subalgebras to para-
bolic subgroups.
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Proof. 1) Let b be the Borel subalgebra of g corresponding to the set of positive roots
At. There is a fuller analog of Lie's theorem for the Lie superalgebra b than for arbitrary
solvable Lie superablgebras: Every finite-dimensional irreducible representation of b is one-
dimensional. Indeed, any highest weight vector of an arbitrary finite-dimensional representa-
tion of b is a characteristic vector, and thus any finite-dimensional irreducible representa-
tion of b is one-dimensional. Applying this fact successively to the restriction to b of
the standard representation T of g and its quotient representations, we infer that b leaves
invariant some complete SL-flag f in T. If G = SL this means that the closed subgroup B of G
with Lie superalgebra b is contained in the stabilizer Stg(f) of the flag, i.e., in a Borel
subgroup. In fact, B = Stg(f), for otherwise the root system of the Lie superalgebra of
Stg(f) would contain roots a and —a for some a€AN{0}. This is impossible, as is readily
seen, e.g., by considering the matrix representation.

If G = 0Sp, the analog of Lie's theorem for b must be applied in a somewhat different
way. To this end, we note that every weight vector in the standard representation of § is
isotropic (this is also true in every subfactor of the restriction of this representation to
b). Indeed, none of the weights of the standard representation vanish, and if v€T is a vec-
tor of weight o, then 0=b(hv,v)+b(v, hv)=2a(h)b(v,v) for all h€Y, whence it follows that b(v,
v) = 0 (b is the symmetric § -invariant bilinear structure form of T), that is, v is isotropic.
We now use induction to construct a complete G-flag in T that is invariant under J, beginning
with a b-invariant one-dimensional weight subspace V (which, as just shown, is isotropic),
and considering the subfactor VL/V of the representation T of b, where V1 is the orthogonal
complement of V relative to b. We then apply the same arguments to VL/V, and so on. The
final result is a complete isotropic flag in f={0cUc...cV*cT}. As in the case G = SL,
the closed subgroup B of G° corresponding to b is precisely Stge(£f), that is to say, a Borel
subgroup.

2) Let B be a Borel subgroup of G°. As already remarked, if o is a root of its Lie
superalgebra b, then —a¢ .s not a root of b Therefore, if At denotes the system of nonzero
roots of b and A the complement of A*U{0} in the root system A of g, then At =—4&, A=
A*UA~ U0} . Let I={o;, ...,a,} b: the set of indecomposable elements of Azt. We claim that
I is the system of simple roots in the sense of Definition 3. Choose nonzero vectors €,6¢as,

fi€8-q, and put k;i=[e; S — by Proposition 2(d), (5) this is an element of j . In addition,

if i # j, [ei, £j] = 0, for otherwise a;—a;=pEA\{0}, contrary to the assumption that oj and
oy are indecomposable. Obviously, the vectors ej span the subalgebra g%ﬁa;symmetrically,
*

the vectors f; span the subalgebra e&ga- The vectors h; span the space §, since Il generates
b A-

b*, and by Proposition 2(d), (5) the vectors h; are dual relative to the form ( , ) to the
roots o (up to a multiplicative factor). Thus, the elements ej, fi span § Finally, I
is the minimal set with these properties, since a minimal subset II'=Il would be a system of
simple roots and the corresponding Borel subalgebra b’ would be contained in b. But in the
first part of the proof we proved that in this situation Vb implies ¥=5h, whence it fol-
lows that I' =T. Thus I is the system of simple roots and b is indeed a Borel subalgebra.

3) The assertion concerning parabolic subgroups and subalgebras follows trivially from
the proven result for Borel subgroups and subalgebras. ©

6. THEOREM. Let g be a classical Lie superalgebra, b a Borel subalgebra, II the cor-
responding system of simple roots. Then for any parabolic subalgebra pOb there exists a
subset I © T such that v==Be)( & ga), where Ai is the subset of the set A~ of negative roots

aGa;
generated by I as a semigroup.

Proof. Since:}) is an Abelian subalgebra of p, p= %;Fu for some subset A © A. We must
a

show that A=A*U{0}UA; for some I < 1.

Define I to be the set of all simple roots appearing in the decomposition of roots in
ANA- as sums of simple roots. We claim that I < A. Let a€ANA™ and let —a be decomposable,
i.e., for some B, Y6A* —a=f-+y. Then —fp, —yEANA", since [ga @al=6—y and [gs, gx]=6-¢" by
Proposition 2(d), (1), and as B, yY6A"C A it follows that —f, —yEA. It now follows by induc-
tion that T ¢ A. Hence A7CA, By the definition of J ANA"CA, and therefore A=A"U{0}U
A7. D

7. COROLLARY (Skornyakov). All connected parabolic subgroups of G are stabilizers of
G-flags in T (G of type SL or 0Sp).
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Proof. Let B be a connected Borel subgroup which is the stabilizer Stgo(f) of some
complete G-flag f={0c# . C...Cc¥,,,=T}, where IN js the space of the standard representa-
tion of G. We distinguish two cases.

I. Case G=SL(m,n), OSp@2r-+41, 25) or OSp@r,2s); if G=0Sp2r, 25) dim&F,, ,—dimZ, , ,=0]1.
Let f' be a (not necessarily complete) G-flag that can be extended to f (i.e., all consti-
tuents of f' are constituents of f). It is clear that Stgs (f)DStee (fY=2B, i.e., Ste(f} is
a (connected) parabolic subgroup. Thus the set of stabilizers of G-flags extending to f
is a subset of the finite set of (connected) parabolic subgroups containing B. It will suffice
to prove that these sets contain the same number of elements. By Proposition 5 and Theorem 6,
the number of parabolic subgroups containing B is equal to the number of subsets of the cor-
responding system of simple roots I. The number of elements of I for G = SL{m, n) ism + n ~
1, and for G = 0Sp(m, n) — [(m + n)/2] (see [16, 2.5.4]). Clearly, for every G this is pre-
cisely the number of (isotropic in the case G = 0Sp) constituents of the complete G-flag f,
not counting O and T. The number of G-flags f' extending to f is obviously equal to the
number of subsets of the set of (isotropic) constituents of f, not counting 0 and T. In
addition, to different f; and f, correspond different subgroups Stgo(f;) and Stgo(f,).
Otherwise these subgroups would both coincide with the subgroup Stgo(f') for the flag f'
composed of all constituents of f, and f,. This would imply that the space of G-flags of
the same type as f' is precisely the space of G-flags of the same type as f; (recall that
the type of a flag is the ordered sequence of dimensions of its successive factors); but
this is impossible, because constituents of a flag f' not occurring in f; can always be in-
finitesimally displaced in such a way that the resulting flag is still a G-flag (at this
point it is essential that we are in Case I). We have thus proved that the number of sta-
bilizers of G-flags that can be extended to a fixed complete G-flag f equals the number of
connected parabolic subgroups containing B = Stge(f). This proves the corollary for Case I.

II. Case G=0Sp@r,2s), dim%, ,—dimP.,,1=1|0. Here the argument is somewhat more
complicated, since different G-flags f) and f} extending to the same complete G-flag f may have
the same stabilizers Stgo(f!) and StgP(f}). Example: f, = £, f; = {f without the Lagrangian
(maximal isotropic) constituent &,.}. If Sige (f{)iStGa (f » then the Lagrangian constituent of

f) can be infinitesimally displaced, which is impossible — in fact, f) can be extended to a
complete flag by adding a Lagrangian subspace in exactly two ways. Hence it follows, be~
sides, that the same Borel subgroup B is the stabilizer in G® of two distinct complete G-
ﬂﬁ%:f:@c?@LuC?m4C?mcgﬁmC”.CﬂamLﬂ=@C?ﬁLncym4cyﬁﬁﬁmmcn.cﬂ,
the latter differing from f only in its Lagrangian constituent. We shall make use of this
fact in proving the remainder of the corollary.

As in Case I, we note that the set of stabilizers of G-flags that can be extended to £

or to f' is a subset of the set of connected parabolic subgroups containing B==8lg {f} =
Stgo(f'). These sets coincide, since they are finite and contain the same number of elements.
Indeed, the second set contains 211 = orts elements, where I is the ‘system of simple roots

of the supergroup G = 0Sp(2r, 2s), while the number of elements in the first is obtained by
adding the following: 1) the number of G-flags containing the constituent &, but not @..ea;
2) the number of G-flags containing 7., but not Frue1 ; 3) the number of G-flags containing
Prist and Pr; 4) the number of G-flags containing neither &Pryoy Frus NOY Ppyy (in all
cases the flags in question are assumed to be extendable to f or f'). Obviously, the sta-
bilizers of all these flags are distinct and each of the four components of the sum equals

2r-l:s—2. 3

8. In this subsection we briefly summarize some results concerning parabolic subgroups
of the supergroup G = Q(n). The corresponding Lie superalgebra isg=q(n)={X6gl(n,n)|[X,p]l=0},
where p is a given Nl-symmetry in the standard representation TRif, p? = 1. The proofs, which
will be omitted, are analogous to those for G = SL and S = 0Sp.

8.1. Let g=4q(m), n>3, and let l be a Cartan subalgebra of the even part gz=gl ().
For pz we have a decomposition g== EEB g« into root subspaces (see Penkov [10]), where 4 is the
aGA
root system of the reductive Lie algebra gy, so that A is a root system of type Ap.;. We
define the Cartan subalgebra of § to be the subalgebra h=hs @ hr:=g. The root decomposition
has the following properties.

Proposition (Penkov [10]).

(a) dimgy=1|1 va£0;
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(D) [8ar 861 =Barp<=>%, By & PEA, a-+p~0.0]

8.2. Since ACH} is the root system of the Lie algebra gl(n), A is an abstract system of
complex roots in the subspace of linear forms on bz that vanish on the center of gl(n) (see
{12, 131). We may therefore call a subset I={ai,..., %A the system of simple roots of the
superalgebra ¢ if it is an abstract system of simple roots (see [12]). We also define the
set of positive roots A*:=(ANZ:II)\{0} and the set of negative roots A~:=(AN(—Z;)II)\.{0}.
Then A=A*+*JA-{{0}, A*NA~=.

8.3. The Borel subalgebra of § is defined as b= ;B ogw A parabolic subalgebra is
agat {9

any subalgebra of 8 containing b.

Proposition. Under the natural one-to-one correspondence between subalgebras in 8 and
closed subgroups of G, the Borel subalgebras correspond in one-to-one fashion to the Borel
subgroups in the sense of Subsec. 1, and the parabelic subalgebras to the parabolic sub-

groups, O
8.4. THEOREM. Let g=dq(), n>>3, and let b be a Borel subalgebra and I the correspond-

ing system of simple roots. Then for any parabolic subalgebra pDb there exists a subset
I ¢ 1 such that p=b@®( @ gs), where AT is the subset of the set A~ of negative roots gen-

oGy

erated by I as a semigroup.

Proof. The set of roots of the superalgebra y relative to by is indeed a parabolic set
of roots, and the theorem easily follows from the description of parabolic sets of roots —
see [12, Proposition VI.1.7.20]. ©

8.5. COROLLARY. All parabolic subgroups of G = Q(n) are stabilizers of G-flags in T. o

Remark. The truth »f the theorem and the corollary is readily verified for the super-
algebras q(1) and ¢(2) . 1f sq(n)cq(n) is the subsuperalgebra consisting of all endomorphisms
of T®IM that commute with p and have zero odd trace, the assertions are true (and the proofs
are the same word for word) for n>=3 , but for n = 2 there is a counterexample: the parabolic
subalgebra of 34(2) of all elements

9. The structure of the parabolic subgroups in the case G = NSp(n) is not known. It
should be noted that the root system of the superalgebra g=mnsp(n) is even less similar to
an abstract root system than that of the superalgebra osp(m,n). An idea of the difficulties
arising here may be gained from the root description of Borel subgroups of 8§ presented by
Penkov [11].

6. Superspaces of Incomplete Flags

In this section we summarize results relating to Schubert supercells in the case of
superspaces of incomplete flags.

1. The basic objects of our investigation will be G-flags. We retain the notation of
Sec. 1: ™In ig the space of the standard representation of G, OI is the set of types of G-
flags, i.e., the set of sequences (8;,...,8,) such that for some G-flag 0=FycP ... =T,
§;=dim P;—dimPiy.  IfJe6] , then CFy denotes the superspace of G-flags of type I. As in
the case of complete flags, all the supermanifolds are connected, with the exception of G =
0Sp(2r, 2s), when GFI may spit into two components.

LEMMA.
r
SLI={(61, v N1 r<m+tn, §,>010, 261——-- m| n},

im=]
OSL = {1y .+ .» 8)E T | 8,=8,,1.0
TS = {®s s 8)E T |8, =085 11},
U={By...,5)6"18,=a,|a}. O
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Fix the number of constituents r and a sequence of natural numbers u={g,...,%,} such that
r

Eui—_.~m+n, Let08=ae(r, ) denote the subset of Gt consisting of all F=1{5;,...,8,) such
it
that |8;{=u; for all i, where |@|8)|=a-+b. The superspace of incomplete G-flags correspond-
ing to g will be denoted by %F4g:
®Foi= y °F.
rgle

2. Position of an Incomplete Flag Relative to a Complete Flag. Definition. Let &Fy,.
be a complete G-flag in Tq of type I€%[,, #, . a G-flag of type [a9@ (S is a superscheme
over C). We shall say that these flags are regularly positioned relative to each other if
for all i, j ZriN%s, ;i are locally direct locally free subsheaves in Tg of constant rank.
The type of the position of ¥,,. relative to &, . is the matrix with components d,;=r1k (¥ ;N
Fr i 0L ji<r, 0<i<t, where

t=m-+n forG=SL, OSp,
t==2m for G=HS_P1
t=m for G=Qv

— this notation will be retained throughout this section.

3. Properties of Relative Position Matrices. LEMMA, The matrix (dgj)g<i<t of the posi-
<j<r

tion of an incomplete G-flag relative to a complete flag has the following property: (dij) is
obtained from some matrix (@j)o<i. i<t which is the relative position type of complete G-flags
by deleting the t — r rows with the same indexes as in the natural “forgetful" map G!n—>a®,

The proof follows from the fact that any incomplete flag can be extended to a complete
one., 0

4. Definition. Let @:G@(r, 1), as in Subsec. 1.

a) We is the subgroup of GW whose elements are the permutations thaE carry each of the

sets {1,...,it}, {Li+1,.c0viah oous{ipmr+1, ..., ¢} into itself, where iktzzuj.
J=1

b) w(I) will denote the image of a pair {(w, {), wWECW We, {697, under the map (OW|We) X
GI,»% induced by the action W 61, %I,

5. Combinatorial Lemma, There exists a bijection between the following sets:

a) the geometrically realizable types of position of incomplete flags of all types J¢%@
relative to complete flags;

b) the matrices ‘d"f’gﬁi-i’, with properties 3, hence satisfying the following symmetry
conditions in cases G = OSp or ISp:
OSp: dyy=di—irj—m|n+d, i )+ i )
OSp: d;;=di_i,r—;—m|m+di_, (h-+d;~; Jy;
c) the triples {{/, J, w)| 1691, Jc°8, we®W W, J=w (I)}.

Proof. Tt is readily seen that each of these sets is obtained from the corresponding
set for complete flags by a suitable "forgetful' projection. The fibers of these projections
are mapped bijectively onto one another by the bijections whose existence was established in
the Combinatorial Lemma for complete flags. o©

6. Schubert Supercells. Put Fi=“F, F':=%Fg, W:=%W, Let ¥ be the tautological
flag on F', ¢ the tautological flag on F.

For every class wEW/ /W let d; s denote the function on , 4 F,XF’ with values in IxZ
s . ‘ et J,w S=w({} 4
which is constant on each F;XF':

Gijwl ppxr = ig s

— the matrix component corresponding to the triple (I, J, w) by virtue of the Combinatorial
Lemma.
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Let _\,Y,,,{C(f_ii.mF,XF}) (C) be the set of all C -points x over which dim,; (#;N¥)}=d;},e-

Obviously, we‘%WelY"‘ covers all points of (F X F')ea

THEOREM. a) On each |Yy| there exists a canonical structure of a locally closed sub-

superscheme Y,cF X F’ such that the morphism WGFJV-'LIWQY")C.F X F’ is a flattening partition for

the sheaf system {9’\1(‘]?}}. This means that an arbitrary morphism of superschemes g:S5S > F x F'
(S Noetherian) has the property:

all g* (91['].%})—— are locally direct locally free sub-
sheaves in Tg of ranks d;;,,

if and only if g factors through the embedding Yoo X F7.

H
b) All Y, are bundles over F: Y,-p-;F, and the typical fiber p7*(x) of the bundle is
isomorphic to the open supercell C'",

¢) Yy is a functor from the category of Noetherian superschemes over C into the cate-
gory of sets: given a superscheme S, it determines the set of S-points of the superscheme

J'U'(!)FfXF,’ over which 9’,,(].?; are locally direct locally free subsheaves in Tg of ranks d;;,,.
=w

d) dimY,=dimF 4+ min [ (@), w6W/We.
w'EwCW
The proof is based on the observation that the fibers of the natural projection Fy x
Fy, - F;XF', are superspaces of complete G-flags (where J.€%I, is an extension of J to the
type of a complete G-flag). =©

7. As in the case nf complete flags, Schubert supercells will be G-orbits in the prod-
uct of the space of comp.ete flags and a space of incomplete flags.

Transitivity Lemma. Let S te a superscheme, Ts=Tg0s, ¥, ¥ two regularly relatively
positioned G-flags in Tg of types 16°I, and J€°O, respectively, and let the type of the posi-
tion of &#. relative to % be (dij). " Let ¥#., #. be another pair of G-flags with the same
properties [the same (dij), the same types: types: F. = type ¥., type P = type 771. Then
every point s€§ has an affine neighborhood UaSpec A such that there exists an element g of
the group G(A) of A-points of G carrying the pair of flags

Py F{yin Ty
into the pair of flags

oy

-‘7’:‘0, ?. (v

The proof coincides almost word for word with that of the Transitivity Lemma for com-
plete flags. o

7. Order in the Weyl Supergroup; Relative Position of Schubert Supercells

The Schubert supercells of superspaces of complete flags are indexed by the elements
of the Weyl supergroup, and also by the relative position matrices (see Secs. 2, 3). Hence
the relation Yu'.1v C¥u,rs (where Y is the superscheme closure, Y,,,,u:=YwnGF1><0FJ) defines
an order in the Weyl supergroup and on the set of relative position matrices. In this sec-
tion we shall give an intrinsic description of these orders. Using the fact that all Yy 13
are G-orbits, one readily shows that (Yu, 15)rea=|Yu, 17} are the Schubert cells of the space
(F1)reaX (Fs)reg. It is therefore clear that the Schubert supercells are "distributed" over
F x F in the same way as the Schubert cells over Fyppq * Fred-

It remains unclear whether a single supercell which lies in the closure of another at
the underlying level can be of higher odd dimension than the other supercell. If this were
possible, the partition into Schubert supercells would not be a supercell complex in a rea-
sonable supersense. The fact that this is nevertheless not the case follows from one of our
results (see Theorem 3):

(Yw’,IJ)redC(Yw,ll)red@Y'w',lJCYw,ll-

1. Let I, J€I, W,= {we¢ SW|w(I) = J}, and let I(w)=lo(w)|L(w)€ZXZ be the superlength
of an element w of the Weyl supergroup Gy, 1t is evident from the definition of the Weyl
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supergroup that there is an isomorphism of groups Wrs@redW | hence also a bijection of sets
Wiin6eaW . In fact, we shall define an order relation not on GW but rather on the subset
W,c¢W , which indexes the Schubert supercells in the space GFrX¢F;.

Let us call weSW a reflection if w is conjugate in GW to a basis reflection (see Defi-
nition 4.1).

Definition., (For G # 0Sp(2r, 2s) — for this supergroup see the remark following the
definition.)
o
(i) Let w;, w,6W;;, 6€W;; a reflection. Then @i—>W; means that owi=wW; and [{w;)=

lo(w) 1.

(ii) We put w < w' if there exists a chain W=W =Wy ... —>Wy=w'.

Remark. In the case G = 0Sp(2r, 2s) the group Greq = 0(2r) x Sp(2s) is the union of two

connected components. By definition, the Weyl group is ~redy = N(H)/C(H), H a maximal torus
in Gpeg, N and C its normalizer and centralizer, respectively, in Greqg. Let W® denote the
Weyl group of the component of the identity (Gpeq)® of Gpgq. W® is a subgroup of index 2

in Oredy - W3j. For our purposes, it will be convenient to define an order not on the set
Wij but on each of the two left cosets Wyj and Wiy ¢ Wyj modulo the subgroup W° c Wyg. Thus,
in the case G = 0Sp(2r, 2s) the above definition must be modified as follows: instead of Wig
take Wiy, i = 1 or 2, and instead of Wjj the group W°. :

2. Before formulating the theorem, we present a few definitions which are simple gen-
eralizations of the classical ones to the supercase.

Definition. a) Let ¢@:Y—Z be a morphism of superschemes. The superscheme image of Y
under ¢ is defined as the closed subsuperscheme @(¥) of Z uniquely determined by the prop-
erties: ¢ factors through the natural embedding @(Y)L.Z:, and if XewZ is a closed embedding
through which ¢ factors, then the embedding ¢(¥)«Z also factors through XeZ:

Y X
l X
/ [
v
s
pY) =7

b) Let Y be a locally closed subsuperscheme in Z. Its closure Y is defined as the super-
scheme image of Y under the natural embedding ¥ < Z.

c) Let X and Y be locally closed subsuperschemes in Z. We shall say that X c Y if the
embedding X < Z factors through ¥ <« Z,

3. THEOREM. 1If /7, Jeaim‘w,mVEWG;, the following conditions are equivalent:

(i) W' <w 1in the sense of Definition 1;

(i1)  dipw,1r>dijw,0s Vi, j, where (djj,w,17J) is the relative position matrix correspond-
ing to the triple (I, J, w) according to the Combinatorial Lemma 2.5;

(11]'-) Yw’,!JCYw,[J:
(iV) (Yw’,l.l)redc(yw,ll)red'

Remarks. a) The equivalence (i) <+ (iv) means, in particular, that the order in the
group Wyj coincides with the standard order (see [1, 201) in the Weyl group W of the com-
ponent of the identity in Gpogq, if W° is identified with Ws7 as in Subsec. 1.

b) Recall that, according to the remark at the end of Subsec. 1, if G = 08p(2r, 2s) we
replace the set Wyrj throughout by one of the sets Wiy, i = i, 2, and Wyj by the group W°.
In order to avoid complicated notation, we adopt the following convention. When dealing with
(super)manifolds which are connected if G = 0Sp(2r, 2s) and disconnected if G = 0Sp(2r, 2s),
we shall always refer in the latter case not to the manifolds themselves but to either one
of their components. 1In that case Gred should be replaced by G

4. Scheme of the Proof:

0
red-

(1) & (i) <= (iiiy
i .

(i)
5. (i) <= (iv).
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LEMMA. a) There exists a unique element wy6W;; such that lj(ws)=0.
b) Vwwdrea=""?Y, (under the canonical isomorphism GF,edgG'edF) for all weW,,=wo,

c) The order in the set Wpj coincides with the standard order in the group W (see [1,
20]) under the identification W3 W,,:w—ww, for all WEW? = WN

Proof of the Lemma. Observe that if G=Q ), I=J=(1|1,...,1|1), w,=e, W, =W and
the lemma is obvious. We may therefore assume that G # Q(n).

a) The Schubert supercells Yy, 15 form a partition of the supermanifold GFI x GFJ and so
the seé of und(e;rlymg manifolds (YW 1J)red is precisely the set of Schubert cells Y, of the
space redf x “redF, among the cells Yy there is exactly one of dimension 0-dim %redp, But
this is just the dimension of the underlylng manifold of the corresponding supercell Yw RAR
which by Theorem 4.3 is equal to [,(wy)--dim(°F),q and so {(@)=0.

c) is a corollary of (b), since under the assumptions of (b)  (wwy) =dim (¥ yw, r/)rea—
dim (°F ) ;eqa=dim rEdY —dim%F — N (@) is the classical length (see [1, 20]) of the element

0 Greq . . . .
WEW = "W relative to the set of basis reflections corresponding to choice of the Borel
subgroup B,=St¢ , (fs), where f3 is a standard G-flag of type J [see part a) in the proof of
Lemma 2.5]. Then the orders in W® and Wyj coincide by definition,

b) The idea of the proof is based on the observation that the correspondence Wir—Grea W
under which wew’, @wEW,;s and w' is uniquely determined by the equality OreaY oy = ("Y', 1) red
may be expressed as W—® =ww, Then, by the uniqueness part of (a), on=fw;1;

Thus, let w€W;s, @'€%etW and %retV, = (Yu./5)rea» It is clear that w' is determined by
the relative position type of the pair of Gred-flags @(fs), f, in the space T|n of the stan-
dard representation of G, where (1, f/)€(¥w',1s)rea» and @(f1) is a certain rearrangement of the
flag f1 into a flag of ’spe J. This rearrangement is accompl1shed as follows. Each consti-
tuent'#; of f1 is the direct sum of its even and odd parts: = (@)@ F)1- We now use indue-
tion on i to construct a flag @(f)=%, of type J from these components suppose that &: has
already been constructed and @)= (#,),®&:)1- Then if §.,;(J)=1|0, we put P = (P®F i),
where k is the least integer such that &>ip 8, (/)=1{0. But if 8,4, ())=0[1, then Pir:=
(Z100®(F1)1 , where k is the least integer such that 22>i; 8, (/)=0|1l. (If G = OSp or ISp we

also demand that i+-1, k<[ m+2n+1} , then considering the unique completion of the flag to

an isotropic flag.) In order to find the permutation w' corresponding to the relative posi-
tion matrix of the G.ogq-flags ¢@(fr) and fj, we note that for any i the vertical jump in the
i-th column of the matrix occurs between rows w(i,) — 1 and w(10) if 8;(J)=1|0, and between
rows w(i;) — 1 and w(i,) otherwise. By the definition of w' this implies that
~_ Jwiy, it 8,())=1]0,
W )=\w (), if 6, (/)=0]1.

Consequently, the permutation %, under which i is the image of i, if §;(/)=1|0 and of i, if
8, (/y=0|1, i=1, ..., m+n, satisfies the required equality w' = wi,. By construction, ¥,
depends on I and J but not on w and w'. This completes the proof of the lemma.

The equivalence (i) <> (1V) now follows easily from a theorem of Steinberg [20], which
states (in our notation) that Cred¥, etV 0’ < W, @, WE Greall7,

6. (iv)=-(ii). The stalk of the coherent sheaf #;:N%,; over a point Y6(Vw, 1) rea (O F 1 X
OF)iea is of dimension dij,wus (Fr,. and &, are the tautological flags on the first and
second factors, respectively, of the product SF; X °FJ). This dimension function is upper

semicontinuous, implying the desired conclusion.

7. (ii) = (i). Consider the set of basis reflections in Credy corresponding to the
choice in Gpeq of the Borel group By = StGred(fJ)’ where fj is a standard G-flag of type J
[see part (a) in the proof of Lemma 2.5]. Let I denote the image of this set under the
canonical isomorphism GredW 5 W,s.

LEMMA. TFor any €2 , if dijw,ss> dijw.gs for all i, j then either dijowrs >@ijw’ .17 OF
dij.ow, 10> dijow, 00 for all i, j.

Proof of the Lemma. It is readily seen that 062 if and only if o = (i, ji) for G = SL,
o=(ij)m-+ni-1—i,minit1—j) for G=0Sp, NSp, or a={,[+2), L=r-sfor G=0Sp (2r +1, 2s),
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o=(, [+1), Il=r<s for G=08Sp@r, 25), o=(, i+1) for G = Q, where i is any integer and j;

the least integer such that Ji>i, 6, (/y=0;()), and if G=0Sp, OSp i, jig['-'-z—tg-i}], The as-

gsertion now follows from properties 2.2 of relative matrices. The details are left to the
reader.

We can now prove the implication (ii) = (i). Suppose that for all i, j &ie'ir>8d:ijw1s.
We shall prove that @’ <® , reasoning by downward induction on [;(@’). By Lemma 5(c) and the
corresponding classical assertion (see, e.g., [20, Lemma 53}), if ®'=s¢W,, has the largest
Iy(s), then s> w , and so dy,e s <dij,w,1s for all i, j [since we have already proved that (i)=>
(ii)1. Therefore, if dij.s, ;0> dijw.as for all i, j, then dijsis=0ijw,1s and s = w by the Com-
binatorial Lemma 2.5. Thus the assertion is true if w' = s.

Let [j(w)<l;(s}. Again by Lemma 5(c) and the corresponding classical assertion (see,
e.g., [1, Proposition 2.7]), there exists a reflection 062 such that w' < ow'. By Lemma 7,
either dij ou, 10> dijw,rs OF dijow 11> 8ij,ew.00 for all i, j. In the first case, by the inductive
hypothesis, 6w'sCw, so that w'<w. In the second case, by the inductive hypothesis cw'ow,
It follows from this inequality that either @'<{®w or ow'<Kw (use the corresponding classical
result — Lemma 2.5 in [1]). 1In any case we have w'<Kw, as claimed.

8. (dii) = (iii). Using the already proven equivalence (i) <= (ii), one easily reduces
the problem to the case dijwir>dijowrs G6ECW,s I the set of reflections with respect to
simple roots of the group G,oq, defined in Subsec. 7. We shall deal with the case G = SL(m,
n), 0==(y jp)s {,<j,; the remaining cases are similar, only involving more complicated nota-
tion.

W
Consider the two projections ®F;X °F,;~C%F X F'»F;XF". defined as the identity on the
first argument and by the following formulas on the second:

FIC oo CPmpn
,91C ree cg’i,_lcg’ioc?,,c?h.,,lc cee Cym+n

ylc e C?i,_gc.%c_lcyj,cg’Mlc e c'?mq-m

where £p:=%;,n is the tautological flag. Consider the relative position of the intersec-
tions of the Schubert supercells YW,IJ and Yow,1J with the fibers of these projections. We
first observe that the superscheme images @Y(Yu, ;) and ey (Ya, rs} are equal, since they are

Schubert supervarieties (i.e., closures of Schubert supercells) for the space of incomplete

flags F" and the matrices (4, 4, 1) and (dij, ews 17) defining them coincide up to the iy-th column
and after the (j, — 1)-th column.

The superscheme images 4 (¥u,rs) and ¢ (Yow, s} are again Schubert supervarieties for rela-
tive projective superspace P (8; (J); F:,/Fi—1) over @9 (Yu,rs) e==¢ Yow,1s). [Here 8, N=1k P, —
1k#,—1. 1 The corresponding supercells are determined by the conditions of the relative position
of the sheaves &,,/%:,—1 and Prp/Pi—1» O0<k<m-+n Theseconditionsareuniquelydetermined by
hematrices .(@ij,w.1s) and (d,;,4.,1,). The matrix(d;;,w.1s) gives the Con@itionig’i.,/-?ip:(:,(g’!.@"(i«) NP} Py
Fi) P11 plus a certain general position condition, while (@i.0m.1s) gives yiofgs,—lefg’l.w“(m n
1i)w,1s>81j,ow1s for alli, j. This implies the inequality ®7'() <w™(j) [cf. the properties
of the matrix (dijw1s) in part (d) of the proof of Lemma 2.5 and part (b) of the same lemma].
This inequality shows that Fru-1i)CPu(jy » whence ¥ w1} Vowrs) =9 ¥ ow 1)

Finally, the Schubert supervarieties Y, and Y5y, are intersections of the same Schubert
supervariety of the relative superspace of complete flags GFJ > F' with the inverse images
Y'(Y,) and ¢7p(Y.,). This follows from the fact that the horizontal equality and inequal-
ity signs between elements of neighboring columns, beginning with the ig~th column and ending
with the (j, — 1)-th, are identically placed.

Thus VoCVa if @ <ow.
9. (iii) = (iv). Trivial. o
10. COROLLARY. Let [,J€6l,, w,w'€W;;. Then l(w’) <lo(w)<=l(w)<l(w).

Proof. This follows from Theorem 4.3 (dimension of supercells) and the equivalence
(1iii) = (iv) in Theorem 3. o®©
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8. Resolution of Singularities of Schubert Supervarities

Singularities of Schubert varieties, i.e., closures of Schubert cells, are in a sense
linearizations of fairly general singularities of algebraic varieties. To be precise, the
jump in the dimension of the Zariski tangent space U » U' at a singular point may sometimes
(e.g., in the case of an intersection of two nonsingular varieties) be visualized as a change
in the position of a certain vector space V, whose intersection with some fixed vector space
forms the Zariski tangent space U: U =V 0 W, into a less general position: U' = V' N W,
dimV' = dimV, dimU' > dimU. This is in fact a typical case of singularity of a Schubert
variety lying in the Grassmannian of the subspaces of some enveloping vector space.

An analogous situation obtains in supergeometry as well, and so one expects the investi-
gation of singularities of Schubert supervarieties to reveal a general pattern of supersin-
gularities which, in view of Kac's classification of simple Lie superalgebras [16] and the
well-known classification of simple singularities of hyperspaces via Dynkin diagrams, promises
to be of some interest.

1. Definition. Let X be a supervariety. A point x6X;q is said to be nonsingular if

there is an open neighborhood U © K such that x6U and U is a nonsingular supervariety. The
set of singular points of X is the complement of the set of nonsingular points in Xpe4.

Recall that a Schubert supervariety is the closure Yu,1J (see Definition 7.2) of a
Schubert supercell Yy 1y in the superspace FI X FJ, where I, J&%I, w is an element of the
Weyl supergroup W of an algebraic supergroup G, w(I) = J. Since Yy, 1J are nonsingular,
Schubert supervarieties Yy 1j have singularities only at points of W, r)rea \& w, 1) rea , and
they certainly have singularities wherever this is true of the Schubert varieties o 17 et

2. Bott—Samelson Superschemes. Let w = sg...s; be a fixed reduced factorization of
an element wEW as a product of basis reflections, w;i=35;...8, 1<i<k. Ve define a se-
quence of projectivizat: ns OF = Zy<Zi<+ ...« Z; of vector bundles by an inductive construc-
tion, as follows. Suppose that Zj has been constructed, and let #. be a flag on Zj of type
WJ(I) in Tz »—T®0‘zj, where T is the space of the standard representation of the supergroup

G. If G = SL(m, n), then sj = (i, i + 1) for some i, and we define Zj41 to be the relative
projective superspace sz 6; @1 (1)); Ppa/Fi) of relative dimension lw,-(l).wm(l) sp). In TZj+1

we consider a complete flag &., in which all &, (p+i) are lifted from Zj, while ¥; is uniquely
defined by the tautological sheaf #,/P; 1C#11/Pi1 of the projective superspace sz 6: @j2 ()
F1alPi) and the extension 0P —+F =P/ Fia—0.

1f G = 0Sp(m, n) or HSp(m), then if s;=/{(i, i+1) (m-tn4-1—i, m4n—1i), i<[
fine Zj+1 to be the relative projective superspace Pz] (61(10),“(1)); PP ) of relative dimen~
sion { ) w g, (D) (s). To form a flag in szﬂ, we 1lift all constituents &, (pi, m-+n—i) from
Zj; we define ¥;, as before, by the tautological sheaf on Pz]_ B @1 (); Fral¥ia) while

Prusns is defined by &, i=¢F (relative to the bilinear structure form b in T). If s5 =

(lg m+n+ 1-—1), l:[m;—n ], we put Zi-l'l: == le.. ‘51 (w]'.H (I»; g’mwl__,/?,_x, b), where the symbol

m;n ] we de-

"p" indicates that we are considering a superspace of isotropic lines relative to the form
b. The dimension of Zj+1 over Zj is luu), w0 (S). The constituents &, p<i—1or p>m+

n41—1[) are lifted onto Zj4, from Z3, while #; is defined by the tautological sheaf on
P20 X (@51 N3 Pmime1-i/ P15 b)-  If m # n is even, then Pyis a complete G-flag in Tz, ; if it
is odd, then #. is extended to a complete flag by adding 9*,*1::9,.

Finally, if G = Q(m), sj = (i, 1 + 1) for some i, and we put Zj+1==(3rzj(1 ; /P P~
the super-Grassmannian of 1|1-dimensional subspaces of Pl Pi-r symmetric with respect to
the structure N-symmetry p. The dimension of Zj+1 over Zj is 11=lo,u), w0 (s). The flag
#. in sz is constructed as in the case G = SL{m, n).

By construction, all the Zj are nonsingular.

Definition. Zg:==Zp 1is called a Bott—Samelson superscheme (it clearly depends on the
choice of a reduced factorization of w).

3. Bott—Samelson Morphism., Define a morphism ¢:Z >%F, % C®F; as the canonical mor-
phism under which ¢*(#,, ) =0* (#;,.), where 8:Z,=Zp~+Zy= F,; is the natural projection, and
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Y (Fs, )=F., #. is the flag constructed above of type J = w(I) on Z,. Clearly, the diagram
ZwiaFIXGF, is commutative, i.e., y is a morphism of superschemes over Gy
Ny | mn

8 OF;

Definition. ¢ is known as the Bott—Samelson morphism.

I-

4. A morphism of algebraic supervarieties f:X = Y is said to be surjective if the cor-
responding morphism of algebraic varieties f,oq:Xyed * Yred is surjective and the superscheme
image f(X) is Y.

THEOREM. The Bott —Samelson morphism \p:Zw->GF1XGFJ is a resolution of the singulari-
ties of the Schubert supervariety Yw,IJ’ ie., PiZy > Yw,IJ is defined, surjective and in-
duces an isomorphism of an open supervariety in Z; onto Yw,IJ'

Proof. Step 1. We construct an open subsupervariety Uy, in Z, which is mapped isomor-
phically into Yw,l’J by ¢. We shall proceed as in Subsec. 2, i.e., constructing a sequence of
open subsupervarieties Uj < Zj, j = 0,...,k, such that eilU1+1:Ui+1""Ui" where 85 is the natural

projection Zj4, > Zj. Let ¢4 denote the natural morphism Zf—>GF1XGFw}(1, constructed in the

same way as Yy in Subsec. 3. Put U0:=ZO=GF1. Clearly, ¥, defines an isomorphism of U, onto
the diagonal of OF, % °F, » i.e., onto Yg 717.

Suppose now that UJ' has been constructed and let QJ/lU]:Uj»ij,z,wju) be an isomorphism.

Define Uj+1 to be a big supercell in the relative projective superspace (if G = Q -~ super-
Grassmannian) Z}.H:r—-e;—1 ({U)—+U; (we are assuming that the partition into supercells is deter-
mined by a flag of type I lifted from GFI relative to the morphism Z}+1—> U;j»U,=6F). Since
113,-|U] maps Uy isomorphically onto Y’”i”’wi“) and the Schubert supercell ijﬂ,[,wjﬂ([) is a big

supercell in a relative projective superspace over ij,z,wj(ly (see 4.8), and moreover Vi4y is
induced by a morphism of tautological sheaves, it follows that Vi+1 is an isomorphism,
Putting Ug:==U,, one proves by induction that ”‘Plyw=‘l’kfyk1 Up—+Yw,s is an isomorphism.

Step 2. It follows from Step 1 that ¢ defines a morphism Ugp—>Ya.,, and moreover ‘P(U;u)z
Yw,rr. By construction, Zy = Uy, and all that remains is to verify that Yeed:(Zuwrea— Fw.is)rea
is a surjective morphism. Indeed, the variety (Z,)peq is complete, and so the geometric (not

scheme-theoretic!) image Yreq((Zy)rea) is closed in (Vg /)ree- On the other hand, this image
contains (Vu,rs)ree» implying the desired assertion. o

5. Remark. The important results obtained using Bott —Samelson schemes (see Demazure
[14]) — rationality of the singularities of Schubert varieites, the Demazure character for-
mula — depend essentially on the theorem stating that the cohomology of inverse sheaves on
Schubert varieties is trivial. For Schubert supervarieties of codimension 0|0 this theorem
is a particular case of a superversion of the Borel —Weil —Bott theorem (see [11, 19]). Tt
is therefore reasonable to suppose that, in combination with the construction of Bott—Samel-
son superschemes, this should make it possible to prove correct superversions of Demazure's
results.

6. Example, Consider the Grassmannian X = Gr(2{0; T) of 2|0-dimensional planes in a
3|1-dimensional vector space T. Obviously, dim X=2]2, Xrea=P2% Let p:X < P(1]0; AS(T))=Pp33
be the Plicker embedding. For any complex superalgebra A=A,®4;, the image p{X(A)) consists
of lines in A{(T) generated by even decomposable bivectors Q€A%(T). Let {e,, @,, e, f} be
a homogeneous basis in T. We wish to find conditions in terms of the coefficients of the
representation of Q in the basis

{ei/\ei’ ei/\fs f/\f}’ (1)

i, 3 =1, 2, 3, 1 < j, of the space AA(T), under which the bivector Q=0+ Q:Af+MAf, where
Qu: =hiz er/\ext-hs e \es+has e\ es, @z =hier+hoes+hoes, Ais€4o, MEA, 1,j=1,2,3 , is decomposable.
Decomposability of Q means that Q=(R+af)/\‘(S+l{_f) =RAS 4 (bR—aS) Af—abfAf, where R and $
lie in the span of e;, e,, e; and a, b €A,. Any bivector Q; independent of f is obviously
decomposable, i.e., the equality Q, = R A § imposes no restrictions on Q;. Assume, then,
that is the case. The condition (Q, = bR — aS for some a and b) is equivalent to the condi-
tion Q; A Q, = 0. Finally, the condition X = —ab is equivalent to QiAQ2+21Q1=0. We finally
obtain equations for the image p(X) in homogeneous coordinates (M2:Mis:hes i AjA kot Ag) in PSI:
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oz — Mahig+ Mgl =0,
A'I’VZ + }\'7\'12 =V,
Arhg - Adg3 =0,
Aghg 4 Ahgg=0.

Consider the Schubert supercell W={A?"cT¥|dim(ANV)=1|0}cX , where V2|° is the space
spanned by vectors e;, e;. The corresponding Schubert supervariety is defined in P®® by the
equations .

MAgs+ Aghiy=0,

}\«1A3=0,
):2=O, (2)
A=0.

*

[Indeed, it is not hard to verify that if (Mg)€A},, the condition dim(ANV)>1|0 is equiva-
lent to e1Ae3AQ =0, where Q is a bivector corresponding to the plane A. This last equation
is equivalent to the system A, = A = 0. On the other hand, WC{A2'°CT3’1|dim ANV)=>1|0icW
and the open analytic set {QE€A2(T)| the coefficient \,, in the representation of Q in the
basis_(1) satisfies the condition (Mgrea0} is dense in the affine superspace A?(T). There-
fore W is defined in XZP%® by the equations A, = A = 0.]

All points of the supervariety Wred’ except the point s with homogeneous coordinates
Mz=1, Me=MAy=A;=Ay=A3=A=0, are nonsingular. In the corresponding inhomogeneous coor-
dinate system (A, Ag, A, Ai» A2 A7 in the neighborhood of s, the equation of W can be written

51}23 + 7:3_7\-12 =0,

&17"3:0’
§2=Os
A=0.

Clearly, dimW = 2|1.

_ 7. Bott—Samelson Resolution of the Singular Point séW. For the Schubert supervariety
W, a natural choice of the Bott—Samelson superscheme is the relative projective superspace
Z=Pu(1|10; P3/%1), where M=Pc (1|0; VZ0)XP (1]0; T/V), i is the tautological sheaf on the
first factor, #; is a sheaf on the second factor such that Vo@s and #3/V is the tautological
sheaf. The Bott—Samelson morphism vy :Pu(1|0; P3/F1)—~GCr (2]|0; T) is a canonical morphism such
that the inverse image of the tautological sheaf on Gr (2|0; T) is a sheaf &y: PicPocPs, Pof/Pr
the tautological sheaf on Py (1|0; #3/%1). It is clear that the supercell W is dense in the
(superscheme) image Imy and thus Im p=W.

We now describe the Bott—Samelson morphism in terms of coordinates. Let UcP®™® be a
neighborhood of the singular point s. We shall find local equations for the Bott —Samelson
superscheme Zc U X P° (110; V) X po (110; T/V) in coordinates (L, Ly, I, 1y, I, L), (@1:ay) and (b|B) on
the first, second and third factors, respectively (the coordinates on the first two are in-
homogeneous, those on the third homogeneous). Besides the equations for the Grassmannian
X=Gr@2|0;7) in U, there appear incidence relations: FCPC¥3 More explicitly: if P=
(e +aes), Pa=bf*+pey) LT, where {e1, €5, €, f*} is the basis dual to {e,ese; f} in T*,
and the bivector corresponding to P2 is Q=Ipe;Aes-teiAe-FloseaNes-+lieiN f+LeaNf s S+
Lf NfEA2(T), then P CP; is equivalent to (@1e;+ae) ANQ=0, and F,CP3 to i(bf*--Pe) Q=0,
where i(+)- is the inner product. In the final analysis, the last two equations can be writ-
ten as a system:

(11123—|—a2l12=0, bll——ﬁlm‘———' O,
¢1l3_a2l1=07 bls'{"ﬁlzs—fo,
aily=mly=0. 260 +-pl,=0,
all == azl =0, bl2= 0.
Thus the equations of Z in UXPx P are
@ilas+ aplyp=0,

bll—Blm:Ov
blS+ﬁl23=0s
l=1,=0,
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It is explicitly clear from these equations that the superscheme Z is nonsingular in U x

P”OXPO“.

The Bott—Samelson morphism is expressed in coordinate form as follows: (A As, X, 2:1, Aoy
}:3)—-=1p(l12, Ly b, Uy Uyl acay b|B) : = (L, les, L 1, lh, I3). The inverse image E:=1~i(s) is defined
by the equations lp=ly=I=l=[L=[}=0, and so it is isomorphic to P!I>P%¥  Thus, we can say
that in our example the Bott—Samelson morphism has glued the supervariety PUOXPOU! to the
singular point.

8. Inflation. Let M be a nonsingular complex supervariety of dimension m|n,m>=1, 56Mpea
a point of its underlying variety, z = (zl,...,zm, Cise ..,(‘;n) holomorphic coordinates in a
neighborhocd U ¢ M of s. An inflation of M at s is defined to be a complex supervariety M
obtained by gluing to M\ {s} (M\ {s} is an open subvariety in M with underlying variety
Mpedq \ {s}) the supervariety

U={(z, h6U X P™'""| z¢l}

by means of the identification UN\{(z,I)|2==0}~U\{s}, under which (z,{)~2. In this situation
Pm-li= is considered as the superspace of lines in Cmin with _coordinates (Zi,...,2p, G1,eee,
Cn)- The map (2 [)=2 extends to the natural projection m:M—M, which is an isomorphism
over M\ {s}. The inverse image E:=g-'(s) is isomorphic to Pm-li2 and is called the excep-
tional divisor of the inflation.

In terms of coordinates (z,,...,2y, {1,...,0y) in U and suitable homogeneous coordinates

(/R 5 ) P -+ Mn) in Pm-ln ; the subvariety U is defined by the equations
zilj=z-l,-,
{zi;\‘.}=§j‘l£’
Ci}\'j: "'Cjkg

for all possible i, j.

As in classical geometry, inflation is a way of resolving singularities of supervarie-
ties. This can be illustrated in the case of our previous example.

9. Resolution of the Singular Point SEW Using Inflation. The supervariety WP
is defined by Egqs. (2) in homogeneous coordinates (AM2:Ai3:hogtA | AitAetdg), so we may assume that
W is embedded in P2'2=={Ju=0, M=0} and defined in terms of the corresponding inhomogeneous
coordinates (Mg, Mgy, by Ag) in a neighborhood UcP? of the singular point s = (0, 0, 0, 0) by
the equations

MAas - Aghip=0,

1h3 ==,

(3)

We now construct an inflation U of the supervariety UcP™ at s. In UXP" (@12} )
this inflation U will be defined by the equations

Agllo == Aaly, dostty = My, (4)

{7\:12@2 =Mhoa1y Mgl = M@,
Aogto == hatlp, dnGlp=—Agaty, As0t;=0, Ayo,=0.

We now determine the inverse image 7~ '(W) under the natural projection m:{J-U. Con-
sider a cover of the superspace P by charts @50 and @+0. In the first chart @;%0 and
we may put @;=1. Substituting Egs. (4) into (3), we obtain ?v%z(al@—i—oaz):(), Maatte =0, Agg==
Moy, M=Mxx;, A3=Dhuoy (dependent equations are omitted) — the equations of 7-*(W). In the
second chart, putting &;=1, we obtain the following equations for ! (Wy: 7»33(0&1-+0L2a1)=0,
Aosticty =0, Mio==hosti, Mi=DAog®s Ay ==hogois. In this situation we shall say that the inverse image
77 (W) splits into the union of the exceptional divisor E={hy=1hoz=d=~=0}=2P"® (taken with
multiplicity 2) and the proper inverse image of the supervariety W, defined in the first and
second charts on /X P, respectively, by the equations

;:1“2—13"052=0, o+ oty =0,
25 == Nioln, d A'12 = }\'23a11
M= Moty o Ay == ha30iy,
Ay == A1o0iy Jog == hgllg.

These equations clearly define a nonsingular subvariety of UXP12
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BOREL —WEIL—BOTT THEORY FOR CLASSICAL LIE SUPERALGEBRAS
I. B. Penkov UDC 512.743

The paper is devoted to a systematic construction of the elements of Borel—Weil-
Bott theory in the supercase. The main result is a presentation of the cohomology
of typical irreducible G°-sheaves on G°/B, where G° is the connected component of
the identity in a classical complex Lie supergroup and B < G° an arbitrary Borel
subsupergroup. Also presented are some simple known results concerning the co-
homology of irreducible G°-sheaves on G°/P for a parabolic subsupergroup P.

The present paper is a survey of fairly general results known to the author relating

to the cohomology of irreducible §-sheaves on supermanifolds G°/B, where G° is the component
of the identity in a classical complex Lie supergroup G, g=LieG and B < G° is a Borel sub-
supergroup. In the case of a complex reductive Lie group G', the irreducible g’ =Lie G’ -
sheaves on (G")°/B' are simply invertible, and their cohomology theory is described by the now
classical Borel —Weil —Bott theorem, or briefly Bott's theorem [12-14]. With details omitted,
it may be stated as follows. The cohomology groups of the 4§’ -sheaf O (c¢y9s (A) determined by

a weight A are all trivial, with the possible exception of one, which is an irreducible
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