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A FORMULA FOR MUMFORD MEASURE IN SUPERSTRING THEORY 

A. A. Voronov UDC 517.43+514.84 

Polyakov quantization of bosonic structure leads to integration, over the moduli space 
of algebraic curves, of a measure which is initially expressed in terms of determinants of 
Laplace operators. After Manin [2] had observed numerical coincidences in string theory and 
curve moduli theory, Belavin and Knizhnik [3] expressed Polyakov measure as the modulus 
squared of a holomorphic measure, now known as the Mumford form. This enabled Manin [4] and 
Beilinson and Manin [5] to express Polyakov measure in terms of the values of differentials 
at points of curves. In this note we propose a formula for the analog of the Mumford form in 

~ 

superstring theory. In the first part we prove a conjecture of Manin [2, 5]: ~/~ = ~/2 • As 
in the bosonic case [5], this proof will be used in the second part of the note to derive the 
fundamental formula. We will work with the definition of SUSY-curves (superconformal map- 
pings) due to Baranov and Shvarts [i]. Polyakov supermeasure is defined in [i], but the 
super-version of the Belavin-Knizhnik theorem is as yet unknown and it is not clear how to 
do summation of Mumford superforms over spinor structures. 

i. Berezinians. Let v: X + S be a smooth proper morphism of complex supervarieties. 
Then, as in the even case, for any coherent sheaf .~ on X which is flat over S, one can de- 
fine on S a sheaf B6~) of rank ii0 or 011, with the following properties: 

• 

i) If all R~.,~ are locally free, then B (.~)= ® (BerR~.L~)(-I)~; 

2) If the sequence 0 ~ ' ~ ~ 0  is exact, then s(.~)=B(.~') ®~(~) (throughout this 
note, equality means canonical isomorphism). 

2. Deligne's Isomorphism in the Supercase. Proposition. Let ~ be the morphism of Sec. 
i, of relative dimension iii. Then for any invertible sheaves ~ and J~ on X (i.e., sheaves 
of sections of bundles of rank ii0) , ~ (~ ,~) = ~ (~x) -~ ® ~ (~) ~ B (.~). 

The proof will be carried out for the most important case, in which ~ has a global 
holomorphic section t defining an effective relative Cartier divisor D on X + S. 

The sequence of sheaves 0~@X~.~.~ID~0 is exact, hence N(~)=B(@) ®B(J~lo) • Ob- 
~ ~ 

viously, ~ (J~I~)=Ber~ s(~lo)" Similarly, 0 ~ ® . ~ ®  ~Io ~0 implies B (~® J~) = B(~) ® 

Ber(~ ® J~Io). In addition, for any invertible sheaves Sf and M e on X, Ber($fl o) = Ber(.~ID ) (this 

isomorphism is locally defined on S by multiplication on Ber s, where s is any section of the 
sheaf J~®~f* different from 0 and ~ on Dred). Applying this assertion to the pair w~, S®~, 
we obtain B (.~)® B (@)-~:= B(~ ®J~)® B(~) -~. : 

3. Mumford's Formula in the Supercase. Under the assumptions of Sec. 2, suppose there 
exists a dualizin~ sheaf ~, i.e., a sheaf of rank 011 equipped with the trace morphism tr: 

R~n, ~@s and defining a S~rre duality, i.e., a nondegenerate pairing Ri~, ~ ®Bl-in, (~* ® ~)-~ 

B~n, ~ ~ @s for locally free ~. Let %~/~ = B (~) . Clearly, X~/~ = %o- 

THEOREM. ~/~ = ~/-~(2~-~). 
Proof. Applying Proposition 2 to ~ = H%~,~,= Ne,(N is a parity change), we obtain 

%(-1) TM ~(-1) ~ (~+~)/~ = ~ ®-~/~ ® ~. Induction on i, using ~/~ ~ ~, completes the proof. 
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4. Application to SUSY-Families._ Let ~:  X + S be an SUSY-fam~ly, i.e., a smooth proper 
morphism of relative dimension iii together with a distribution ~F~ ~ ~x/s of rank 011 such 
that the morphism [,] mod~: ~ ® ~-~ ~/o~ is an isomorphism. In this case the sheaf of hole- 

. 
. morphic semiforms ~: = ~ ~ B~X~S is a dualizing sheaf (see [6]). By Theorem 3, on any SUSY- 

$ f~ily we have l~/~ = ~/~. 

5. Formula for M~ford Supermeasure. Mumford supermeas~re ~ is defined as the image of 

'~ ~ @s under the isomorphism @s = Xs/~ @ kiwi" 

Our problem is to write down an expression for ~ in terms of given local bases of .the 
sheaves R~=,~, ~= 0, ~, ~ = L z, ~. We shall ass~e that all the ~.~ are locally free, since the 
notion of basis is defined only in the case that (H~)re d is an odd nondegenerate 8-character- 
istic and the genus g of the curve Xre. d is greater than i. Without these ass~ptions the 
formula is found by the s~e methods but is more c~bersome. 

i) Bases. Let v be an odd global section of the sheaf m such that ~red is a nonzero 
section of ~red with zero divisorIP~ .... P~_~}; leto = {v= 0}. Pick coordinates (zj, ~j) in 

the neighborhood of Pj so that the form ~z] -- ~]d~ vanishes on ~ and w = (zi~i + o (z~7))d~i. 

,, # ~.J ~-1  Bases in Ber(mJ~D)~ j = i, 2~ 3. Let {6~'d~.i6~$kd&g.}~= 1 be a basis of mJID. The basis in 
~" ~ ~ j Ber (~j ~D) is the element 6.~/z = Bet (6~$-g.~6~ $~.~). 

Basis in ~0. Let {~[~} be a basis of ~.~x and{~p, ..... ~-rv~4 -v} a basis of (H~a.@'x)*= m.~ 

L e t  ~ =  ~ ; z ~ +  O(z~), (~i (q~[i_~ 0~ 0 ~ ~ . -- ¢ f ' i j ~ j i O ( z j ) ) d ~ j ~  where ~ i j ~ s , o , % ~ s , 1 ,  i , j - - l , . . . , g - - i  a n d  ~0 ' ,1"  

ij 0 : '  " E %  %.~ + ~ - ~ . ~  = 6'~,., T h e  b a s i s  i n  l o i s  d e f i n e d  t o  b e  d o ~ Bet  (i ~ ~) ~ Bet  ( ~  . . . . .  ~ _ ~ ,  v~ ~ v). 

Basis in l~/2. We choose the S6rre-dual basis dx/~ = d 0. 
. 

Basis in k~. Let {v ~. 7a ..... X.e_~ lwPl ..... V(pa,_l, v~, ~, ..... ~g-2} be a basis of n.m~, {~/v} a basis 
_ 

0 I ~  ~ o f  ( n ~ , o ~ )  * = ~ , ~ - ~ .  L e t  ~ - - ( L . ~ + ~ . ~ + O ( z ~ ) ) d ~ ,  ~. ] = 1, g - - t ,  ~ = ( ~  + ~ s  ~ O (z~))d~, ~ = t ,  . . . .  

g - -  2, ~ = t . . . . .  g - -  l T h e  b a s i s  i n  ~ i s  t h e  e l e m e n t  d, = Be t  (v~, ~1 . . . .  , ~g_x I v %  . . . . .  vCg_x, ~ ,  ~ ,  - • . ,  

~g_~) ~ Ber (~/v). 

B a s i s  i n  ~ [ = .  O b s e r v i n g  t h a t  R ~ a , ~ a = O ,  w e  c o n s t r u c t  a b a s i s  i n  ~ a / =  w i t h  t h e  h e l p  o f  

a b a s i s  o f  a ,ma:  d s /~=  Ber(v~%,  . . . ,  V~g_~,  ~ ,  vg~ . . . . .  w>g_~, o~, • • . ,  Og_~ ~va, v%~ . . . . .  V~g-r  Pt . . . .  , Pg-=), w h e r e  

e[  (p?.j + 1 . = p ~ . i ~ +  O (z~))d~, ~ =  1 . . . . .  g - -  2, j = t . . . . .  g - -  1, 
~ ( ~ +  o . ,  = o~fl~ w O (z¢))a;~, i, ] = 1 . . . . .  g - -  1. 

2 )  R ~ l a t £ o n s  b e t w e e n  d j / 2  a n d  8 j / = .  ~ d e n g i f y S n g £ - ~  = E 0 @ B e r - ' ( m l D ) . ~ - - ~ } z @ B e r ( m Z l ~ ) , ~ } ~ = ~ / e  

~ @ Ber - ,  (me ~ ) ,  r e s p e c t £ v e l y  w e  h a v e  d - '  = do Ber~/267.~2, d~ = d -1 Ber,~, ,  da~ ~ = d~ Bera / , 6~  2. HOVe 
$ 1 i 2  1 / 2  ~ 

~) i j  

B e r l  ~ B e t  

~ .z~ P ~j P~.~ 

Be~/.~----Ber ~-~0 . . .  0 0 . . .  0 * ~  % ' .. 

o . . .  o o  . . . o  ~ o~5 o~ 

Finally, under the isomorphism Ber(-~)J-i(~)ID) = Ber(mID) 6~/~ )i-I = 61/2, i = 2,3. 

3) Computation of p. By 2), da/~=d~/2Ber~# 2 Ber 1-~Ber[i~,.o whence ~t=ds/~d~Bera/2BerlBer[~z.i 

I am indebted to A. S. Shvarts for his invaluable assistance and to A. A. Beilinson for 
his useful comments. My deepest gratitude goes to Yu. I. Manin, with whose guidance and 
under the influence of whose papers this note was written. 
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