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Chapter 1

Introduction

A key step in the development of the representation theory of algebras was the intro-

duction in 1975 of almost split sequences, by Auslander and Reiten[2]. Since then,

Auslander-Reiten theory has expanded and proved itself to be a great algebraic and

combinatorial tool to study the module theory of Artin algebras. One of the innovations,

developed by Happel in 1987 and described in his book [7], extends the work of Aus-

lander and Reiten to derived categories of module categories of finite-dimensional alge-

bras. Derived categories have been used as a tool in representation theory for decades.

One of the features of derived categories is that they are a “natural” category in which

to study homology and cohomology.

We will use the tools of Auslander-Reiten theory to study a class of Grothendieck

constructions. The Grothendieck construction has appeared in several areas of repre-

sentation theory and related fields. For starters, the semidirect product construction in

group theory is an example of a Grothendieck construction. Indeed, one can think of

the Grothendieck construction as a generalization of the semidirect product. In his the-

sis, Thomason showed, that given a functor F : K → SCat, the homotopy colimit of the

nerve of K is homotopy equivalent to the nerve of the Grothendieck construction of F

[14]. When studying skew group rings, we can realize the base ring as a category with

a single object on which G acts, so the skew group ring can be regarded as the cate-

gory algebra of a Grothendieck construction. The Grothendieck construction is also an
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example of an extension of categories, and it behaves like a split extension.

Our main objects of study are a class of Grothendieck constructions, called trans-

porter categories. Given a group G and a G-poset P the transporter category P oG is a

category which combines the structure ofP, G, and the information of the group action.

As such, transporter categories are a generalization of both posets and groups.

We take inspiration from the work of Diveris, Purin, and Webb [5]. The authors

study the representation theory of posets, i.e. the module theory of the category algebra

kPwhereP is a poset (considered as a category) and k is a field. The category algebra of

a poset may be identified as the opposite of the incidence algebra of the poset. The au-

thors study the Auslander-Reiten quiver of the bounded derived category Db(kP−mod).

There, the authors develop clamping theory, which relates the Auslander-Reiten quiver

of Db(kP) with that of the bounded derived category of the category algebra of cer-

tain subintervals, called clamped intervals. More specifically, they showed that if [a, b]

is a clamped interval in a poset P, a large portion of the Auslander-Reiten quiver of

Db(k[a, b]−mod) is copied into the Auslander-Reiten quiver of Db(kP−mod). The au-

thors use this theory to quickly determine the shape of a component of the Auslander-

Reiten quiver of Db(kP−mod) when P belongs to a class of posets, IC, which stands

for “iterated clamping.”

In this document, we show that clamping theory for posets can be extended to trans-

porter categories. As a first step, we consider the category algebra kP oG where k is a

field. We develop the notion of a “clamped subcategory” [a, b]oGb in a transporter cat-

egory P oG. With this, we show that a large portion of the Auslander-Reiten quiver of

the bounded derived category of k[a, b] o P oG is copied into that of kP oG. We also

introduce a class of transporter categories, ICT . This class has the property that, given

a transporter category P oG ∈ ICT , a large portion of the Auslander-Reiten quiver of

Db(kP oG) containing a slice of the quiver can be constructed iteratively from clamped

subcategories.

In Chapter 2, we begin by covering preliminaries. This includes basic facts about

representations of categories, Grothedieck constructions and transporter categories, de-

scriptions of their simple and projective representations. We also cover basic facts about
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the bounded derived category of an abelian category, and the restriction, induction, and

coinduction functors and their derived functors.

In Chapter 3, we define clamped subcategories in transporter categories. We will

describe some of their basic properties. In addition, we show useful properties about

complexes for clamped subcategories under induction and coinduction, followed by

restriction. This culminates in the following theorem.

Theorem. Let G be a group and P be a G-poset, and let [a, b] oGb be clamped in

P oG. Then the functors ↑PoG
[a,b]oGb

and ⇑PoG
[a,b]oGb

are naturally isomorphic on objects with

homology supported on the open interval (a, b).

In Chapters 4 and 5 discuss the relationship between clamped intervals and Auslander-

Reiten triangles, culminating in Corollary 5.0.4.

Corollary. Let k be a field. The regions of the Auslander-Reiten quiver of Db(k[a, b] oGb)

containing the meshes whose rightmost terms have homology supported on [a, b) and

whose leftmost terms have homology supported on (a, b] are the restrictions of regions

in the Auslander-Reiten quiver of Db(kP oG). Said another way, the regions of the

Auslander-Reiten quiver of Db(k[a, b] oGb) with the property above are copied into the

Auslander-Reiten quiver of Db(kP oG) by extending the modules appearing in those

complexes by 0 outside of G[a, b].

In Chapter 6, we apply this corollary to a class of transporter categories, ICT , to

quickly construct the Auslander-Reiten quiver transporter categories in ICT . Specifi-

cally, we prove the following theorem.

Theorem. Let P oG be a transporter category in ICT , and let k be a field with

char(k) - |G|. Let α be the minimal element and ω the maximal element of P. De-

fine the following:

• n: The number of connected components, in the category-theoretic sense, of

(α, ω) oG.

• α1, . . . , αn: A selection of minimal elements of (α, ω) o G, each from a different

connected component.
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• {W1, . . . ,Wm}: A complete set of pairwise nonisomorphic simple kG-modules.

• mi: The number of isomorphism classes of simple kGαi-modules.

• {Vi,1, . . . ,Vi,mi}, with 1 ≤ i ≤ n: A complete set of pairwise nonisomorphic simple

kGαi-modules.

• e j,i,k, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ mi: The multiplicity of Vi,k in

W j ↓
G
Gαi

.

• T : The underlying directed graph of the slice S identified in Hypothesis 6.2.6

of the component of the Auslander-Reiten quiver of Db(kP oG) containing the

projective modules of the form Pα,W .

• Ti, 1 ≤ i ≤ n: The underlying directed graph of the slice identified in Hypothesis

6.2.6 of the components of the Auslander-Reiten quiver of Db(k[αi, ωi] o Gαi)

containing the projective modules of the form Pαi,V .

Then we have

T = T1 t · · · t Tn t

m⋃
j=1

{v1, j, v2, j}

where
⋃m

j=1{v1, j, v2, j} is a set of 2m labelled vertices. For each j, we add an edge

between v1, j and v2, j, and for each i, k with 1 ≤ i ≤ n and 1 ≤ k ≤ mi, we add e j,i,k edges

between v2, j and the vertex in Ti corresponding to the module Pαi,Vi,k .

We will show that these transporter category algebras are piecewise-hereditary, and

more significantly, we can use the theory we develop to identify the specific path al-

gebra to which a given transporter category in ICT is derived-equivalent. In Chapter

7, we list the transporter categories in ICT of finite representation type and identify

the path algebra to which each is derived-equivalent. We end with an example of trans-

porter category algebras CP oG where a component of the Auslander-Reiten quiver of

Db(CP oG) has a slice whose underlying undirected graph is closely related to Young’s

lattice of partitions.

4



Proposition. Let S n denote the symmetric group on n elements. There is a trans-

porter category P o S n where the underlying graph of a slice of the component of

the Auslander-Reiten quiver of Db(CP o S n) containing the projective-injective mod-

ules is a modification of Young’s lattice of partitions. Starting with the Hasse diagram

for Young’s lattice, we eliminate rows in positions greater than n, and for rows greater

than the first, we replace each vertex by two vertices joined by a new edge. The bottom

row of this modified lattice (i.e. row 2n − 1) corresponds to the projective-injective

modules.
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Chapter 2

Preliminaries

2.1 Posets and transporter categories

Let k be a field, let G be a finite group with order invertible in k, and let P be a finite

left G-poset, i.e. a poset with a left G action. We regard P as a category whose objects

are the elements of P for any pair of objects x, y ∈ P, we have #(Hom(x, y)) = 1 if

x ≤ y and 0 otherwise. Note that this fully defines composition of morphisms in P. We

will use the representation-theoretic notation gx and gα to denote the action of g ∈ G on

x ∈ Ob(P) and α ∈ Mor(P). We will represent posets as Hasse diagrams. As opposed

to typical conventions, we draw x above y if x ≤ y so that the minimal elements are at

the top of the diagram.

We study the Grothendieck construction determined by the action of G on P. We

give the definition of the Grothendieck construction here.

Definition 2.1.1. Let C be a small category, and let F : C →SCat be a functor from C

to the category of small categories. The Grothendieck construction, denoted F oC, is a

category whose objects are pairs

(x, c) , where c ∈ Ob(C) and x ∈ Ob(F(c)),

and where Hom((x, c), (y, d)) consists of pairs (α, f ) where f : c→ d is a morphism in

6



C and α : F( f )(x)→ y is a morphism in F(d). Composition is given by

(α, f ) ◦ (β, g) = (α ◦ F( f )(β), f ◦ g).

One can think of a Grothendieck construction as the simplest category combining

all of the information of the domain, the target, and the functor.

In representation theory, a frequently considered Grothendieck construction is one

where C is a group, G, considered as a category with a single object, ∗. In this

case, the functor F encodes the action of G on a small category F(∗). Observe that

a Grothendieck construction of the form C o G has objects {(c, ∗)
∣∣∣ c ∈ C}, so the ob-

jects of C o G biject with those of C. As such, we will write the objects of C o G as

those of C.

Definition 2.1.2. Let G be a group, and let P be a G-poset. The transporter category

P oG is the Grothendieck construction of

F : G → SCat

where F encodes the action of G on F(∗) = P.

In this context, the poset P is called the base poset of P oG.

It is important to note that every transporter category P oG is an EI-category, i.e.

a category in which every endomorphism is an isomorphism. For an object x ∈ P oG,

we have EndPoG(x) � Gx where Gx is the stabilizer of x in P.

Example 2.1.3. Let P be the poset

α

x y

The object α is the unique minimal object of P. As a category, there are two non-

identity morphisms in P, namely φ = (α ≤ x) and ψ = (α ≤ y). Let G = C2 = {e, g} act
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on P by interchanging x and y. The category P oG can be represented by the following

diagram in which the non-identity morphisms are shown:

α

x y

(1α, g)

(φ
, e

)

(φ
, g

) (ψ, g)

(ψ, e)

(1y, g)

(1x, g)

2.2 Representations of Categories

We are interested in finite-dimensional modules for these categories. We begin by

discussing these in two different, but equivalent, ways, summarizing from [16] .

Definition 2.2.1. Let C be a small category, let k be a commutative ring with a 1, and

let k-mod be the category of k-modules. A representation of C over k is a functor

M : C → k−mod.

A morphism f : M → N of representations is a natural transformation between the

functors M and N.

Definition 2.2.2. Let C be a small category, and let k be a commutative ring with a 1.

The category algebra kC is a free k-module with basis the morphisms of C. For any

two morphisms φ, ψ ∈ C, multiplication in kC given by

φ · ψ =

φ ◦ ψ if φ and ψ are composable,

0 otherwise.
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We extend multiplication to arbitrary elements of C using bilinearity.

In the case where C is a group, i.e. a category with a single object in which all

morphisms are invertible, representations of C over k are the same as representations

of the group over k, and the category algebra kC is isomorphic to the corresponding

group algebra. It is well-known that representations of a group G over k are equivalent

to kG-modules. We have a similar situation in the case of categories.

Proposition 2.2.3. (Mitchell, Theorem 7.1 [11]) Let k be a commutative ring with a

1, let (k − mod)C denote the category of representations of C, and let kC-mod denote

the category of left kC-modules. Then we have functors r : (k−mod)C → kC-mod and

s : kC−mod→ (k−mod)C with the following properties

1. sr � 1(k−mod)C .

2. r embeds (k−mod)C as a full subcategory of kC−mod, and if C has finitely many

objects, then rs � 1kC−mod.

The effect of this result is that representations of a category may be regarded as

modules for the category algebra kC and vice-versa. We will be working with trans-

porter categories with finitely many objects. Thus, we will refer to a module M of the

category algebra kP oG as both a module and as a functor M : P oG → k-mod, when

appropriate. Furthermore, the evaluation M(x) of M at an object x can also be written

algebraically as 1xM and it has the structure of a kGx-module. To shorten the notation

we also write M(x) as Mx.

We may now describe representations of P oG diagrammatically. We can write a

poset as a Hasse diagram where (contrary to usual practice) the least elements are above

the greater elements. For each object x ∈ P and kP oG-module M we label the vertex

x in the Hasse diagram with the kGx-module Mx. This summarizes key information

about the structure of M, e.g. its dimension and its composition factors.

Example 2.2.4. Consider the poset

9



α

x x′

y y′

ω

P =

We write a kP-module M as
Mα

Mx Mx′

My My′

Mω

In this case, each term M(−) is a vector space over k because each object has a trivial

endomorphism group.

We may consider the same poset with G = C2 acting by switching the two chains. In

this case, the terms x and x′ are isomorphic, as are y and y′, so Mx � Mx′ and My � My′

for any kP oG-module M. Thus, to simplify the diagram, we can omit Mx′ and My′

and write M as
Mα

Mx
My

Mω

where Mα and Mω are kG-modules and Mx and My are k-vector spaces.

2.3 Simple and projective modules

Let C be an EI-category, i.e. a category in which every endomorphism is an isomor-

phism, and let k be a commutative ring. By a proposition due to Lück (see [4, Proposi-

tion 4.3]), the simple kC-modules bijects with pairs (x,W) where x is an object of the

category, chosen up to isomorphism, and W is a simple kEndC(x)-module. The value of

the simple functor at y is nonzero if and only if y � x. When C = P oG is a transporter
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category, we may write End(x) = Gx, where Gx is the stabilizer of x ∈ P. For each

y ∈ P with y � x pick an element g ∈ G satisfying gx = y. Then Gy = gGxg−1, and we

set the value of the simple module y as the kGy-module gW = g⊗k W. From now on, we

denote the simple kC-module corresponding to the pair (x,W) as S x,W . The procedure

above defines S x,W up to isomorphism.

We aim to describe the indecomposable projective kP oG-modules, where P oG

is a finite transporter category and k is a field in which |G| is invertible. In particular,

we will describe these modules. By standard facts about finite-dimensional algebras

over fields, the indecomposable projective modules biject with the simple modules by

sending the simple module to its projective cover. Let Px,W denote the projective cover

of S x,W . The kP oG-module Px,W is formed in the following way: let eW ∈ kGx be

a primitive idempotent satisfying eW(W) , 0. Then we can write Px,W as a kP oG-

module

Px,W = kP oG · (1x, eW).

The fact that Px,W can be so written is a consequence of the description of indecompos-

able projectives modules for EI-categories given in [4, Prop. 11.29]. The top radical

layer is easy to describe, but the other composition factors require some investigation.

The reason for doing this is because we will be approximating modules and complexes

of modules with their projective resolutions, and we will be particularly interested in

inducing these projective resolutions from a clamped subcategory. We are guaranteed

to have finite global dimension because |G| is invertible in k. This allows for the use of

many more tools from the bounded derived category.

The top radical layer of Px,W is S x,W , but its other radical layers are more difficult

to describe. In order to start working with examples, we need to be able to describe

the radical layers precisely. In what follows, we will be referring to representations, or

complexes of representations, of a transporter subcategory, Q o H. In these instances

when there may be some ambiguity, we will specify the transporter category for the said

module or complex. For example, we may write S QoH
x,W for the simple kQ o H-module

generated at x with W as the corresponding simple kHx-module.
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Lemma 2.3.1. Let G be a finite group, let P be a finite G-poset, and let k be a field with

|G| invertible in k. Let x ∈ P o G be an object with Gx = G. Then for any y ∈ P o G

with x ≤ y, we have

1y · Px,W � W ↓G
Gy

as left kGy-modules

Proof. Let eW ∈ k EndPoG(x) � G be a primitive idempotent associated to W so that

k EndPoG(x)eW � W. By direct calculation, we have

1yPx,W = 1y(kP oG(1xeW))

= k{1yαg1xeW

∣∣∣ α ∈ P and g ∈ G}

Now for all g ∈ G, we have g1x = g1xg = 1xg because x is fixed by G. So

k{1yαg1xeW

∣∣∣ α ∈ P and g ∈ G}

= k{1yα1xgeW

∣∣∣ α ∈ P and g ∈ G}

= k{(x ≤ y)geW

∣∣∣ g ∈ G}

= k(x ≤ y)GeW .

We obtain an action of G on eW by transporting the action of G through the iso-

morphism G � EndPoG(x). Through this, we have an isomorphism of kG-modules

kGeW � W because kG is semisimple. If h ∈ Gy, we have

h · (x ≤ y)geW = (hx ≤ hy)hgeW = (x ≤ y)hgeW .

The final equality holds because h fixes both x and y. This implies that there is an

isomorphism of kGy-modules given by

k(x ≤ y)Gew → kGeW ,
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(x ≤ y)hgeW 7→ hgeW

on a spanning set, and extended linearly. Noting that the kGy-module kGeW is precisely

W ↓G
Gy

, we conclude that k(x ≤ y)GeW � W ↓G
Gy

as left kGy-modules.

�

We have the following as an immediate corollary:

Corollary 2.3.2. Let G be a finite group, let P be a G-poset, and let k be a field in

which |G| is invertible. Let x ∈ P oG be any object, and let W be a kGx-module. Then,

1y · P
PoGx
x,W �

W ↓Gx
Gx∩Gy

if x ≤ y,

0 otherwise.

as left k(Gx ∩Gy)-modules.

Proof. We apply the previous lemma to the transporter subcategory P oGx. Note that

in P oGx, the endomorphism group at the object y is precisely Gx ∩Gy. �

We now extend these results to the structure of projective kP oG-modules. In what

follows, we make use of the induction operation. Let C be a small category, and let

D ⊂ C be a subcategory. If N is a kD-module, then N ↑C
D

is the kC-module defined by

N ↑C
D

:= kC ⊗kD N.

We start by using the results for the structure of projective kPoH-modules generated by

their values on objects fixed by H, then inducing up to P oG. We first need a lemma.

Lemma 2.3.3. Let G be a finite group, let k be a field, and let P be a G-poset. Then for

any object x ∈ P oG and for any simple kGx-module W, we have

PPoG
x,W � P{x}oGx

x,W ↑PoG
{x}oGx

,

and

PPoG
x,W � PPoGx

x,W ↑PoG
PoGx

,
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Proof. For the first isomorphism, let eW ∈ k End{x}oGx(x) � Gx be a primitive idem-

potent associated to W. Note that {x} o Gx is the category with a single element and

whose endomorphism monoid is isomorphic to Gx, so modules for k{x} o Gx are the

same as modules for kGx. Thus we have P{x}oGx
x,W � k({x} o Gx)eW . Using the definition

of induction, we have

P{x}oGx
x,W ↑PoG

{x}oGx
= kP oG ⊗k({x}oGx) k({x} oGx)eW

� k(P oG)eW

� PPoG
x,W .

In the second line, we consider eW to lie in k EndPoG(x) because {x} oGx is a full sub-

category of P oG. The last isomorphism follows from the discussion at the beginning

of this section.

The second isomorphism of the lemma follows from the first by transitivity of in-

duction. Indeed, by the first isomorphism of the lemma, we have

Px,W � P{x}oGx
x,W ↑PoG

{x}oGx
� P{x}oGx

x,W ↑
PoGx
{x}oGx

↑PoG
PoGx

.

Because {x}oGx is also a full subcategory ofPoGx, it follows that PPoGx
x,W � P{x}oGx

x,W ↑
PoGx
{x}oGx

.

Thus we have

P{x}oGx
x,W ↑

PoGx
{x}oGx

↑PoG
PoGx

� PPoGx
x,W ↑PoG

PoGx
,

and the result follows.

�

We now identify the value of arbitrary projective kP oG-modules on any object.

These values are given by Mackey-like formulas expressed as a direct sum over a subset

of double coset representatives.

Proposition 2.3.4. Let G be a finite group, let k be a field with char(k) - |G|, and let P
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be a G-poset. If x ≤ y in P, and W is a simple kGx-module, then

1y · PPoG
x,W �

⊕
g∈[Gy\G/Gx]

g x≤y

g(W ↓Gx

Gg
y∩Gx

)
↑

Gy

Gy∩gGx

as kGy-modules.

Remark 2.3.5. By this formula, if gx ≤ y for every g ∈ G, then the double sum becomes

the Mackey formula for W ↑G
Gx
↓G

Gy
.

Proof. Note that kP oG is a skew group algebra with subalgebra kP o Gx. By an

argument similar to one for group algebras (See [15] Prop 4.3.1), we have a vector

space isomorphism

PPoGx
x,W ↑PoG

PoGx
�

⊕
h∈[G/Gx]

h ⊗ PPoGx
x,W ,

where the direct sum is a sum of vector spaces over a fixed set of coset representatives.

The tensor is over k(P o Gx), but we suppress this throughout the proof. By lemma

2.3.3 we have

1y · PPoG
x,W = 1y · (P

PoGx
x,W ) ↑PoG

PoGx

= 1y ·
⊕

h∈[G/Gx]

h ⊗ PPoGx
x,W

=
⊕

h∈[G/Gx]

h ⊗ 1h−1 y · P
PoGx
x,W .

By Corollary 2.3.2, we have

1h−1 y · P
PoGx
x,W �


W ↓Gx

Gh
y∩Gx

if hx ≤ y

0 otherwise
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as kGy
h ∩Gx-modules. Thus we can rewrite the direct sum:⊕

h∈[G/Gx]

h ⊗ 1h−1 y · P
PoGx
x,W �

⊕
h∈[G/Gx]

h x≤y

h ⊗W ↓Gx

Gh
y∩Gx

as kGy-modules. We now decompose this direct sum in terms of double cosets.⊕
h∈[G/Gx]

h x≤y

h ⊗W ↓Gx

Gh
y∩Gx

=
⊕

g∈[Gy\G/Gx]

⊕
h∈[G/Gx]

h x≤y
h∈GygGx

h ⊗W ↓Gx

Gh
y∩Gx

.

In this double direct sum, we may choose the g so that they are a subset of the

coset representatives, h, chosen earlier. Note that if H is a subgroup of G, V is an H-

module, and g ∈ G, then g ⊗ V � gV where gV is the gH-module which is defined by

the composition of homomorphisms

gH
cg−1

→ H → GL(V).

We claim that if any element of r ∈ GygGx satisfies r x ≤ y, then every element

s ∈ GygGx satisfies sx ≤ y. Indeed, set r = g1gg2 where g1 ∈ Gy and g2 ∈ Gx, and set

s = h1gh2 where h1 ∈ Gy and h2 ∈ Gx. Then x = g−1
2 h2 x and h1g−1

1 y = y, so

g1gg2 x ≤ y,
g1gg2

(g−1
2 h2 x

)
≤ y,

g1gh2 x ≤ y,
h1g−1

1
(g1gh2 x

)
≤ h1g−1

1 y,
h1gh2 x ≤ y.
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This result allows us to rewrite the direct sum:⊕
g∈[Gy\G/Gx]

⊕
h∈[G/Gx]

h x≤y
h∈GygGx

h ⊗W ↓Gx

Gh
y∩Gx

�
⊕

g∈[Gy\G/Gx]
g x≤y

⊕
h∈[G/Gx]
h∈GygGx

h(W ↓Gx

Gh
y∩Gx

)

We now show that for a fixed g ∈ G, we have⊕
h∈[G/Gx]
h∈GygGx

h(W ↓Gx

Gh
y∩Gx

)
� g(W ↓Gx

Gg
y∩Gx

)
↑

Gy

Gy∩gGx
.

This follows from the proof of Mackey’s decomposition theorem [15, Theorem 5.2.1].

Putting everything together yields

1y · PPoG
x,W �

⊕
g∈[Gy\G/Gx]

g x≤y

g(W ↓Gx

Gg
y∩Gx

)
↑

Gy

Gy∩gGx

�

2.4 The bounded derived category

We will study the representation theory of transporter category algebras by first con-

sidering their bounded derived categories and later deducing results about their module

categories. The rationale behind this slightly unusual approach is that certain proper-

ties of the bounded derived category may be easier to approach than the corresponding

properties of the module category. Accordingly, we proceed with a description of the

bounded derived category of an abelian category and its most salient properties. We

will be summarizing basic results from [7, Chapter I].

Definition 2.4.1. LetA be an abelian category. We define the following categories:

• Ch(A): The category of chain complexes with terms inA, denoted

C• = · · · → C2
d2
→ C1

d1
→ C0

d0
→ C−1

d−1
→ C−2 → · · ·
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• Kb(A): The homotopy category of chain complexes with zero homology in all

but finitely many degrees.

• Db(A): The category Kb(A) in which we include all “formal inverses” to the

morphisms

f : C• → D•

for which Hn( f ) is an isomorphism for all n. When the category is a module

category of an algebra A = A-mod, we will write Db(A) to denote the bounded

derived category Db(A-mod).

The bounded derived category is equipped with a collection of automorphisms

called shift functors. For each n ∈ Z, we have the functor

[n] : Db(A)→ Db(A),

C• → C•[n],

where (C•[n])i = Ci−n and the differential on C•[n] is dC•[n] = (−1)ndC• . The shift

functor [1] makes Db(A) a triangulated category. Given a morphism f : X• → Y• in

Db(A), the distinguished triangle starting with f : X• → Y• is

X•
f
→ Y•

i
→ cone f

π
→ X•[1]

where cone f denotes the mapping cone of f , i is the inclusion map, and π is projection.

The mapping cone cone f is the complex with terms

(cone f )i = X[1]i ⊕ Yi

and differential

dcone f =

dX[1] f

0 dY

 .
For an abelian category A, let AP denote the full subcategory of A containing the

18



projective objects, and let AI denote the full subcategory of A containing the injective

objects. When A has enough projective (resp. injective) objects, we can always write

a complex C• ∈ Db(A) as a complex of projective (resp. injective) objects. Moreover,

two complexes of projective (resp. injective) objects are isomorphic in Db(A) if and

only if the complexes are homotopy equivalent. This implies that there are triangle

equivalences

Kb(AP)→ Db(A)→ Kb(AI).

In the context of this document, A is a finite dimensional algebra over a field andA = A-

mod. If M ∈ Db(A) is the shift of an A-module, i.e. a complex with nonzero homology

only in one degree, then M is isomorphic to a projective or injective resolution of M,

shifted appropriately. Maps between two such complexes are just chain maps, taken up

to homotopy. Because of this, we will often use a projective or injective resolution of a

module M in order to make calculations in Db(A).

2.5 Induction, coinduction, and restriction

In this section, we define induction, coinduction, and restriction between an algebra

and a subalgebra, and we extend these notions to bounded derived categories. We then

present results in the specific case when the algebras are transporter category algebras

and the subalgebra comes from a clamped subcategory. We provide a sufficient condi-

tion for when a complex M in Db(kP oG) is induced or coinduced from k[a, b] oGb,

and we determine a large class of complexes for which induction and coinduction co-

incide. In Chapter 6, these results will be key in determining which portions of the

Auslander-Reiten quiver of Db(k[a, b] oGb) are copied into that of Db(kP oG).

Definition 2.5.1. Let k be a commutative ring with a 1, let Λ and Γ be k-algebras with

Λ ⊂ Γ where the inclusion is not necessarily unital. The restriction functor

(−) ↓Γ
Λ: Γ−mod→ Λ−mod

is the functor defined by M ↓Γ
Λ

:= 1ΛM. Notice that we did not require the identity 1Γ to
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be equal to 1Λ. The left adjoint of restriction is the induction functor

(−) ↑Γ
Λ: Λ−mod→ Γ−mod,

defined by N ↑Γ
Λ

:= Γ ⊗Λ N. The right adjoint of restriction is the coinduction functor

(−) ⇑Γ
Λ: Λ−mod→ Γ−mod,

defined by N ⇑Γ
Λ

:= HomΛ(Γ,N).

If C is a small category and D is a full subcategory, the inclusion functor D ↪→

C induces an inclusion of category algebras kD ↪→ kC. We simplify the notation

somewhat and write ↓C
D

, ↑C
D

, and ⇑C
D

to denote restriction, induction, and coinduction

between kD and kC.

When working over bounded derived categories, we must use the total derived func-

tors of induction, coinduction and restriction. Importantly, the total left derived functor

of induction, and the total right derived functor of coinduction remain the left and right

adjoints of the total derived functor of restriction. To apply the total left (resp. right)

derived functor of induction (resp. coinduction) on a complex M, we replace M with

a complex of projective ( resp. injective) modules, then apply the ordinary induction

(resp. coinduction) functor on each projective (resp. injective) term.

Under the right circumstances, projective and injective modules are very well-

behaved under induction and coinduction. If E is a set of objects in a category C,

we say that a representation M of C is generated by its values on E if whenever S ⊂ M

is a subrepresentation with S (x) = M(x) for all x ∈ E, then S = M. Dually, we say that

M is cogenerated by its values on E if, whenever S is a quotient of M with S (x) � M(x)

for all x ∈ E, then S = M. We quote the most salient results from [16].

Proposition 2.5.2. Let C be a small category, and let D be a full subcategory with

finitely many morphisms. Let M be a representation ofD.

1. Induction ↑C
D

sends projective modules to projective modules. Moreover, if E is a

set of objects inD and M is aD-module generated by its values on E, then M ↑C
D
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is also generated by its values on E.

2. Coinduction ⇑C
D

sends injective modules to injective modules. Moreover, if E is

a set of objects in D and M is a D-module cogenerated by its values on E, then

M ⇑C
D

is also cogenerated by its values on E.

Proof. The proof of 1 is [16, Proposition (3.2)], and 2 is dual to 1.

�
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Chapter 3

Clamped subcategories

We now develop a theory of clamped subcategories of transporter categories. A closely

related concept was employed by Diveris, Purin, and Webb in [5] to study the represen-

tation theory, particularly the Auslander-Reiten theory, of category algebras of posets

over a field. To begin this chapter, we define clamped subcategories [a, b] o Gb of a

transporter category P oG and outline some of its basic properties. From there, we

use these properties to study the effects of induction and coinduction on a subset of

complexes in Db(k[a, b] oGb). We begin with the concept of a clamped interval in a

poset.

Definition 3.0.1 (Diveris, Purin, Webb [5]). Let P be a poset. A closed interval [a, b]

is called clamped if y ≤ b implies y ≤ a or a ≤ y, and a ≤ y implies y ≤ b or b ≤ y.

It was shown in [5] that a clamped interval [a, b] ⊂ P has the property that por-

tions of the Auslander-Reiten quiver of Db(k[a, b]) are copied into the Auslander-Reiten

quiver of Db(kP). We define a notion of a clamped subcategory in a transporter category

P oG which, as we will later show, has this type of copying property.

Definition 3.0.2. Let G be a finite group and let P be a finite G-poset. A subcategory

of P oG of the form [a, b]oGb, where Gb denotes the stabilizer of b, is called clamped

if [a, b] ⊂ P is clamped in the sense of Definition 3.0.1.
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This definition may appear a bit misleading, as it is not immediately obvious that

Gb preserves the interval [a, b]. However, this is indeed the case.

Lemma 3.0.3. Let G be a finite group and let P be a finite G-poset. Let [a, b] be a

clamped interval in P. Then Gb = Ga, so Gb preserves the interval [a, b].

Proof. Let g ∈ Gb. Because we have a ≤ b, it follows that ga ≤ gb = b. By the clamping

property, we have a ≤ ga or ga ≤ a. Without loss of generality, assume a ≤ ga. Then

because G is finite, we have a ≤ ga ≤ g2
a ≤ · · · ≤ a. This forces equality, a = ga, so

Gb ≤ Ga. A similar argument shows that Ga ≤ Gb, and thus Gb = Ga. �

We prove some preliminary properties about clamped subcategories.

Lemma 3.0.4. If P oG is a transporter category and the G-orbits of objects are finite,

then clamped subcategories of P oG are full.

Proof. Let x, y ∈ [a, b] o Gb where [a, b] o Gb is clamped in P o G. We must show

that if gx ≤ y for some g ∈ G, then g ∈ Gb. Note that gx ∈ g[a, b], and g[a, b] is

clamped in P if and only if [a, b] is clamped in P. Then because gx ≤ y, we have

either y ≤ gb or gb ≤ y. In either case we have that b ≤ gb or gb ≤ b. Without loss of

generality, assume that b ≤ gb. Then because there are finitely many G-orbits of b, we

have b ≤ gb ≤ g2
b ≤ · · · ≤ b, which implies b = gb. Thus g ∈ Gb. �

In the same spirit, we also have this key lemma.

Lemma 3.0.5. Let G be a finite group and let P be a G-poset. Let [a, b] be a clamped

interval in P and let x ∈ [a, b]. Then if hb ≤ y for some h ∈ G, then for any g ∈ G we

have gx ≤ y if and only if gb ≤ y.

Note that the condition hb ≤ y for some h ∈ G is required because it is possible

that we could choose y ∈ [a, b] or any conjugate of [a, b]. For such a y, it could be that
gx ≤ y but y ≤ gb.

Proof. If gb ≤ y, then gx ≤ y. Now suppose gx ≤ y. Because g[a, b] is clamped, we have

either gb ≤ y or y ≤ gb. If gb ≤ y, then we are done, so assume y ≤ gb. By assumption,
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we have hb ≤ y ≤ gb. Then b ≤ h−1gb, and by applying powers of h−1g repeatedly, we

get b = h−1gb and thus hb = gb. This implies gb = hb ≤ y, and we are done. �

We can express this result as a statement about representable functors when re-

stricted to a certain class of objects. We will use the following notation: if C is an

EI-category, and y is an object of C, then C≥y is the full subcategory of C generated

by the objects {x
∣∣∣ HomC(y, x) , ∅}. Similarly, C≤y is the full subcategory of C with

objects {x
∣∣∣ HomC(x, y) , ∅}.

Corollary 3.0.6. Let [a, b] be clamped in P and let x ∈ [a, b]. Let R be any ring. There

is a natural isomorphism of functors

R HomPoG(b,−) ↓PoG
(PoG)≥b

� R HomPoG(x,−) ↓PoG
(PoG)≥b

.

Proof. The map is given by sending α to α◦(ex ≤ b, e) where e ∈ G is the identity. This

sends a morphism (gb ≤ y, g) in Hom(b, y) ↓PoG
(PoG)≥b

to (gx ≤ y, g). By 3.0.5, this map is

a bijection for any y ∈ (PoG)≥b, so this is an isomorphism at each object. Because this

map is given by precomposition, the isomorphism is natural. �

Not only does this tell us about representable functors, but this also tells us about

all projective modules.

Corollary 3.0.7. If [a, b] is clamped in a G-poset P, x ∈ [a, b], k is a field in which |G|

is invertible, and W is a simple kGx-module, then Px,W ↓
PoG
(PoG)≥b

� Pb,V ↓
PoG
(PoG)≥b

, where

V � W ↑Gb
Gx

.

Proof. Because W is simple, we may write k HomPoG(x,−) � Px,W ⊕ M for some

kP oG-module M. Restricting gives us

k HomPoG(x,−) ↓PoG
(PoG)≥b

� Px,W ↓
PoG
(PoG)≥b

⊕M ↓PoG
(PoG)≥b

using the fact that restriction is an additive. By Corollary 3.0.6, we have

k HomPoG(b,−) ↓PoG
(PoG)≥b

� k HomPoG(x,−) ↓PoG
(PoG)≥b

� Px,W ↓
PoG
(PoG)≥b

⊕M ↓PoG
(PoG)≥b

.
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Because (P o G)≥b is the full subcategory whose objects are {y
∣∣∣ Hom(b, y) , ∅}, it

follows that

k HomPoG(b,−) ↓PoG
(PoG)≥b

� k Hom(PoG)≥b(b,−).

This means that Px,W ↓
PoG
(PoG)≥b

is a summand of k Hom(PoG)≥b(b,−), so Px,W ↓
PoG
(PoG)≥b

�

P(PoG)≥b
b,V for some V . To determine V , we evaluate Px,W ↓

PoG
(PoG)≥b

(b) = Px,W(b) �

W ↑
Gb
Gx

. Finally, we note that P(PoG)≥b
b,V � PPoG

b,V ↓PoG
(PoG)≥b

because both are summands

of k HomPoG(b,−) ↓PoG
(PoG)≥b

� k Hom(PoG)≥b(b,−) and have the same evaluation at b. �

We are interested in values of these projectives outside of the G-orbits of [a, b]. To

this end, we show that the values of representable functors generated on [a, b] oGb on

elements greater than b are completely determined by the functor’s value at b.

We will use the notation Fx := k HomPoG(x,−).

Proposition 3.0.8. Let y ∈ P oG, and let N(b, y) be a complete set of coset represen-

tatives g ∈ [G/Gb] satisfying gb ≤ y. There is an isomorphism

α :
⊕

g∈N(b,y)

Fb(gb)→ Fb(y)

where the component maps αg : Fb(gb) → Fb(y) are defined by post-composition with

(e(gb) ≤ y, e).

Proof. First note that if (hb ≤ y, h) ∈ Fb(y), then h = gk where g ∈ N(b, y) and k ∈ Gb

and (hb ≤ y, h) = (e(gb) ≤ y, e) ◦ (hb ≤ gb, h). Because (hb ≤ gb, h) ∈ Fb(gb), it follows

that (hb ≤ y, h) is in the image of α, so α is surjective.

We now show that α is injective. Note that in
⊕

g∈N(b,y) Fb(gb), we have (h1b ≤ g1b, h1) =

(h2b ≤ g2b, h2) if and only if h1 = h2. Thus, α((h1b ≤ g1b, h1)) = α((h2b ≤ g2b, h2)) only if

h1 = h2, so α is injective. �

It is important to note that if β :
⊕

g∈N(b,y) Fb(−) →
⊕

g∈N(b,y) Fb(−) is a direct sum

of natural transformations (i.e. kP oG-module homomorphisms) Fb(−)→ Fb(−), then

α ◦ β = β ◦α because the component maps of β are given by pre-composition and those

of α are given by post-composition.
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We continue with results regarding induction and coinduction from clamped sub-

categories. The immediate goal is to prove that induction and coinduction coincide

when applied to complexes in Db(k[a, b] oGb) with homology supported on (a, b). This

is a key result which we use later to obtain specific structural information about the

Auslander-Reiten quiver of kP oG.

In the following proposition, we will use the notation ↑−− to mean both induction

in the module category and the total left derived functor of induction in the homotopy

category of chain complexes.

Proposition 3.0.9. Let k be a field, let P be a G-poset, let [a, b] ⊂ P, and let Π be a

complex of projective k[a, b] o Gb-modules with homology supported on [a, b). Then

Π ↑PoG
[a,b]oGb

has homology supported on G[a, b), the G-orbits of [a, b).

Proof. The complex Π ↑PoG
[a,b]oGb

has terms of the form Px,W ↑
PoG
[a,b]oGb

� PPoG
x,W where x ∈

[a, b] and W is a kGx-module. A projective kP o G-module P generated by its value

at x ∈ [a, b] takes nonzero values only on (P o G)≥x. If gx ≤ y then gb ≤ y or y ≤ gb

because g[a, b] is clamped. If y ≤ gb, then y ∈ g[a, b] and Π ↑PoG
[a,b]oGb

(y) is exact if

and only if Π ↑PoG
[a,b]oGb

(g−1
y) is exact if and only if Π(g−1

y) is exact. This shows that

Π ↑PoG
[a,b]oGb

(gb) is exact for all g ∈ G, and Π ↑PoG
[a,b]oGb

has zero homology outside of
G[a, b) ∪ (P oG)≥b.

Now suppose y ∈ (P oG)≥b and consider Π ↑PoG
[a,b]oGb

↓PoG
(PoG)≥b

. By 3.0.7, this complex

is isomorphic to a complex Π̃ of projective k(P oG)≥b-modules where each projective

term is generated at b. Because Π(b) is acyclic by assumption, so is Π̃(b). We may

replace Π̃ with a complex F• of representable k(P oG)≥b-modules where each term is

generated by its value at b. By Proposition 3.0.8, there is an isomorphism of graded

vector spaces

α̃ :
⊕

g∈N(b,y)

F•(gb)→ F•(y).

where here, the grading is determined by the position in the complex. We wish to show

that this is an isomorphism of complexes, which we proceed to do.

Note that the map α in 3.0.8 has the following property: If β(k) : Hom(b,−) →
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Hom(b,−) is a set of natural transformations and

β =
⊕

g∈N(b,y)

β(k)
g

is a direct sum with summands consisting of components of the β(k), then α ◦ β = β ◦ α.

This is because the components of α are given by post-composition, while the natural

transformations β(k) are given by precomposition by the Yoneda lemma, and these two

operations commute by associativity of composition.

To finish the proof of this proposition, note that the morphisms in the chain com-

plex
⊕

g∈N(b,y) F•(gb) can be viewed as components of natural transformations between

functors Fb → Fb. By the comments in the previous paragraph, the map α̃ commutes

with these maps, so α̃ is in fact an isomorphism of complexes. By assumption, the

complex on the left is acyclic, so F•(y) is acyclic. Thus, Π̃(y) is acyclic for all y greater

than any conjugate of b, and we are done. �

Proposition 3.0.9 is important in establishing that a certain class of complexes is

induced from a clamped interval.

Proposition 3.0.10. Let k be a field, let M be a complex of k(P o G)−modules, and

let [a, b] be clamped in P. Suppose M has homology supported on [a, b) o G. Then

a minimal projective resolution ΠM of M consists only of projective terms of the form

Px,W where x ∈ [a, b]. Moreover, M is induced from [a, b] oGb in Db(kP oG), and the

counit M ↓PoG
[a,b]oGb

↑PoG
[a,b]oGb

→ M is an isomorphism.

Proof. Let Π
[a,b]oGb
M be a minimal projective resolution of M ↓PoG

[a,b]oGb
. Then Π

[a,b]oGb
M

is a complex of projectives of the form P[a,b]oGb
x,W where x ∈ [a, b), being isomorphic to

M ↓PoG
[a,b]oGb

in Db(k[a, b] oGb). By proposition 3.0.9, we have that Π[a,b]oGb ↑PoG
[a,b]oGb

has

homology supported on G[a, b) as well.

Now by basic properties of induction from full subcategory algebras, we have

Π[a,b]oGb ↑PoG
[a,b]oGb

� Π
[a,b]oGb
M (x) for all x ∈ [a, b], and by proposition 3.0.9, we have

Π[a,b]oGb ↑PoG
[a,b]oGb

(y) = M(y) is acyclic for all y < G[a, b]. Note that M ↓PoG
[a,b]oGb

↑PoG
[a,b]oGb

�

Π
[a,b]oGb
M ↑PoG

[a,b]oGb
.
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By the last observation, we have a map εM : Π
[a,b]oGb
M ↑PoG

[a,b]oGb
→ M which is the

counit of the adjunction. This map is an isomorphism at each object x ∈ G[a, b], so

εM must be an isomorphism because both Π
[a,b]oGb
M ↑PoG

[a,b]oGb
and M are zero outside of

G[a, b]. �

We now turn our attention to coinduction. Coinduction between the module cate-

gories is defined by M ⇑PoG
[a,b]oGb

:= Homk[a,b]oGb(kP oG,M) and is the right adjoint to

restriction. Between the bounded derived categories, coinduction refers to the total left

derived functor of coinduction in the module categories. It is obtained by applying

⇑PoG
[a,b]oGb

to each term in an injective resolution of the complex in question. Our main

goal is to prove that induction and coinduction coincide for a certain class of complexes

in Db(k[a, b] oGb). To this end, we must show the following:

Proposition 3.0.11. Let I• be a complex of injective k[a, b] oGb-modules with homol-

ogy supported on (a, b]. Further, assume that each module in the complex is a finite

dimensional k-vector space. Then I• ⇑PoG
[a,b]oGb

has homology supported on G(a, b].

This proposition can be considered the dual of proposition 3.0.9. We will include a

proof of this statement here which uses the uniqueness of an adjoint. We begin with a

lemma.

Lemma 3.0.12. Let P be a G-poset. Then there is an isomorphism of categories

(P oG)op � Pop o Gop, where the action of g ∈ Gop on x ∈ Pop is the same as the

action of g−1 on x ∈ P.

Proof. Let ∗ denote multiplication in Gop and let · denote multiplication in G. We have

Hom(PoG)op(x, y) = HomPoG(y, x)

={(gy ≤ x, g)

={(g−1
x ≥ y, g)}.

This shows that the ”correct” action of g ∈ Gop on x ∈ Pop is that of g−1 on x ∈ P.
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Composition of morphisms in (P oG)op is given by

(h−1
y ≥ z, h) ◦

(PoG)op
(g−1

x ≥ y, g) =[(gy ≤ x, g) ◦
PoG

(hz ≤ y, h)]op

=(g·hz ≤ x, g · h)op

=(h−1·g−1
x ≥ z, g · h)

=(h−1·g−1
x ≥ z, h ∗ g).

Letting Gop act on Pop as above, we see that the composition rule for (P oG)op is the

same as that of Pop oGop. This shows that (P oG)op � Pop oGop. �

We will now turn to the proof of proposition 3.0.13.

Proof. Let I• be a complex of injective k[a, b] oGb-modules with homology supported

on (a, b]. We will start by proving that applying the vector space dual, inducing, and

applying the dual again to I• gives us a complex of injective kP oG-modules with

homology supported on G(a, b]. We will then show that this procedure of dualizing,

inducing, and dualizing again is the same as coinducing. For the sake of simplicity and

to avoid clutter, let C = P oG and let D = [a, b] oGb. Note that Dop = [b, a] o Gop
a ,

and it is convenient to use the fact that Ga = Gb whenever [a, b] is clamped. Thus Dop

is a clamped subcategory of Cop.

To this end, consider the dual complex I∗• , where (−)∗ is the derived functor of

Homk(−, k). Then by lemma 3.0.12, I∗• is a complex of projective left kDop-modules.

Note that I∗• has homology supported on [b, a). By proposition 3.0.9, we have that

I∗• ↑
Cop

Dop is a complex of projective kCop-modules with homology supported on [b, a). It

follows that I∗• ↑
Cop

Dop
∗ is a complex of injective kC-modules with homology supported

on (a, b].

We now show that we have a natural isomorphism of functors (−)∗ ↑C
op

Dop
∗ � (−) ⇑C

D

by showing that the functor on the left is a right adjoint of the restriction functor (−) ↓C
D

.

Let M be a kP oG-module and let N be a k[a, b] oGb-module. The proof below shows

that this is indeed true if we replace kC with any algebra over a field and kD with any

subalgebra.
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By duality and the fact that induction is the left adjoint of restriction, we have

HomkC(M,N∗ ↑C
op

[Dop
∗) = HomkCop(N∗ ↑C

op

Dop ,M∗)

= HomkDop(N∗,M∗ ↓C
op

Dop)

= HomkD(M∗ ↓C
op

Dop
∗,N).

It remains to show that M∗ ↓C
op

Dop
∗ � M ↓C

D
. This follows from the fact that restricting

and dualizing commute in the sense that M∗ ↓C
op

Dop� M ↓C
D
∗. From this, and the as-

sumption that all modules in the complex M are finite dimensional k-vector spaces, we

have

M∗ ↓C
op

Dop
∗ � M ↓C

D

∗∗ � M ↓C
D
.

We have shown that (−)∗ ↑C
op

Dop
∗ is the right adjoint of the restriction functor (−) ↓C

D
. By

the uniqueness of adjoints , we have (−)∗ ↑C
op

Dop
∗ � (−) ⇑C

D
. We conclude that I• ⇑CD is a

complex of injective kC-modules with homology supported on (a, b]. �

Before the next result, we make a definition. Given an object, x ∈ P oG and a

kGx-module W, let Ix,W denote the indecomposable injective module with simple socle

S x,W .

Proposition 3.0.13. Let N be a complex of kP oG-modules with homology supported

on (a, b]. Then a minimal injective resolution IN of N has terms of the form Ix,W where

x ∈ [a, b] and N is coinduced from [a, b] oGb. Moreover, the unit N → N ↓PoG
[a,b]oGb

⇑PoG
[a,b]oGb

is a natural isomorphism.

Proof. The proof of this statement is dual to proposition 3.0.10. �

Together, Proposition 3.0.9 and 3.0.13 imply the following key result.

Theorem 3.0.14. Let G be a group and P be a G-poset, and let [a, b] oGb be clamped

in P oG. Then the functors ↑PoG
[a,b]oGb

and ⇑PoG
[a,b]oGb

are naturally isomorphic on objects

with homology supported on the open interval (a, b).
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Proof. We need only establish that every object in Db(k[a, b] oGb) with homology

supported on (a, b) oGb is the restriction of a complex in Db(kP oG). Let

M = · · ·Mi+1 → Mi → Mi−1 → · · ·

be a complex in Db(k[a, b] oGb) with homology supported on (a, b) oGb. Define

M̃ = · · · M̃i+1 → M̃i → M̃i−1 → · · ·

to be the complex in Db(kP oG) where M̃ j is M j with zeros extended to objects outside

of G[a, b]. Observe that the restriction of M̃ to k[a, b] oGb is M. Thus we have

M ↑PoG
[a,b]oGb

� M̃ ↓PoG
[a,b]oGb

↑PoG
[a,b]oGb

� M̃ � M̃ ↓PoG
[a,b]oGb

⇑PoG
[a,b]oGb

� M ⇑PoG
[a,b]oGb

.

�
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Chapter 4

The left derived functor of ν and its
properties

A key tool in analyzing the Auslander-Reiten quiver of Db(kP oG) is the Nakayama

functor ν and its left derived functor Lν. We will be summarizing from [8, Chapter 6.4]

for properties of the Nakayama functor and the derived Nakayama functor. As opposed

to most of the rest of this document, we do not assume that |G| is invertible in k in this

chapter.

Definition 4.0.1. Let A be any finite dimensional algebra over a field k. Let D denote

vector space duality. The Nakayama functor, denoted ν : A-mod → A-mod, is the

functor D HomA(−, AA).

The functor ν is a covariant right exact functor, being the composition of a con-

travariant left exact functor and a contravariant exact functor. We will denote the left

derived functor of ν by Lν, or simply by ν when it is clear from context which functor

we intend to use.

The Nakayama functor ν has a quasi-inverse, denoted ν−1, defined as HomA(D(−), AA).

Both ν and ν−1 enjoy several properties. In the module category, if we define PS and

IS as the projective cover and injective envelope of the simple module S respectively,

then ν(PS ) = IS and ν−1(IS ) = PS . In fact, this assignment induces an equivalence of

32



categories

ν : proj(A)→ inj(A),

where proj(A) is the full subcategory of A-mod generated by the projective A-modules,

and inj(A) is the full subcategory generated by the injective modules.

When considering the entire derived category of A-mod, the functor Lν shares sim-

ilar properties. However, the convenient properties of ν are not always shared by Lν

when we restrict to the bounded derived category. Here are some complications:

1. The functor Lν does not necessarily take complexes with bounded homology to

complexes with bounded homology. This is guaranteed when kP oG has finite

global dimension, but this occurs if and only if char k - |G| by standard facts

about skew group rings.

2. It is not immediately clear that perfect complexes, i.e. complexes which are iso-

morphic to a finite complex of projectives in Db(kP oG), are mapped to perfect

complexes by Lν.

To address point 1, we will restrict the examination to the Auslander-Reiten quiver of

the full subcategory of Db(kP oG) generated by the perfect complexes. To do this, we

must first address point 2 by showing that kP oG is always Iwanaga-Gorenstein.

Definition 4.0.2. A Noetherian algebra A with a 1 is called Iwanaga-Gorenstein if each

injective has finite projective dimension and each projective module has finite injective

dimension.

We will only show that each injective module has finite projective dimension. The

proof that projective modules have finite injective dimension is dual.

Lemma 4.0.3. Let Ix,W be an indecomposable injective kP oG-module. Then for each

y ∈ P oG, we have that Ix,W(y) is zero or a projective kGy-module.

Proof. If gy � x for all g ∈ G, then Dk HomPoG(y, x) = 0, and thus any injective of the

form Ix,W , being a summand of Dk HomPoG(−, x), is also 0 upon evaluation at y.
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Suppose gy ≤ x for some g ∈ G. Then Dk HomPoG(y, x) is free as a left kGy-module

always. Thus Ix,W(y) is a summand of a free kGy-module, so it is projective as a kGy-

module. �

For the next lemma, which will prove that injectives have finite projective dimen-

sion, we will use the notion of the support of a module.

Definition 4.0.4. Let M be a kP oG-module. The support of M, denoted supp(M), is

the set of objects x ∈ P oG such that M(x) , 0.

We now proceed with the proposition.

Proposition 4.0.5. Let M be any kP oG-module with the property that for all x ∈

P oG, the term M(x) is either zero or a projective kGx-module. Then M has finite

projective dimension.

We will proceed by induction on n = #(P≥supp(M)), the number of objects inP≥supp(M).

The base case is n = 0, which implies M = 0, and M has finite projective dimension.

Consider the projective cover ϕ : PM → M. We claim that the projective cover ϕ

descends to an isomorphism ϕx : PM(x)→ M(x) on all minimal elements x ∈ supp(M).

Such maps are surjective because ϕ is surjective. For injectivity, let Nx = kerϕx, and

assume Nx , 0. Note that because x is minimal in supp(M), it follows that M/Rad M(x)

is nonzero. Because M(x) is a projective kGx-module, it follows that PM(x) � M(x) ⊕

Nx. This means that the kernel of PM/Rad PM → M/Rad M is nonzero, as it contains

the elements of Nx/Rad Nx regarded as elements of kerϕ|PM/Rad PM , and this contradicts

the assumption that ϕ is a projective cover.

Now P≥supp(PM) = P≥supp(M), as these posets have the same set of minimal elements.

Let Ω(M) denote the first syzygy of M, defined as the kernel of ϕ. The module Ω(M)

has support precisely that of PM, excluding the objects x for which ϕx is an isomor-

phism. This set of objects is nonempty, as it contains the minimal elements of P≥supp(M).

Thus we have

#(P≥supp(Ω(M))) < #(P≥supp(M)).
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Finally, observe that for all x, the value of Ω(M)(x) is the kernel of ϕx. This is always

a projective kGx-module or 0 because the image and domain of ϕx are 0 or projective.

By the induction hypothesis, the module Ω(M) has finite projective dimension. If P•
denotes a finite projective resolution of Ω(M), then P• → PM is a finite projective

resolution of M. This concludes the proof.

Remark 4.0.6. It is interesting to note that this proposition actually characterizes the

kP oG-modules of finite projective dimension. Indeed, if M(x) is nonzero and not

projective, then any projective resolution of M descends to a projective kGx-resolution

of M(x), and it is well known that the only nonzero kGx-modules with finite projective

dimension are the projective kGx-modules themselves.

Putting the proposition and the lemma together, we have that the injective kP oG-

modules have finite projective dimension. To get that the projective kP oG modules

have finite injective dimension, note that each projective kP oG-module is the dual

of an injective kPop o Gop-module. We use the same argument to obtain a projective

resolution of this injective kPop o Gop-module, then dualizing the complex yields an

injective resolution of the original projective kP oG-module.

This result can be used to show the following:

Theorem 4.0.7. The set of perfect complexes in Db(kP oG) is equal to the set of com-

plexes isomorphic to a finite complex of injective modules.

Proof. This follows from Theorem 6.4.6 and its proof in [8]. �

This result implies that Lν takes perfect complexes to perfect complexes. It then

makes sense to study the Auslander-Reiten quivers of Db(kP oG), restricted to the

perfect complexes. When kP oG has finite global dimension, this is the entirety of

Db(kP oG). Otherwise, the set of perfect complexes is strictly smaller.

4.1 The Serre functor

The perfect complexes form a triangulated subcategory of Db(kP oG). When we re-

strict to the subcategory of perfect complexes, the functor Lν[−1] becomes a Serre
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functor.

Definition 4.1.1. A Serre functor S : C → C on a triangulated category C is a self-

equivalence of triangulated categories with the property that for all objects A, B ∈ C,

we have a natural duality

HomC(A, B) � HomC(B, S (A))∗.

The functor Lν does indeed have these properties, and in fact Serre functors, if they

exist, are unique up to natural isomorphism. We are then justified in calling Lν the

Serre functor in this context.

The Serre functor and its quasi-inverse share a similar property: If P• is a complex

of projective modules where the projective in homological degree i is PMi , the projective

cover of some module Mi, then ν(P•) has the module IMi , the injective envelope of Mi,

in homological degree i.

With these properties in mind, we will investigate the Serre functor’s relationship

to induction, coinduction, and restriction.

Proposition 4.1.2. Let G be a finite group and P be a finite G-poset. Suppose [a, b] is

clamped in P, and let M be a complex in Db(kP oG). Then

1. M has homology supported on G[a, b) if and only if νM has homology supported

on G(a, b].

2. If M has homology supported on G[a, b), then

(νM) ↓PoG
[a,b]oGb

� ν(M ↓PoG
[a,b]oGb

).

Dually, if N has homology supported on G(a, b], then

(ν−1N) ↓PoG
[a,b]oGb

� ν−1(N ↓PoG
[a,b]oGb

).

Proof. Suppose that M has homology supported on G[a, b), and let ΠM be a projective

resolution of M. By proposition 3.0.9, the complex ΠM has terms of the form Px,W
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where x ∈ [a, b]. We may replace some terms of ΠM to get an isomorphic complex

with terms of the form Fx := k HomPoG(x,−) with x ∈ [a, b]. We will also call this

complex ΠM. Define Ix := Dk HomPoG(−, x) = νFx, where D denotes vector space

duality. Clearly, the complex νΠM consists of terms of the form Ix with x ∈ [a, b]. We

want to show that ΠM(b) is acyclic if and only if νΠM(a) is acyclic.

Note that a basis for Ix(a) is {δ(ga≤x,g)

∣∣∣ g ∈ Gb}. We thus have an isomorphism of

k-vector spaces

φx : Fx(b) � (νFx)(a) � Ix(a),

(gx ≤ b, g) 7→ δ(g−1 a≤x,g−1).

Our goal is to show that the isomorphisms φx assemble into a chain isomorphism

ΠM(b) � (νΠM)(a). By the Yoneda lemma, any map Fx → Fy is induced by some

element α ∈ k HomPoG(y, x). Explicitly, the map α∗ : Fx → Fy is given by β 7→ β ◦ α,

where here β ◦ α is multiplication in the category algebra.

For simplicity, assume α = (hy ≤ x, h) in HomPoG(y, x). We now show that the

diagram

Fx(b) Fy(b)

Ix(a) Iy(a)

α∗b

φx φy

(να∗)a

commutes. Note that

να∗ = D HomkPoG(α∗, kP oG) = Dα∗,

where α∗ : HomPoG(−, x)→ HomPoG(−, y) is the map γ 7→ α ◦ γ.

Let’s examine the map (Dα∗)a more carefully. It sends an element δ(ga≤x,g) ∈ Ix(a)

to δ(ga≤x,g) ◦ (α∗)a, which is the k-linear map sending (ka ≤ y, k) ∈ k HomPoG(a, y) to

δ(ga≤x,g)((hy ≤ x, h) ◦ (ka ≤ y, k)) =

1 if k = h−1g

0 otherwise.
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We conclude from this that

(να∗)a(δ(ga≤x,g)) = (Dα∗)a(δ(ga≤x,g)) = δ(h−1ga≤y,h−1g).

On the other hand, we have

φyα
∗
bφ
−1
x (δ(ga≤x,g)) = φyα

∗
b((g−1

x ≤ b, g))

= φy((g−1hy ≤ b, g−1h))

= δ(h−1gy≤b,h−1g).

It follows that (να∗)a = φyα
∗
bφ
−1
x , so the diagram commutes in this case. When α ∈

k HomPoG(y, x) is arbitrary, then α is a k-linear combination of maps of the form (hy ≤

x, h). We then have (να∗)a = φyα
∗
bφ
−1
x in this case because ν, φy and φx are all k-linear.

We conclude from all this that νΠM(a) � ΠM(b), and so νΠM(a) is acyclic because we

assumed that ΠM(b) was acyclic.

We now argue that for all z ≤ a, the complex νΠM(z) is acyclic. This comes from

a statement similar to proposition 5.7: let M(z, a) be a set of coset representatives g ∈

[G/Ga] satisfying z ≤ ga. There is an isomorphism

β :
⊕

g∈M(z,a)

HomPoG(ga, a)→ HomPoG(z, a),

where the component maps βg : HomPoG(ga, a) → HomP oG(z, a) are given by pre-

composition with (ez ≤ ga, e). The proof of this statement is similar to the proof of

proposition 5.7. The “only if” part of (a) is dual, and (a) is proved.

For (b), note that the projectives appearing in the minimal projective resolution

of M have the same labels as those appearing in the minimal projective resolution of

M ↓PoG
[a,b]oGb

because M is induced from [a, b] oGb. Because the Nakayama functor takes

Px,W to Ix,W in both kP oG-mod and k[a, b] oGb-mod, and PPoG
x,W ↓

PoG
[a,b]oGb

� P[a,b]oGb
x,W and

IPoG
x,W ↓PoG

[a,b]oGb
� I[a,b]oGb

x,W , it follows that restriction and the Serre functor commute. A

similar argument shows that (ν−1N) ↓PoG
[a,b]oGb

� ν−1(N ↓PoG
[a,b]oGb

). �
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Chapter 5

Auslander-Reiten triangles and
Auslander-Reiten quivers

We now begin the process of calculating Auslander-Reiten quivers for the bounded

derived category and the module category of some transporter category algebras con-

taining clamped intervals. Recall that Auslander-Reiten triangles are completely deter-

mined by the first or third term. Thus, we refer to an Auslander-Reiten triangle

L→ M → N → L[1]

as the Auslander-Reiten triangle beginning at L or ending in N. We start by recalling

the following, which shows that Auslander-Reiten triangles exist.

Proposition 5.0.1 (Happel [7]). Let A be an algebra, and let M ∈ Db(A) be indecom-

posable. Then the Auslander-Reiten triangle beginning at M exists if and only if M is

isomorphic to a finite complex of injective modules, and the Auslander-Reiten trian-

gle ending at M exists if and only if M is isomorphic to a finite complex of projective

modules.

We now recall the structure of the Auslander-Reiten triangles.

Proposition 5.0.2. Let A be a finite dimensional algebra over a field, and let M ∈ Db(A)
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be indecomposable. Then the Auslander-Reiten triangle ending at M has the form

νM[−1]→ N → M → νM,

and the Auslander-Reiten triangle beginning at M has the form

M → L→ ν−1M[1]→ M[1].

The term N in the first equation is obtained by taking the mapping cone of a mor-

phism M → νM which lies in the socle of the End(M)-module Hom(M, νM).

The morphisms νM[−1] → N and N → M are direct sums of irreducible mor-

phisms, i.e. morphisms f which are neither sections nor retractions, and f = g ◦ h

implies that h is a section or g is a retraction. We define the space IrrC(X,Y) Moreover,

up to reasonable equivalence, every irreducible morphism arises in an Auslander-Reiten

triangle. The commutativity of ν with ↓PoG
[a,b]oGb

allows us to make a concrete connection

between the Auslander-Reiten triangles appearing in kP oG and those appearing in

k[a, b] oGb. For the following result, let τ = ν[−1] denote the Auslander-Reiten trans-

late. The Auslander-Reiten triangles in Db(kP oG) are of the form τN → M → N →

τN[1] where M and N are indecomposable complexes. We assemble the indecompos-

able complexes and irreducible morphisms between them into a quiver, forming the

Auslander-Reiten quiver of the bounded derived category. In this case, the Auslander-

Reiten translate τ makes this quiver into a translation quiver. The following corollary

and the proofs of its parts extend Corollary 2.3 in Diveris, Purin, and Webb [5].

Corollary 5.0.3. Let [a, b] oGb be a clamped subcategory in P oG and let M be a

perfect complex in Db(kP oG) with homology supported on G[a, b), the G-orbits of

[a, b).

1. For any N ∈ Db(kP oG), we have

HomDb(kPoG)(M,N) � HomDb(k[a,b]oGb)(M ↓PoG
[a,b]oGb

,N ↓PoG
[a,b]oGb

)
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2. There is a ring isomorphism

EndDb(kPoG)(M) � EndDb(k[a,b]oGb)(M ↓PoG
[a,b]oGb

).

Via this isomorphism, we have an isomorphism of EndDb(kPoG)(M)-modules

HomDb(kPoG)(M, νM) � HomDb(k[a,b]oGb)(M ↓PoG
[a,b]oGb

, νM ↓PoG
[a,b]oGb

).

3. We have τ(M ↓PoG
[a,b]oGb

) � (τM) ↓PoG
[a,b]oGb

.

4. If M is indecomposable, then the Auslander-Reiten triangle ending at M ↓PoG
[a,b]oGb

is the restriction of the triangle ending at M. The same triangle in Db(k[a, b] oGb)

is also the restriction of the triangle starting at τM.

Proof. 1. The complex M is induced from [a, b] oGb, i.e. M � M ↓PoG
[a,b]oGb

↑PoG
[a,b]oGb

.

Thus we have

HomDb(kPoG)(M,N) � HomDb(kPoG)(M ↓PoG
[a,b]oGb

↑PoG
[a,b]oGb

,N)

� HomDb(k[a,b]oGb)(M ↓PoG
[a,b]oGb

,N ↓PoG
[a,b]oGb

)

by the adjoint property.

2. Both statements follow from (1) and the fact that the isomorphism in the adjunc-

tion is natural in both variables.

3. The functor τ is the composite of ν and a shift, both of which commute with

restriction.

4. The Auslander-Reiten triangle ending in M is computed by taking the mapping

cone of a homomorphism M → νM which lies in the socle of HomDb(kPoG)(M, νM),

regarded as an EndDb(kPoG)(M)-module. By (2), this homomorphism restricts to

a homomorphism in the socle of HomDb(k[a,b]oGb)(M ↓PoG
[a,b]oGb

, νM ↓PoG
[a,b]oGb

). More-

over, EndkPoG(M) is local, so Endk[a,b]oGb(M ↓PoG
[a,b]oGb

) is local and thus M ↓PoG
[a,b]oGb
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is indecomposable. The mapping cone construction also commutes with re-

striction, so τM ↓→ N ↓→ M ↓→ τM[1] ↓ is an Auslander-Reiten triangle

in Db(k[a, b] oGb) and is obtained by restricting the triangle ending in M to

k[a, b] oGb. We note that Auslander-Reiten triangles are completely determined

by their start or end, so the triangle starting at τM is the same as the one ending

at M.

�

Corollary 5.0.3, particularly item (4) in that result, implies that some of the Auslander-

Reiten triangles in Db(k[a, b] oGb) are copied into the Auslander-Reiten quiver of

Db(kP oG).

Corollary 5.0.4. The regions of the Auslander-Reiten quiver of Db(k[a, b] oGb) con-

taining the meshes whose rightmost terms have homology supported on [a, b) and

whose leftmost terms have homology supported on (a, b] are the restrictions of re-

gions in the Auslander-Reiten quiver of Db(kP oG). Said another way, the regions

of the Auslander-Reiten quiver of Db(k[a, b] oGb) with the property above are copied

into the Auslander-Reiten quiver of Db(kP oG) by extending the modules appearing in

those complexes by 0 outside of G[a, b].

Before proceeding with an example, here is a useful lemma we will often use when

calculating transposes of kP oG-module homomorphisms, and its applications go into

the theory of category algebras in general. While this is a straightforward application

of the Yoneda lemma, we were unable to find a reference in the literature.

Lemma 5.0.5. Let C be a category with finitely many morphisms, and let k be a field.

Let Fx = k HomC(x,−) and Ix = Dk HomC(−, x) where D is the k-linear duality functor,

and let ν = Dk HomC(−, kC) denote the Nakayama functor. Then given a kC-module

map − ◦ ϕ : Fx → Fy where ϕ ∈ k HomC(y, x) is the element inducing the homomor-

phism, we have ν(− ◦ ϕ) = D(ϕ ◦ −) after making the identification ν(Fx) � Ix.

Proof. Set Φ = − ◦ ϕ. Applying the functor HomC(−, kC) to

Fx
Φ
→ Fy
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yields the diagram

HomC(Fy, kC)
−◦Φ
→ HomC(Fx, kC).

Now consider the following commutative diagram

HomC(Fy, kC) HomC(Fx, kC)

DIy DIx

−◦Φ

Θy Θx

where the map Θy is the isomorphism in the Yoneda lemma mapping γ ∈ k HomC(−, y)

to − ◦ γ. To describe the bottom map, let γ ∈ k HomC(−, y) = DIy. We then have that

the bottom map takes γ to

Θ−1
x ◦ (− ◦ Φ) ◦ Θy(γ) = Θ−1

x ◦ (− ◦ Φ)(− ◦ γ) = Θ−1
x (− ◦ (ϕ ◦ γ)) = ϕ ◦ γ.

We conclude that the bottom map is φ ◦ −, and the result follows after applying the

duality functor, D, to the bottom map. �

We now proceed with several examples. In these examples, we will calculate a slice

of a component of the Auslander-Reiten quiver.

Definition 5.0.6. Let Γ be a connected translation quiver with translate τ. A slice of Γ

is a connected set of orbit representatives for the action of τ on Γ.

Thus a slice is a fundamental region in Γ for the action of τ.

We note that in some of the literature, e.g. in [9], there is the related concept of a

sectional path. This is any path x0 → · · · → xn in the quiver such that xi , τxi+2 for all

i with 0 ≤ i ≤ n − 2.

Example 5.0.7. Let k be a field with char(k) , 2, and let G = 〈g〉 = C2 be the group of
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order 2. Let
α

x x′

y y′

ω

P =

where the least element is α and the largest is ω. Let G act on P by permuting the two

chains, and consider the transporter category P oG. The category P oG is equivalent

to the full subcategory generated by the objects {α, x, y, ω}, so the category algebra for

the subcategory is Morita equivalent to the category alegbra kP oG. Modules for this

algebra will be written in the form

M =

Mα

Mx

My

Mω

where Mz is a k End(z)-module for z = α, x, y, ω. We start by writing the indecom-

posable projective and the injective P oG modules. When appropriate, denote by k

the trivial module for kG = k End(α) = k End(ω), and let S denote the other simple

kG-module where g acts by multiplication by −1.

We now describe the indecomposable projective modules. There are 6 of these,

one for each simple module, and they are denoted Pα,k, Pα,S , Px, Py, Pω,k, and Pω,s. The

projectives Pα,k, and Pα,S are the indecomposable summands of the representable func-

tor Fα := k Hom(α,−). The module Pα,k is acquired by composition on the right

with (α ≤ α, e) + (α ≤ α, g), and Pα,S is acquired by composition on the right with

(α ≤ α, e) − (α ≤ α, g). The values of these functors at x, y, and ω are all one dimen-

sional. The value of Pα,k(ω) is the k-vector space with basis (α ≤ ω, e) + (α ≤ ω, g),

on which End(ω) acts trivially. The value of Pα,k(ω) is the k-vector space with basis

(α ≤ ω, e) − (α ≤ ω, g), on which (ω ≤ ω, g) ∈ End(ω) acts as multiplication by −1.
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We conclude that Pα,k and Pα,S have the following structures:

Pα,k =

k

k

k

k

Pα,S =

S

k

k

S

.

The projective Px = k Hom(x,−) is representable; Px(x) and Px(y) are one dimensional,

while Px(ω) = span{(x ≤ ω, e), (x ≤ ω, g)} is two dimensional and isomorphic to

k End(ω) as a left k End(ω)-module. Thus, Px(ω) � k ⊕ S as a k End(ω)-module.

Similarly, the module Py(y) is one dimensional and Py(ω) � k ⊕ S as a left k End(ω)-

module. Thus,

Px =

0

k

k

k ⊕ S

Py =

0

0

k

k ⊕ S

.

Finally, the projective modules Pω,k and Pω,S are the simple summands of k Hom(ω,−),

which is two dimensional, so they have the following structures:

Pω,k =

0

0

0

k

Pω,S =

0

0

0

S

.

To calculate the structure of the indecomposable injective modules, we repeat this

process on the opposite category then take the vector space dual. The indecomposable
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injective modules are

Iα,k =

k

0

0

0

Iα,S =

S

0

0

0

Ix =

k ⊕ S

k

0

0

Iy =

k ⊕ S

k

k

0

Iω,k =

k

k

k

k

Iω,S =

S

k

k

S

.

Note that the modules Pα,k and Pα,S are projective and injective. From the construction

of Auslander-Reiten triangles described in [7], the triangles

Iα,k[−1]→ Rad(Pα,k)→ Pα,k → Iα,k,

Iα,S [−1]→ Rad(Pα,S )→ Pα,S → Iα,S ,

Pα,k → Pα,k/Soc(Pα,k)→ Pω,k[1]→ Pα,k[1],

Pα,S → Pα,S /Soc(Pα,S )→ Pω,S [1]→ Pα,S [1]

are all Auslander-Reiten triangles. From the Auslander-Reiten theory for the module

category, there are almost-split sequences

0→ Rad(Pα,k)→ Pα,k ⊕H(Pα,k)→ Pα,k/Soc(Pα,k)→ 0,

0→ Rad(Pα,S )→ Pα,S ⊕H(Pα,S )→ Pα,S /Soc(Pα,S )→ 0,

whereH(M) := Rad(M)/Soc(M) denotes the heart of M. Set Mk = H(Pα,k), and note
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that

H(Pα,k) = H(Pα,S ) =

0

k

k

0

.

Because the socle quotients of Pα,k and Pα,S have projective dimension 1 and the radi-

cals have injective dimension 1, it follows from 4.7 in [7] that we have Auslander-Reiten

triangles

Rad(Pα,k)→ Pα,k ⊕ Mk → Pα,k/Soc(Pα,k)→ Rad(Pα,k)[1],

Rad(Pα,S )→ Pα,S ⊕ Mk → Pα,S /Soc(Pα,S )→ Rad(Pα,S )[1].

To get another Auslander-Reiten triangle, we will use the clamped interval [x, y].

Note that in the Auslander-Reiten triangle

0

k
→

k

k
→

k

0
→

0

k
[1]

in Db(k[x, y]), the left term has homology supported on [x, y) and the right term has

homology supported on (x, y]. By Corollary 5.0.4, this triangle lifts to the Auslander-

Reiten triangle
0

0

k

0

→ Mk →

0

k

0

0

→

0

0

k

0

[1]

in Db(kP oG).

We claim to have a complete column of modules in this component of the Auslander-

Reiten quiver of Db(kP oG), consisting of Pα,k, Pα,S , and Mk. We have already cal-

culated the meshes ending in Pα,k and Pα,S and the meshes beginning with Rad Pα,k

and Rad Pα,S . It remains to show that the mesh ending with Mk has middle term
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S y ⊕ Rad Pα,k ⊕ Rad Pα,S . By direct calculation, we have

νMk �ν((Pω,k ⊕ Pω,S )→ Px)

=(Iω,k ⊕ Iω,S )→ Ix

The map in the complex (Pω,k ⊕ Pω,S → Px) is injective, so using the fact that Pω,k ⊕

Pω,S = k Hom(ω,−) is representable, we can assume that the map is − ◦ (x ≤ ω, e). By

Lemma 5.0.5, applying ν to this map gives D((x ≤ ω, e) ◦−), which is surjective. Thus,

τ(Mk) is a module with structure

τ(Mk) =

0

k

k2

k ⊕ S

.

By additivity, the terms S y,Rad Pα,k, and Rad Pα,S are the only ones in the mapping

cone of Mk → νMk. This implies that the column consisting of the terms Pα,k, Pα,S , and

Mk is complete.

We conclude that the portion of the quiver consisting of Pα,k,Rad Pα,k, Pα,S ,Rad Pα,S ,Mk,

and S y is a slice for the quiver. It is a Dynkin quiver of type E6, so we conclude by [13]

Theorem 4.15 that this quiver has one component.

Example 5.0.8. We now generalize this example by examining the case where we ex-

tend the clamped intervals [x, y] and [x′, y′] to chains of length n:

α

x x′

...
...

y y′

ω

P =
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Pα,k

Pα,S

Mk

Rad Pα,k

Rad Pα,S

S y

Iα,k[−1]

Iα,S [−1]

νMk[−1]

Pα,k/Soc Pα,k

Pα,S /Soc Pα,S

S x

Pω,k[1]

Pω,S [1]

ν−1Mk[1]

· · · · · ·

Figure 5.1: A portion of the Auslander-Reiten quiver in Example 5.0.7.

Pα,k

Pα,S

Mk

Rad Pα,k

Rad Pα,S

S y

Figure 5.2: A slice of the Auslander-Reiten quiver. It is of type E6.
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Here, G = C2 = 〈g〉 acts by permuting the two chains, as before. There are n + 4 inde-

composable projective modules, up to isomorphism, namely Pα,k, Pα,S , Pω,k, Pω,S , and

Pz for each z ∈ [x, y]. Likewise, there are n + 4 isomorphism classes of indecomposable

injective modules, labelled by the same symbols. Note that in this example, Pα,k = Iω,k
and Pα,S = Iω,S are projective-injective.

The calculation for the Auslander-Reiten triangles

Iα,k[−1]→ Rad(Pα,k)→ Pα,k → Iα,k,

Iα,S [−1]→ Rad(Pα,S )→ Pα,S → Iα,S ,

Pα,k → Pα,k/Soc(Pα,k)→ Pω,k[1]→ Pα,k[1],

Pα,S → Pα,S /Soc(Pα,S )→ Pω,S [1]→ Pα,S [1]

is essentially the same as in the previous example. Similarly,

0→ Rad(Pα,k)→ Pα,k ⊕H(Pα,k)→ Pα,k/Soc(Pα,k)→ 0,

0→ Rad(Pα,S )→ Pα,S ⊕H(Pα,S )→ Pα,S /Soc(Pα,S )→ 0,

are Auslander-Reiten sequences in the module category. Note thatH(Pα,k) = H(Pα,S ) =

k[x, y]. By 4.7 in [7], these sequences lift to Auslander-Reiten triangles

Rad(Pα,k)→ Pα,k ⊕ k[x, y]→ Pα,k/Soc(Pα,k)→ Rad(Pα,k)[1],

Rad(Pα,S )→ Pα,S ⊕ k[x, y]→ Pα,S /Soc(Pα,S )→ Rad(Pα,S )[1].

The interval [x, y] is clamped, and the algebra k[x, y] is hereditary because it is

isomorphic to the path algebra of a quiver of type An. Because of this, every k[x, y]-

module has projective dimension ≤ 1 and injective dimension ≤ 1. Therefore by 4.7

in [7], every Auslander-Reiten sequence in the module category k[x, y]−mod lifts to

an Auslander-Reiten triangle in Db(k[x, y]). Also, every Auslander-Reiten sequence

begins with a module supported on (x, y] and ends with a module supported on [x, y),
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Pα,k

Pα,S

k[x, y]

H(k[x, y])

Rad Pα,k

Rad Pα,S

Rad k[x, y]

Iα,k[−1]

Iα,S [−1]

νk[x, y][−1]

Pα,k/Soc Pα,k

Pα,S /Soc Pα,S

k[x, y]/Soc k[x, y]

Pω,k[1]

Pω,S [1]

ν−1k[x, y][1]

· · · · · ·

. .
.

...

. . .

Figure 5.3: A portion of the Auslander-Reiten quiver in example 9.5. The triangle
consists of the complexes in the Auslander-Reiten quiver for Db(k[x, y]).

so by Corollary 5.0.4 the entire Auslander-Reiten quiver of k[x, y]-mod is copied into

the Auslander-Reiten quiver of Db(kP oG).

The Auslander-Reiten triangles at the bottom of Db(k[x, y]) are complete, so they

are also complete in Db(kP oG). When n = 2, the tree class is Dynkin of type E6.

When n ≥ 3 the tree class is not of Dynkin type.

Example 5.0.9. For this example, let k and G be as before, and let P be the poset

α

x x′

z v z′ v′

y y′

ω
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Pα,k

Pα,S

k[x, y]

H(k[x, y])

Rad Pα,k

Rad Pα,S

Rad k[x, y]

...

Figure 5.4: A slice of the AR quiver in example 9.5. For n ≥ 3 the slice is not of Dynkin
type.

where G acts on P by switching the two diamonds. We will calculate the Auslander-

Reiten quiver of Db(k[x, y]) explicitly. We have the Auslander-Reiten triangles

S x[−1]→ Rad k[x, y]→ k[x, y]→ S x,

k[x, y]→ k[x, y]/S y → S y[1]→ k[x, y][1],

Rad k[x, y]→ k[x, y] ⊕ S z ⊕ S v → k[x, y]/S y.

The portion of the quiver consisting of the modules k[x, y],Rad k[x, y], S z and S v

form a slice for the Auslander-Reiten quiver of Db(k[x, y]), so we can conclude that the

Auslander-Reiten quiver of k[x, y] has tree class D4.

The Auslander-Reiten triangles above get lifted to Auslander-Reiten triangles in

Db(kP oG). When we add the modules Pα,k,Rad Pα,k, Pα,S , and Rad Pα,S , the result is

a slice for this component of the quiver. Note that the number of arrows between any

pair of modules is at most one.

Example 5.0.10. For this example, let k be a field of characteristic 0, let G be the

52



Pα,k

Pα,S

k[x, y]

S z

S v

Rad Pα,k

Rad Pα,S

Rad k[x, y]

• •

• •

•

•

• •

Figure 5.5: A slice of a component of the Auslander-Reiten quiver in Example 5.0.10
and a drawing of the underlying graph of a slice.

symmetric group on three elements, and let P be the poset

α

x • • • • •

y • • • • •

ω

where G acts on the six chains regularly. Let k denote the trivial kG-module, let S be

the sign module, and let W be the two-dimensional simple kG-module. The tree class

of the Auslander-Reiten quiver of Db(k[x, y]) is A2, and a slice consists of the modules

S x and k[x, y].

To see how this slice contributes to a slice for the Auslander-Reiten quiver for

Db(kP oG), note that we have three projective-injective kP oG-modules, namely Pα,k, Pα,S ,

53



and Pα,W . We highlight that

Pα,W =

W

k2

k2

W

.

As in previous examples, we have the following Auslander-Reiten triangles:

Iα,∗[−1]→ Rad(Pα,∗)→ Pα,∗ → Iα,∗,

Pα,∗ → Pα,∗/Soc(Pα,∗)→ Pω,∗[1]→ Pα,∗[1],

where ∗ is k, S , or W. We also have the triangles

Rad(Pα,k)→ Pα,k ⊕ k[x, y]→ Pα,k/Soc(Pα,k)→ Rad(Pα,k)[1],

Rad(Pα,S )→ Pα,S ⊕ k[x, y]→ Pα,S /Soc(Pα,S )→ Rad(Pα,S )[1],

Rad(Pα,W)→ Pα,W ⊕ (k[x, y])2 → Pα,W/Soc(Pα,W)→ Rad(Pα,W)[1].

Notice that dimk(Irr(Rad(Pα,W), k[x, y])) = 2, so that a slice for the Auslander-Reiten

quiver has a double edge.
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Pα,k

Pα,S

Pα,S

k[x, y]

Rad Pα,k

Rad Pα,S

S y

Rad Pα,W

• • •

• • •

•

•

Figure 5.6: A slice of a component of the Auslander-Reiten quiver in example 5.0.11
and a drawing of the tree class.
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Chapter 6

The class ICT

As in [5], we define a class of transporter category for which we my iteratively construct

the tree class of its bounded derived category. We start by recalling the definition of the

class IC of posets. To avoid confusion later on, we will rename this class ICP.

Definition 6.0.1. Let ICP0 be the class containing only the singleton poset, •. We

now define ICPn, n ≥ 1 as the class of posets containing a unique maximal element ω

and a unique minimal element α such that the open interval (α, ω) is a disjoint union of

finitely many (and possibly zero) posets from the class ICPn−1. We then define

ICP =

∞⋃
n=0

ICPn

We can adjust the definition to form a class ICT of transporter categories. Recall

that the base poset of the transporter category P oG is the poset P

Definition 6.0.2. Let ICT 0 be the class containing the transporter categories with a

single object, • o G, i.e. the class of finite groups. We now define ICT n, n ≥ 1 as

the class of transporter categories P oG whose base poset P contains a unique maxi-

mal element ω and a unique minimal element α such that the transporter subcategory
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(α, ω) o G is equivalent to a disjoint union of finitely many (and possibly zero) trans-

porter categories from the class ICT n−1. We then define

ICT =

∞⋃
n=0

ICT n.

We can always construct a poset in ICP by taking a disjoint union of posets in

ICP and adding a minimal element and a maximal element. The same is not true for

transporter categories in ICT . For example, we can take the poset

α α′

x a

y b

ω ω′ ,

and let G = C2 act on this poset by switching α and α′, switching ω and ω′, and fixing

the other objects. The corresponding transporter category is equivalent to its skeleton:

α

x a

y b

ω

C2 C2

C2 C2

This is not in the class ICT . Indeed, this is not equivalent to any transporter category

with unique minimal and maximal elements because the stabilizers of x and y are not

subgroups of the stabilizers of α and ω, as this next lemma shows.

Lemma 6.0.3. Let T be an EI-category with a unique minimal element α and a unique

maximal elementωwith respect to the preorder≤where x ≤ y if and only if HomT (x, y) ,

57



∅. Suppose that T is equivalent to a finite transporter category P o G where P has

a unique minimal element α′ and a unique maximal element ω′. Then EndT (α) �

EndT (ω) � G, and for all x ∈ T, we have that EndT (x) is isomorphic to a subgroup of

EndT (α).

Proof. We first show that this statement holds when T = P oG. Because every auto-

morphism ofP fixes α′ andω′, we have Gα′ = Gω′ = G, so EndPoG(α′) � EndPoG(ω′) �

G as groups. If x ∈ P oG, then EndPoG(x) � Gx ≤ G � EndPoG(α′).

Now let’s suppose T is any EI category satisfying the conditions of the lemma. We

first show that any equivalence f : T → P oG satisfies f (α) = α′ and f (ω) = ω′.

Because f is a full and faithful functor, it follows that for any x ∈ T with x , α, we

have HomPoG( f (x), f (α)) � HomPoG(x, α) = ∅. Because f is essentially surjective, we

have HomPoG(y, f (α)) = ∅, and it follows that f (α) is a minimal element, so we must

have f (α) = α′. Similarly, we must have f (ω) = ω′.

We now have EndT (α) � EndPoG(α′) � G, and EndT (ω) � EndPoG(ω′) � G.

Moreover, for any x ∈ T , we have EndT (x) � EndPoG( f (x)) � G f (x) ≤ G. This proves

the lemma. �

6.1 Transporter categories up to equivalence

We aim to show that the transporter categories in ICT can be easily identified by their

base poset. However, the definition of a transporter category in ICT n requires only

that the interval (α, ω) be equivalent to a transporter category in ICT n−1. Indeed, let’s

revisit the transporter category whose base poset is the C2-poset

α

x x′

y y′

ω

P =
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where the nonidentity element in C2 acts by switching the two chains. The transporter

subcategory (α, ω) o G is not in ICT because the base poset has two maximal and

minimal elements. However, it is equivalent to the transporter category [x, y] o {e},

which is in ICT . As we saw earlier, this poset has the clamping property we want, so

we would like to include it.

We will start by analyzing transporter categories of the form P oG where P has a

unique minimal element, α. We will show that the base poset P can be recovered from

the information contained in a skeletal subcategory. We could just as easily restrict

to transporter categories whose base poset has a unique maximal element ω and get a

similar result.

Lemma 6.1.1. LetP oG be a finite transporter category whereP has a unique minimal

element, α. Let C be a skeletal subcategory of P oG.

1. The set

Q = {(x, [φ])
∣∣∣ x ∈ ObC, φ ∈

[
EndC(x) \ HomC(α, x)

]
}

where [φ] denotes the orbit class of φ ∈ HomC(α, x) under the left action of

EndC(x) induced by composition, forms a poset where (x, [φ]) ≤ (y, [ψ]) if and

only if ψ = γ ◦ φ for some γ ∈ HomC(x, y).

2. The map

Q → P,

(x, [(α ≤ x, g)]) 7→ g−1
x

is a G-poset isomorphism where the action on Q is

g(x, [(α ≤ x, h)]) = (x, [(α ≤ x, hg−1)]).

Proof. 1. We show that the relation on Q is reflexive, antisymmetric, and transitive.

If (x, [φ]) = (x, [ψ]), then there is an element γ ∈ EndC(x) such that ψ = γ ◦ φ.

This is the condition (x, [φ]) ≤ (x, [ψ]).
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To show antisymmetry, suppose that (x, [φ]) ≤ (y, [ψ]) and (y, [ψ]) ≤ (x, [φ]).

Then for some γ1 ∈ HomC(x, y) and γ2 ∈ HomC(y, x) we have ψ = γ1 ◦ φ and

φ = γ2◦ψ. Then γ2◦γ1 ∈ EndC(x) and γ1◦γ2 ∈ EndC(y), so they are isomorphisms

because C is an EI-category. This implies that γ1 and γ2 are isomorphisms, so

x = y because C is skeletal. This implies that φ and ψ differ by an element in

EndC(x), so [φ] = [ψ].

For transitivity, suppose (x, [φ]) ≤ (y, [ψ]) and (y, [ψ]) ≤ (z, [θ]). Then there exists

γ1 ∈ HomC(x, y) such that ψ = γ1 ◦ φ, and there exists γ2 ∈ HomC(y, z) such that

θ = γ2 ◦ ψ. Then θ = (γ2 ◦ γ1) ◦ φ, so (x, [φ]) ≤ (z, [θ]).

2. For this part of the proof, we will write each morphism originating at α as (α ≤

−, g) for some g ∈ G. We first show that the map

f : Q → P,

(x, [(α ≤ x, g)]) 7→ g−1
x

is well-defined. We have (x, [(α ≤ x, g)]) = (x, [(α ≤ x, h)]) if and only if h = kg

for some k ∈ Gx. Then f ((x, [(α ≤ x, g)])) = g−1
x = g−1k−1

x = f ((x, [(α ≤ x, h)])),

so f is well-defined.

We now show that f is a G-poset homomorphism. Suppose (x, [(α ≤ x, g)]) ≤

(y, [(α ≤ y, h)]). Then (α ≤ y, h) = (kx ≤ y, k) ◦ (α ≤ x, g) for some k ∈ G, so
kx ≤ y and h = kg. Thus, g−1

x = h−1kx ≤ h−1
y, i.e. f ((x, [(α ≤ x, g)])) ≤ f ((y, [(α ≤

y, h)])). Moreover

f (g(x, [(α ≤ x, h)])) = f ((x, [(α ≤ x, hg−1)])) = gh−1
x = g f ((x, [(α ≤ x, h)])),

so f is a G-poset homomorphism.

We now show that f is an isomorphism. Suppose f ((x, [(α ≤ x, g)])) = f ((y, [(α ≤

y, h)])). Then g−1
x = h−1

y, so x and y are in the same G-orbit in P. This means

that x = y because there is only one G-orbit representative for each orbit in ObC.

60



Now g−1
x = h−1

x implies that h−1 = g−1k for some k ∈ Gx. Thus (x, [(α ≤ x, g)]) =

(y, [(α ≤ y, h)]), so f is one-to-one.

Surjectivity comes from the fact that each object of P is a conjugate of an object

in C. Thus, f is an isomorphism.

�

Notice that in the previous lemma, we can also interpret the G-action on Q as an

EndC(α)-action via
θ(x, [γ]) = (x, [γ ◦ θ−1]).

Thus, the structure of Q as a G-poset only relies on the structure of C. This fact is

important for the following proposition.

Proposition 6.1.2. Let P be a finite G-poset and let R be finite H-poset, each with a

unique minimal element, α ∈ P and α′ ∈ R. Then P oG ' R o H implies that G � H

and P � R as G-posets where G acts on R via the isomorphism with H. Furthermore,

this implies P oG � R o H.

Proof. Observe that P oG and R o H both have unique ‘minimal elements’, namely

objects x such that Hom(y, x) , ∅ implies y � x. With our conventions of notation,

these ‘minimal elements’ are α and α′. Any equivalence sends a minimal element in

this sense to a minimal element, and we have EndPoG(α) � G and EndRoH(α′) � H.

The equivalence then induces an isomorphism EndPoG(α) � EndRoH(α′), so G � H.

Because the two transporter categories are equivalent, they are equivalent to a skele-

tal category C, which is unique up to isomorphism. We can then construct the G-poset

Q as we did in part 1 in the previous lemma, and this relies only on the structure

of C. Part 2 of that lemma implies that P � Q � R as G-posets, and this implies

P oG � Q o H. �

The next step of this process is to analyze transporter categories whose base posets

have multiple connected components and are equivalent to a transporter category whose

base poset has only one connected component. We start with some easy lemmas about

groups acting on posets with multiple connected components.

61



Lemma 6.1.3. Let P = P1t· · ·tPn be a finite poset with n connected components. Let

φ be an automorphism of P such that there exists an element x ∈ Pi where φ(x) ∈ P j

with j , i . Then φ(Pi) ⊆ P j, and φ|Pi : Pi → P j is an isomorphism.

Proof. Any automorphism of P permutes the connected components, so φ(Pi) ⊆ P j.

The map φ|Pi has inverse φ−1|P j , so φ|Pi is an isomorphism. �

Lemma 6.1.4. Let P = P1 t · · · t Pn be a finite G-poset with n connected components

with G permuting the components transitively. Let Gi, i = 1, 2, . . . , n denote the setwise

stabilizer of Pi. Then Pi oGi � P j oG j for all i and j. Moreover, P oG ' Pi oGi for

any i.

Proof. Because G permutes the connected components transitively, this means that

there are automorphisms of P which send each component to any other. By the previ-

ous lemma, this implies that Pi � P j for all i, j. Moreover, if g ∈ G maps Pi to P j, then

G j = gGi. This induces an isomorphism of transporter categories

f : Pi oGi → P j oG j,

(x ≤ y, h) 7→ (gx ≤ gy, gh).

The equivalence P oG ' Pi o Gi for any i comes from the fact that Pi o Gi is a

full subcategory of P oG containing a representative of every isomorphism class of

objects in P oG. Any such subcategory is equivalent to the whole category because

the inclusion functor Pi oGi ↪→ P oG is full, faithful, and essentially surjective. �

Proposition 6.1.5. Let P oG be a finite transporter category whose base poset has n

components, and suppose P oG ' Q o H where Q is a poset with a unique minimal

element α. Then each component of P is isomorphic to Q, and the setwise stabilizers of

each component are isomorphic to H.

Proof. Under an equivalence of categories f : P oG → Q o H, the minimal elements

of P oG are all sent to the unique minimal element of Q o H, and f (x) = f (y) implies

x � y. This implies that the minimal elements of P oG are isomorphic to each other.
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Objects x, y of P oG are isomorphic if and only if there exists g ∈ G satisfying gx = y.

We deduce that all of the minimal elements of P are in the same G orbit.

We deduce that the minimal elements in each connected component of P are in the

same G orbit and that G permutes the connected components of P transitively, which

are thus all isomorphic, say to some component R. By Lemma 6.1.4 P oG ' R oGR,

where GR denotes the setwise stabilizer ofR. Now we have an equivalence of categories

f : R oGR → Q o H where Q has a unique minimal element.

We now argue that R also has a unique minimal element. Suppose for the sake of

contradiction that α1, . . . , αk are the distinct minimal elements of Rwith k > 1. Because

these minimal elements are in the same connected component, there exists an element

x ∈ R such that αi ≤ x and α j ≤ x with i , j. The elements αi and α j are in the

same GR-orbit, so in R oGR, the set HomRoGR(αi, x) has size at least 2|End(αi)| = 2|H|.

However, |HomQoH( f (αi), f (x)| = |H|, so the functor f cannot be faithful, contradicting

the fact that f is an equivalence. It follows that R has a unique minimal element.

We now have an equivalence of transporter categories R oGR ' Q o H where both

R and Q have a unique minimal element. By Proposition 6.1.2, this implies that R � Q

as posets and GR � H. In particular, each component of P is isomorphic to Q. �

6.2 An alternative formulation of ICT

We can now identify transporter categories in the class ICT as follows.

Proposition 6.2.1. The transporter categories of type ICT are precisely those trans-

porter categories whose base poset is in the class ICP.

Proof. We prove this claim by induction, showing, for all n, that the transporter cate-

gories of type ICT n are those transporter categories whose base poset is in the class

ICPn. The class ICT 0 is evidently the same as the class of transporter categories

whose base poset is a point. Now let P oG be a transporter category in ICT n. Then

P oG has a unique minimal element α, a unique maximal element ω, and the interval

(α, ω) is a disjoint union of transporter categories equivalent to transporter categories
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in ICT n−1. Write (α, ω) =
⋃k

i=1Pi o Gi where Gi is the setwise stabilizer of Pi. By

Proposition 6.1.5, we for each i that the base poset Pi consists of a disjoint union of

copies of some poset Qi where Qi oGQi is in ICT n−1. By the induction hypothesis, the

poset Qi is in ICPn−1. We conclude that P is in the class ICP. �

We now want to establish the existence of various Auslander-Reiten triangles in

Db(kP oG). We will assume throughout this section that P has a unique minimal

element α and a unique maximal element ω. To start, we identify some projective-

injective objects in kP oG-mod. Recall that an indecomposable projective kP oG-

module can be written as Px,W where x ∈ P and W is a simple k End(x)-module. This

is the projective cover of the module S x,W whose support is x and S x,W(x) � W as

a k End(x)-module. Similarly, the indecomposable injective modules are of the form

Ix,W , which is the injective envelope of S x,W . We start with a lemma.

Lemma 6.2.2. Let G be a finite group and let P be a finite G-poset. Let k be any field.

Then the functors ↑PoG
P

and ⇑PoG
P

are naturally isomorphic.

Using this lemma, we can show the following:

Proposition 6.2.3. Suppose P is a G-poset as above, and suppose that P has a unique

minimal element α and a unique maximal element ω. Then for all simple kG-modules

W, we have an isomorphism of kP oG-modules Pα,W � Iω,W .

Proof. We first show that there is an isomorphism of functors k HomPoG(α,−) � Dk HomPoG(−, ω),

where D denotes the vector space duality. First note that there is an isomorphism of kP-

modules Pα � Iω. Moreover,

Pα ↑
PoG
P

= kP1α ⊗kP (kP oG) = kP ⊗kP 1αkP oG � k HomPoG(α,−).

By the lemma and the fact that PPα � IPω we also have

Pα ↑
PoG
P

� Iω ⇑PoG
P

= Ik{ω}
ω ⇑P

{ω}⇑
PoG
P

� Ik{ω}
ω ⇑

{ω}oG
{ω}
⇑PoG
{ω}oG� I{ω}oG

ω ⇑PoG
{ω}oG .
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The term I{ω}oG
ω ⇑PoG

{ω}oG is an injective module coinduced from a full subcategory, so it

must be an injective kP oG-module. It is of the form Iω,W because it is coinduced from

a module of that form. It takes the value kG on ω since k HomPoG(α, ω) � kG and

I{ω}oG
ω ⇑PoG

{ω}oG� k HomPoG(α, ω), so we conclude that I{ω}oG
ω ⇑PoG

{ω}oG� Dk HomPoG(−, ω).

Putting it all together, we have k HomPoG(α, ω) � Dk HomPoG(−, ω).

We now show that this isomorphism is additive. Let eW ∈ kG be a primitive idem-

potent corresponding to the simple module W, and identify eW with the element of

k End(α). In this case, we have k(P oG)eW = k HomPoG(α,−)eW = Pα,W . Define eW to

be the image of eW under the isomorphism

ϕ : EndPoG(α)→ EndPoG(ω),

(gα ≤ α, g) 7→ (g−1
ω ≤ ω, g−1).

Then we have

Pα,W = (k HomPoG(α,−))eW

� (Dk HomPoG(−, ω))eW

= D(eW(k HomPoG(−, ω)))

= Iω,W .

�

Proposition 6.2.3 identifies a collection of projective-injective modules in kP oG.

Over any field, this means that every projective generated at the minimal element is

injective.

We now prove that certain Auslander-Reiten triangles always exist, and some others

exist in the case where we have a clamped interval.

Proposition 6.2.4. Let P oG be a transporter category such that P has a unique min-

imal element α and a unique maximal element ω. Let k be a field of characteristic 0,

and let W be a simple kG-module. Then in Db(kP oG), there are Auslander-Reiten
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triangles

Iα,W[−1]→ Rad(Pα,W)→ Pα,W → Iα,W ,

Pα,W → Pα,W/Soc(Pα,W)→ Pω,W[1]→ Pα,W[1],

and

Rad(Pα,W)→ Pα,W ⊕H(Pα,W)→ Pα,W/Soc(Pα,W)→ Rad(Pα,W)[1],

whereH(M) := Rad(M)/Soc(M) denotes the heart of M.

Proof. We compute the first triangle by taking a nonzero morphism lying in the socle of

Hom(Pα,W , Iα,W) and computing its mapping cone. The morphism Pα,W → Iα,W taking

the simple top isomorphically to the simple socle (i.e. all of Iα,W) fulfills this require-

ment. The mapping cone is isomorphic to Rad(Pα,W)[1] in Db(kP oG), so the middle

term of this triangle is Rad(Pα,W). Note that the radical is indeed indecomposable be-

cause it has a simple socle.

For the second triangle, we must compute the mapping cone of the map Pω,S [1] →

Pα,W[1] which is an injection into the simple socle of Pα,W[1]. The mapping cone is

isomorphic to Pα,W/Soc(Pα,W)[1] in Db(kP oG), so the middle term of the triangle is

Pα,W/Soc(Pα,W).

For the third triangle, note that the short exact sequence

0→ Rad(Pα,W)→ Pα,W ⊕H(Pα,W)→ Pα,W/Soc(Pα,W)→ 0

is an Auslander-Reiten sequence in A-mod. Moreover, the end term, Pα,W/Soc(Pα,W)

has projective dimension 1 and the beginning term Rad(Pα,W) has injective dimension

1. Thus, by 4.7 in [7], the triangle

Rad(Pα,W)→ Pα,W ⊕H(Pα,W)→ Pα,W/Soc(Pα,W)→ Rad(Pα,W)[1]

is an Auslander-Reiten triangle. �

The next result occurs in the case where we have a clamped interval in the poset.
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Proposition 6.2.5. Assume that we have the same conditions as in the previous propo-

sition, and assume that [a, z] is a clamped interval such that a covers α and ω covers z.

For a simple kGz-module V, define the kP oG-module MV := Pa,V/Soc(Pa,V), and let

NV = νMV and LV = ν−1MV . Then in Db(kP oG) we have Auslander-Reiten triangles

NV[−1]→ Rad(Pα,V↑G
Gz

) ⊕ Rad MV → MV → NV ,

and

MV → MV/Soc(MV) ⊕ Pα,V↑G
Gz
/Soc(Pα,V↑G

Gz
)→ LV[1]→ MV[1].

Note that the term Pα,V↑G
Gz

decomposes as Pα,V↑G
Gz

=
⊕

PnV
α,W where the sum ranges

over the simple kG-modules W appearing as a summand of V ↑G
Gz

, and nW is the multi-

plicity of W in V ↑G
Gz

.

Proof. We start by calculating NV as a complex of injective modules. The term MV

has projective cover Pa,V → MV , and the kernel of this cover is Soc(Pa,V). The socle

of Pa,V is supported only on ω, so it is projective, and Soc(Pa,V)(ω) � V ↑G
Gz

as a

kG-module. We conclude that MV is isomorphic to the complex Pω,V↑G
Gz
→ Pa,V in

Db(kP oG), where the rightmost term is in homological degree 0. Let γ be the map

appearing between the terms in this complex.

Applying the Nakayama functor, we see that NV � (Iω,V↑G
Gz
→ Ia,V), where the right-

most term is in homological degree 0. The map in this complex is ν(γ) = D HomkPoG(γ, kP oG)

where D denotes the vector space dual. Because coker(γ) � MV is 0 on ω, it follows

that D HomkPoG(coker(γ), kP oG) = 0 because any nonzero map must be nonzero on

Soc(kP oG), which is supported only on ω. this implies that applying ν to the short

exact sequence

0→ Pω,V↑G
Gz

γ
→ Pa,V → MV → 0

yields the exact sequence

Iω,V↑G
Gz

ν(γ)
→ Ia,V → 0.

We conclude from this that ν(γ) is surjective, so NV � ker(ν(γ))[1].

Because γ is injective and ν(γ) is surjective, it follows that every map of complexes
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(Pω,V↑G
Gb

Pa,V)

(Iω,V↑G
Gb

Ia,V)

γ

φ0 φ1

ν(γ)

yields a mapping cone concentrated in degree 1 with the same composition factors as

any other mapping cone. The mapping cone would then have the same composition

factors as NV[−1] ⊕ MV . Denote by Cφ the mapping cone of φ where φ lies in the socle

of the Hom-space Hom(NV[−1],MV) under the action of EndDb(kPoG)(MV).

We now identify the summands of H1(Cφ). There is an irreducible morphism Rad(MV)→

MV in Db(kP oG) because this morphism lies in the Auslander-Reiten quiver of Db(k[a, z]o

Gz) where the left hand term has homology supported on (a, z] and this region is copies

into the Auslander-Reiten quiver of Db(kP oG) by Corollary 5.0.4. Thus Rad(MV) is a

summand of H1(Cφ).

By Propostion 6.2.4, there is an Auslander-Reiten triangle

Rad(Pα,W)→ Pα,W ⊕H(Pα,W)→ Pα,W/Soc(Pα,W)→ Rad(Pα,W)[1]

for each simple kG-module W. We claim that if the kGz-module S is a summand of

W ↓G
Gz

with multiplicity n, then MS is a summand ofH(Pα,W) with multiplicity n. First

we consider k Hom(a,−)/Soc(k Hom(a,−)) and H(k Hom(α,−)). Let g1, . . . , gn be a

right transversal of Gz in G. Then for each i ∈ {1, . . . n}, there is a split monomorphism

of kP oGz-modules

φi : k Hom(a,−)/Soc(k Hom(a,−)) ↪→ H(k Hom(α,−)) ↓PoG
PoGz

,

(a ≤ x, g) 7→ (α ≤ x, ggi).

These split monomorphisms have images intersecting in 0, and
⊕

i φi is surjective.

Now let eS =
∑

g∈Gz
cgg ∈ kGz be an idempotent corresponding to S , and if γ ∈ P, then

let (γ, eS ) =
∑

g∈Gz
(γ, cgg). Then these homomorphisms preserve right multiplication

by (1a, eS ).
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Now suppose S is a summand of W ↓G
Gz

occurring with multiplicity n. If eW is an

idempotent in kG corresponding to W, then we have eW =
∑n

i=1 eS i + f where f is an

idempotent and kGzeS i � S as a kGz-module for each i. Thus,

H(k Hom(α,−)) ↓PoG
PoGz

(α ≤ α, eV) � Pα,W ↓
PoG
PoGz

contains Pa,S with multiplicity n.

Now this implies that there are n irreducible morphisms from Rad(Pα,W) to MS

whenever S is a summand of W ↓G
Gz

. Thus, the term Rad(Pα,W′) is a summand of

H1(Cφ), where

W ′ =
⊕

W

Wdim k HomkGz (S ,W↓G
Gz

)

and the sum is taken over those simple kG-modules for which S is a summand of

W ↓G
Gz

. By Frobenius reciprocity, there is an equality dim k HomkGz(S ,W ↓G
Gz

) =

dim k HomkG(S ↑G
Gz
,W), which counts the multiplicity of W in S ↑G

Gz
because W is

simple. Then the term W ′ becomes

W ′ =
⊕

W

Wdim k HomkG(W↑G
Gz
,S )

where the sum is taken over those simple kG-modules which appear as a summand of

S ↑G
Gz

. From this we see that W ′ = S ↑G
Gz

, so Rad(Pα,V↑G
Gz

) is a summand of H1(Cφ).

Finally, we claim that Rad(Pα,V↑G
Gz

) and Rad MV are the only nonzero summands of

H1(Cφ). The value of H1(Cφ) at an object x is the same as the value of NV ⊕ MV at x.

By Proposition 2.3.4, these values are

NV ⊕ MV(x) =



0 if x = α,

V ↑G
Gz
↓G

Gz
if x = a,

V ↑G
Gz
↓G

Gx
⊕V ↓Gz

Gx
if a < x ≤ z,

V ↑G
Gz

if x = ω.
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These are precisely the values that we find in Rad(Pα,V↑G
Gz

) ⊕ Rad(MV), so we can con-

clude that this term equals H1(Cφ). This concludes the calculation of the first Auslander-

Reiten triangle.

For the second triangle

MV → MV/Soc(MV) ⊕ Pα,V↑G
Gz
/Soc(Pα,V↑G

Gz
)→ LV[1]→ MV[1],

we can get the middle term from the previous triangle by applying τ. Let θ ∈

Hom(LV ,MV) be a homomorphism in the socle of the Hom-space, and let Cθ be the

mapping cone of θ. By properties of irreducible morphisms and the Auslander-Reiten

translate, we have dimk Irr(MV , I) = dimk Irr(νI,MV) for each indecomposable complex

I in Db(kP oG). Thus, the terms of Cθ are precisely those terms appearing in Cφ with

the inverse Auslander-Reiten translate applied, i.e.

Cθ =τ−1(Cφ)

=τ−1((Rad(Pα,V↑G
Gz

) ⊕ Rad(MV))[−1])

=Pα,V↑G
Gz
/Soc(Pα,V↑G

Gz
) ⊕ MV/Soc(MV)[−1].

After factoring in the shift functor, we get the second triangle.

�

The triangles in Propositions 6.2.4 and 6.2.5 show how MV connects to the rest of

the Auslander-Reiten quiver of Db(kP oG). We will use this information to iteratively

construct the tree class of a component of the Auslander-Reiten quiver of Db(kP oG)

where P oG ∈ ICT . First, we will introduce a technical hypothesis which can apply

to arbitrary transporter categories. This hypothesis is analogous to Hypothesis 4.2 in

[5].

Hypothesis 6.2.6. Suppose we are given a transporter category P oG and a field k.

The base poset P of P oG has a unique minimal element α and a unique maximal ele-

ment ω. Moreover, for each component of the Auslander-Reiten quiver of Db(kP oG)

containing a module of the form Pα,W where W is a simple kG-module, there is a slice
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S of that component, and the terms of S consists only of modules. The modules in each

slice S include all modules of the form Pα,W which lie in that component, where W is a

simple kG-module. Apart from these, we suppose that none of the remaining modules

in each slice S have ω in their support.

The following proposition can be used to show that all transporter categories in

ICT satisfy Hypothesis 6.2.6.

Proposition 6.2.7. Let P oG be a finite transporter category with a unique minimal

object α and a unique maximal object ω, and let k be a field with char(k) - |G|. Write

(α, ω) oG as a disjoint union of connected transporter subcategories

(α, ω) oG =

n⊔
i=1

Pi oG.

Note that each Pi is a single G-orbit of objects of P. Suppose further that each compo-

nent Pi oG is equivalent to a transporter subcategory [αi, ωi] oGαi satisfying Hypoth-

esis 6.2.6. Let Si be the slice corresponding to [αi, ωi] oGαi . Then P oG also satisfies

Hypothesis 6.2.6 with slice

S = S1 ∪ · · · ∪ Sn ∪
⋃
W

{Pα,W , Pα,W/Soc(Pα,W)}

where the disjoint union is taken over all simple kG-modules up to isomorphism.

Proof. For a simple kGαi-module V , define Mi,V := Pαi,V/Soc(Pαi,V). By Proposition

6.2.5, we have, for each simple kG-module W, an Auslander-Reiten triangle

Rad(Pα,W)→ Pα,W ⊕H(Pα,W)→ Pα,W/Soc(Pα,W)→ Rad(Pα,W)[1].

We claim that

H(Pα,W) =

n⊕
i=1

⊕
simple

kGαi−modules
V

M
dim HomkGαi

(W↓G
Gαi

,V)

i,V . (6.1)
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In the calculation for Proposition 6.2.5, we showed that if [αi, ωi] is clamped in P,

where αi covers α andω coversωi, then Mi,V is a summand ofH(Pα,W) with multiplicity

dim HomkGαi
(W ↓G

Gαi
,V). We need only show that these are all of the summands of

H(Pα,W). For x ∈ Ob(P oG), we have

H(Pα,W)(x) =

0 if x = α or x = ω,

W ↓G
Gx

otherwise.

On the other hand,

Mi,V(x) =

0 if x < Pi oG

V ↓
Gαi
Gx

otherwise.

If x = α or x = ω, then the right hand side of equation (1) evaluated at x is 0 because

α and ω are not in Pi o G for any i, and Mi,V is zero outside of Pi o G. Now suppose

x ∈ (α, ω), i.e. x ∈ P j oG for some j. Then we have

n⊕
i=1

⊕
simple

kGαi−modules
V

M
dim HomkGαi

(W↓G
Gαi

,V)

i,V (x)

=
⊕
simple

kGα j−modules
V

M
dim HomkGα j

(W↓G
Gα j

,V)

j,V (x)

�
⊕
simple

kGα j−modules
V

(
V ↓

Gα j

Gx

)dim HomkGα j
(W↓G

Gα j
,V)

�
( ⊕

simple
kGα j−modules

V

V
dim HomkGα j

(W↓G
Gα j

,V))
↓

Gα j

Gx
.

The second equality occurs because summands in the first line are zero except when

i = j. Now the quantity dim HomkGα j
(W ↓G

Gα j
,V) is equal to the multiplicity of V in
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W ↓G
Gα j

. Thus we have

( ⊕
simple

kGα j−modules
V

V
dim HomkGα j

(W↓G
Gα j

,V))
↓

Gα j

Gx
= (W ↓G

Gα j
) ↓

Gα j

Gx
= W ↓G

Gx
.

Thus the right hand side of equation (1) accounts for all of the summands of H(Pα,W),

so the two sides of equation (1) are equal.

By Hypothesis 6.2.6, we have for all i that the slice Si includes the modules of the

form P
[αi,ωi]oGαi
αi,V

where V is a simple k[αi, ωi] oGαi-module, and aside from these mod-

ules, no other terms in Si have ωi in their support. By Corollary 5.0.4, the Auslander-

Reiten triangles in Db(k[αi, ωi]oGαi) containing these terms on the right remain Auslander-

Reiten triangles in Db(kP oG). Thus, the slices S1, . . . ,Sn remain a part of a slice for

the Auslander-Reiten quiver of Db(kP oG). By Propositions 6.2.4 and 6.2.5, we can

adjoin the modules of the form Pα,W and Pα,W/Soc(Pα,W) in constructing such a slice.

We now argue that the modules

S = S1 ∪ · · · ∪ Sn ∪
⋃
W

{Pα,W , Pα,W/Soc(Pα,W}

do form a complete slice. Suppose N ∈ Db(kP oG) is a term such that there is an

irreducible morphism N → x or x → N with x ∈ S. We will show that N ∈ S, up

to Auslander-Reiten translate. We consider several cases. If x = Pα,W for some W,

then up to translate, we may assume there is an irreducible morphism x → N. Then

N = Pα,W/Soc(Pα,W) by Proposition 6.2.4, so N ∈ S .

Now suppose x = Pα,W/Soc(Pα,W) for some W. Then up to translate, we may

assume there is an irreducible morphism N → x. By Proposition 6.2.4 again, we have

N = Pα,W or N = Mi,V for some i and V , so N ∈ S.

If x = Mi,V for some i and V , we may assume that there is an irreducible morphism

x → N. Then by Proposition 6.2.5, we have either N ∈ Si or N = Pα,W/Soc(Pα,W) for

some W. In both cases, we have N ∈ S.

Finally, suppose x ∈ S i for some i, and x , Mi,V for any V . We may assume there
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is an irreducible morphism N → x. By assumption, x does not have ωi in its support,

so by Corollary 5.0.4, the triangle ending in x ↓PoG
[αi,ωi]oGαi

is induced from [αi, ωi] oGαi .

This implies that N is induced, so either N, τN or τ−1N is included in Si, so up to

translate we have N ∈ S. Thus S is a slice. �

Proposition 6.2.7 contains the inductive step which shows that a component of the

Auslander-Reiten quiver of Db(kP oG) where P oG ∈ ICT and char(k) - |G| has a

tree class which can be described iteratively. The following theorem, which gives the

process of constructing these trees, follows directly from previous propositions.

Theorem 6.2.8. Let P oG be a transporter category in ICT , and let k be a field with

char(k) - |G|. Let α be the minimal element and ω the maximal element of P. Define

the following:

• n: The number of connected components, in the category-theoretic sense, of

(α, ω) oG.

• α1, . . . , αn: A selection of minimal elements of (α, ω) o G, each from a different

connected component.

• {W1, . . . ,Wm}: A complete set of pairwise nonisomorphic simple kG-modules.

• mi: The number of isomorphism classes of simple kGαi-modules.

• {Vi,1, . . . ,Vi,mi}, with 1 ≤ i ≤ n: A complete set of pairwise nonisomorphic simple

kGαi-modules.

• e j,i,k, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ mi: The multiplicity of Vi,k in

W j ↓
G
Gαi

.

• T : The underlying directed graph of the slice S identified in Hypothesis 6.2.6

of the component of the Auslander-Reiten quiver of Db(kP oG) containing the

projective modules of the form Pα,W .
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• Ti, 1 ≤ i ≤ n: The underlying directed graph of the slice identified in Hypothesis

6.2.6 of the components of the Auslander-Reiten quiver of Db(k[αi, ωi] o Gαi)

containing the projective modules of the form Pαi,V .

Then we have

T = T1 t · · · t Tn t

m⋃
j=1

{v1, j, v2, j}

where
⋃m

j=1{v1, j, v2, j} is a set of 2m labelled vertices. For each j, we add an edge

between v1, j and v2, j, and for each i, k with 1 ≤ i ≤ n and 1 ≤ k ≤ mi, we add e j,i,k edges

between v2, j and the vertex in Ti corresponding to the module Pαi,Vi,k .

We proceed with an example of this theorem.

Example 6.2.9. Let

α

a a′ x x′ x′′

b b′ y y′ y′′

ω

P =

and let G = S 3 act on P by permuting the first two chains with stabilizer Ga = 〈(1 2 3)〉

and by permuting the last three chains with stabilizer Gx = 〈(2 3)〉. We will calculate

the tree class of a component of Db(CP oG). The subcategory (α, ω) o G has two

connected components, where a is a minimal element of one component, and x is a

minimal element of the other. Define the following modules:

• W1,V1,1,V2,1: The trivial modules for CG, CGa, and CGx respectively.

• W2: The sign module for CG.

• W3: The two-dimensional simple CG-module.

• V1,2: The simple CGa-module on which (1 2 3) acts as multiplication by e
2π
3 i.
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• V1,3: The simple CGa-module on which (1 2 3) acts as multiplication by e
4π
3 i.

• V2,2: The simple CGx-module on which (2 3) acts as multiplication by −1.

Note that if we set a = a1 and x = a2, then Vi, j is the same as it is in Theorem 6.2.8. The

two connected components are equivalent to [a, b] oGa and [x, y] oGx. The stabilizers

act trivially on these subposets, so the underlying graph of a slice of a component of

the Auslander-Reiten quiver of Db(C[a, b] oGa) will consist of three disjoint copies of

A2, one copy for each simple CGa-module, shown below where each vertex is labelled

with the module in the corresponding slice.

M1,1 M1,2 M1,3

S a,V1,1 S a,V1,2 S a,V1,3

Similarly, the tree class of the Auslander-Reiten quiver of Db(C[x, y] oGx) will consist

of two disjoint copies of A2.
M2,1 M2,2

S x,V2,1 S x,V2,2

As in Theorem 6.2.8, we define e j,i,k to be the multiplicity of Vi,k in W j ↓
G
Ga

if i = 1,

or in W j ↓
G
Gx

if i = 2. We have

W1 ↓
G
Ga

= V1,1, W1 ↓
G
Gx

= V2,1

W2 ↓
G
Ga

= V1,1, W2 ↓
G
Gx

= V2,2,

W3 ↓
G
Ga

= V1,2 ⊕ V1,3, W3 ↓
G
Gx

= V2,1 ⊕ V2,2.
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This gives us

e1,1,1 = e1,2,1 = e2,1,1 = e2,2,2 = e3,1,2 = e3,1,3 = e3,2,1 = e3,2,2 = 1,

and e j,i,k = 0 for all other possible values of j, i, and k. By Theorem 6.2.8, the value of

e j,i,k gives the number of edges between the vertex corresponding to Pα,W j/Soc(Pα,W j)

and the vertex corresponding to Pa,Vi,k if i = 1, and Px,Vi,k if i = 2. For ease of notation,

let Mi, j = Pz,Vi j/Soc(Pz,Vi j), where z = a if i = 1 and z = x if i = 2. We have by Theorem

6.2.8 that the tree class T is given by the graph below. Each vertex is labelled with a

module that comes from the corresponding slice.

Pα,W1 Pα,W2 Pα,W3

Pα,W1/Soc(Pα,W1) Pα,W2/Soc(Pα,W2) Pα,W3/Soc(Pα,W3)

M1,1 M1,2 M1,3M2,1 M2,2

S a,V1,1 S a,V1,2 S a,V1,3S x,V2,1 S x,V2,2

The next proposition, which will be useful in constructing the Auslander-Reiten

quiver for the module category kP oG-mod, refers to the wing of the Auslander-Reiten

quiver determined by a vertex x, which we denote byW(x). By this we mean the set of

vertices in the quiver which can appear in a slice with x. This forms a connected region

of the quiver. The rightmost bound of the wing consists of the vertices y for which there

is a sequence of irreducible morphisms x = x0 → x1 → · · · → xn = y where xi , τxi+2

for all i ≤ n − 2. Similarly, the leftmost bound of the wing consists of the vertices y

for which there is a sequence of irreducible morphisms y = x0 → x1 → · · · → xn = x

where xi , τxi+2 for all i ≤ n − 2. We will need the following lemma, which appears as
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Lemma 5.1 in [5].

Lemma 6.2.10. Let Λ be a finite dimensional algebra and let

L→ M → N → L[1]

be an Auslander-Reiten triangle in Db(Λ). Assume that N is not the shift of a projective

module. Then the associated long exact homology sequence is the splice of short exact

sequences

0→ Hi(L)→ Hi(M)→ Hi(N)→ 0

with zero connecting homomorphisms.

We aim to show that transporter category algebras in ICT are piecewise hereditary.

Indeed, these algebras are skew group algebras over the incidence algebra of the under-

lying poset kP. In [5], the authors showed that these algebras are piecewise hereditary,

and a theorem of Dionne, Lanzilotta, and Smith states that when char(k) - |G|, the re-

sulting skew group algebra kP#G is also piecewise hereditary. However, we would like

to go further and identify the type of the piecewise hereditary algebra. To do this, we

will identify a tilting complex whose endomorphism ring is hereditary.

Definition 6.2.11. Let Λ be a finite dimensional algebra over a field. A tilting complex

in Db(Λ) is a complex U satisfying the following:

1. HomDb(Λ)(U,U[i]) = 0 if i , 0.

2. U is a perfect complex.

3. U generates Db(Λ) in the following sense: the full subcategory of Db(Λ) contain-

ing U which is closed under direct summands, direct sums, shifts, isomorphisms,

and forming cones, is all of Db(Λ).

Proposition 6.2.12. Let P o G ∈ ICT , and let k be a field with char(k) - |G|. If S

denotes the union of all slices considered in Hypothesis 6.2.6, then the module

U =
⊕
M∈S

M
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is a tilting complex.

The following proof is modified from that of Proposition 4.3 (3) in [5].

Proof. Assume P oG ∈ ICT p. We will proceed by induction on p. When p = 0, the

algebra kP oG is a semisimple group algebra, and the modules in S are the complete

set of simple modules, which are projective, so that U is a tilting complex.

Now consider the case where p > 0. Write

(α, ω) oG =

n⊔
i=1

Pi oG

and suppose that for each i, we have elements αi, ωi ∈ Pi satisfying Pi oG ' [αi, ωi] o

Gαi . Let Si be the slice corresponding to k[αi, ωi] o Gαi . Recall that in this setup,

Proposition 6.2.7 states

S = S1 ∪ · · · ∪ Sm ∪
⋃
W

{Pα,W , Pα,W/Soc(Pα,W)}.

We will show that if M and N are in S, then Hom(M,N[i]) = 0 if i , 0. We first

consider the case where M is supported on [αr, ωr) oGαr for some r and N is in St for

some t. Then M is induced from [αr, ωr) oGαr , so

HomDb(kPoG)(M,N[i]) = HomDb(k[αr ,ωr]oGαr )(M ↓PoG
[αr ,ωr]oGαr

,N[i] ↓PoG
[αr ,ωr]oGαr

).

If r , t, then N[i] ↓PoG
[αr ,ωr]oGαr

= 0 because N is 0 on [αr, ωr] oGαr , so

HomDb(kPoG)(M,N[i]) = 0.

If r = t, then by induction we have HomDb(kPoG)(M,N[i]) = 0 if i , 0.

We next consider the case where M is supported on [αr, ωr) o Gαr and N is of the

form Pα,W/Soc(Pα,W). Note that

Pα,W/Soc(Pα,W) ↓PoG
[αr ,ωr]oGαr

� H(Pα,W) ↓PoG
[αr ,ωr]oGαr

.
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The work done in the proof of Proposition 6.2.7 implies that H(Pα,W) ↓PoG
[αr ,ωr]oGαr

is a

direct sum of modules of the form Mαr ,V := Pαr ,V/Soc(Pαr ,V). Such modules are in the

slice Sr, so HomDb(kPoG)(M,N[i]) = 0 when i , 0 by hypothesis.

We next consider the case where M = Mαr ,V for some V . Then M is isomor-

phic to the complex (Pω,V↑G
Gαr
→ Pαr ,V). Thus for any module N ∈ S, we have that

Hom(M,N[i]) = 0 if i , 0, 1. If i = 1, then there must be a nonzero homomorphism

Pω,V↑G
Gαr
→ N so N is supported on ω. This implies N = Pα,W for some W, as these

are the only modules in S with ω in their support. In this case, N is injective, so

Hom(M,N[i]) = 0 for i , 0.

Now consider the case where M = Pα,W/Soc(Pα,W) for some W. Then M is iso-

morphic to the complex (Pω,W → Pα,W). This implies that for any module N ∈ S, we

have Hom(M,N[i]) = 0 if i , 0, 1. As before, if i = 1, then there is a nonzero homo-

morphism Pω,W → N, so N is supported on ω. This implies N = Pα,W , so N is injective

and Hom(M,N[i]) = 0 for i , 0.

Finally, if M = Pα,W , then M is projective and Hom(M,N[i]) = 0 if i , 0. If

N = Pα,W , then N is injective and Hom(M,N[i]) = 0 if i , 0. This exhausts all

possibilities of M and N.

We now show that U generates Db(kP oG). Because Db(kP oG) is generated by

the injective modules, it suffices to show that U generates the injective modules. Let

Ix,S be any injective kP oG-module. If x = ω, then Ix,S = Pα,S is included in the slice.

If x , ω, then there is a surjection

Pα,S ↑G
Gx
/Soc(Pα,S ↑G

Gx
)→ Ix,S .

Interpreting this as a complex with the left term in degree 0, the complex is isomor-

phic to a module supported on (α, ω) o G, so it is a direct sum of modules supported

on [αi, ωi] o Gr. The modules in S i generate such modules by hypothesis, so Ix,S is

generated by the terms in S.

Finally, Db(kP oG) has finite global dimension, so U has finite projective dimen-

sion. �
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Using this result, we can show that kP oG is piecewise hereditary in certain circum-

stances. We start with a lemma which gives a sufficient condition for an endomorphism

ring to be isomorphic to the path algebra of a quiver.

Lemma 6.2.13. Let k be a field, and let C be a k-linear category. Let S = {U1, . . . ,Un}

be a set of objects in C, and setU =
⊕n

i=1(Ui) with canonical inclusion and projection

maps

i j : U j →U,

π j : U → U j.

Suppose that Q is a finite quiver with vertex set {v1, . . . , vn} and set of paths Ei j be-

tween vertices vi and v j. Then, if Q has no directed paths of length 2 and #Ei j =

dimk Hom(Ui,U j) for all i and j, there is an isomorphism End(U) � kQ.

Proof. Note that because Q has no paths of length 2, it follows that Q has no loops, and

thus End(Ui) � k for each i, i.e. every endomorphism of Ui is a multiple of the identity

endomorphism IdUi . Now let

fi j : Hom(Ui,U j)→ kEi j ≤ kQ

be any collection of k-linear isomorphisms satisfying fii(IdUi) = 1vi for all i. If φ ∈

Hom(Ui,U j), let φ̄ ∈ End(U) denote the morphism

φ̄(u) =

ii ◦ φ ◦ πi(u) if u ∈ Ui,

0 otherwise.

Note that the endomorphisms of the form φ̄ span End((U)). We claim that the isomor-

phisms fi j assemble into an algebra isomorphism

F : End(U)→ kQ,

where F(φ̄) = fi j(φ) if φ ∈ Hom(Ui,U j). Note that by our assumptions, F is a bijection,
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so we just need to show that F is an algebra homomorphism.

Consider F(φ̄◦ψ̄) for φ ∈ Hom(Ui,U j) and ψ ∈ Hom(Us,Ut). If i , t, then φ̄◦ψ̄ = 0,

so F(φ̄ ◦ ψ̄) = F(0) = 0 = F(φ̄) ◦ F(ψ̄). If i = t, then because Q has no paths of length

2, this implies that either i = j and φ = a · IdU j for some a ∈ k, or t = j and ψ = b · IdU j

for some b ∈ k. We will handle the first case as the second is dealt with similarly. In

this case, we have

F(φ̄ ◦ ψ̄) = F(a · ψ̄) = a · F(ψ̄) = a · F(IU j) · F(ψ̄) = F(a · IU j) · F(ψ̄) = F(φ̄) · F(ψ̄).

This shows that F is an algebra homomorphism, so these algebras are isomorphic. �

Proposition 6.2.14. Let P oG ∈ ICT , and let k be a splitting field for kG with

char(k) - |G|. LetS,S1, . . . ,Sn, and U be as in Proposition 6.2.12. Then EndDb(kPoG)(U)

is hereditary, so kP oG is piecewise hereditary.

While this proof relies on the field being a splitting field for kG, it can be adapted

to work for other fields. We use this assumption for simplicity.

Proof. We will show that End(U) is isomorphic to the path algebra of a quiver with no

oriented cycles. To do this, we will show that each indecomposable summand of U has

a trivial endomorphism ring, and we will analyze Hom(M,N) for each pair of different

indecomposable summands M and N in U to identify the path algebra to which End(U)

is isomorphic. Letting P oG ∈ ICT p, we proceed by induction on p. We will start by

analyzing Hom(M,N) and Hom(N,M) for different M and N. There are several cases

to consider.

If M,N ∈ Si, for some i, then M,N are induced from Db(k[αi, ωi] o Gαi) where

[αi, ωi] oGαi ∈ ICT p−1 by Corollary 5.0.3. By hypothesis, the endomorphism ring of

the direct sum of these M over Db(k[αi, ωi]) is hereditary of type Qi for some quiver Qi.

This will be copied into the path algebra for the whole endomorphism ring.

If M ∈ Si and N ∈ S j with i , j, then these modules have disjoint support, so

Hom(M,N) = Hom(N,M) = 0.

If M = Pα,W for some W and N ∈ Si for some i, then Hom(M,N) = 0 because any

nonzero image of f : Pα,W → N will have support on α, but N is 0 on α. Similarly, we
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have Hom(N,M) = 0 because every nonzero submodule of Pα,W is supported on ω and

N is 0 on ω.

If M = Pα,W/Soc(Pα,W) for some W and M ∈ Si for some i, then Hom(M,N) = 0

because every nonzero map f : Pα,W/Soc(Pα,W) → N has image supported on α, but

N is not supported on α. We also have Hom(N,M) = 0 whenever N is supported

on [αi, ωi) o Gi. Otherwise, N = Mαi,V for some V , and in this case we have that

dimk Hom(N,M) is the multiplicity of V in W ↓G
Gαi

.

If M = Pα,W or Pα,W/Soc(Pα,W) and N = Pα,W′ or Pα,W′/Soc(Pα,W′) for some W ′ �

W, then Hom(M,N) = Hom(N,M) = 0 because the image of any nonzero map would

induce an isomorphism between M(α) and N(α), which is not possible.

Finally, if M = Pα,W and N = Pα,W/Soc(Pα,W), then Hom(N,M) = 0. Moreover,

we have Hom(M,N) � HomkG(M(α),N(α)) = EndkG(W). This endomorphism ring is

isomorphic to k because k is a splitting field for G, and the endomorphism ring of a

simple module over an such a field is always isomorphic to k.

We now turn to the endomorphism rings of the summands of U. If M ∈ Si for

some i, then M is induced and thus End(M) � k by hypothesis. If M = Pα,W or

Pα,W/Soc(Pα,W), then End(M) � EndkG(W) = k. By Lemma 6.2.13 that End(U) is

isomorphic to a path algebra kQ with no paths of length 2. To describe Q, we first

define the following:

• n: The number of connected components, in the category-theoretic sense, of

(α, ω) oG.

• α1, . . . , αn; ω1, . . . , ωn: A selection of minimal and maximal elements of (α, ω) o

G, each from a different connected component.

• Ui, where 1 ≤ i ≤ n: The direct sum of the k[αi, ωi] o Gαi-modules lying in the

slice Si.

• {W1, . . . ,Wm}: A complete set of pairwise nonisomorphic simple kG-modules.

• mi: The number of isomorphism classes of simple kGαi-modules.
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• {Vi,1, . . . ,Vi,mi}, with 1 ≤ i ≤ n: A complete set of pairwise nonisomorphic simple

kGαi-modules.

• Mi,k, with 1 ≤ i ≤ n and 1 ≤ k ≤ mi: The kP oG-module Pαi,Vk/Soc(Pαi,Vk).

• e j,i,k, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ mi: The multiplicity of Vi,k in

W j ↓
G
Gαi

.

• Qi, 1 ≤ i ≤ n: The quiver satisfying End(Ui) � kQi with mi distinguished vertices

labelled Mi,k with 1 ≤ k ≤ mi.

Then we have

Q = Q1 t · · · t Qn t

m⋃
j=1

{v1, j, v2, j}

where
⋃m

j=1{v1, j, v2, j} is a set of 2m labelled vertices corresponding to Pα,W j and Pα,W j/Soc(Pα,W j)

respectively. For each j, we add an arrow from v1, j to v2, j, and for each i, k with 1 ≤ i ≤ n

and 1 ≤ k ≤ mi, we add e j,i,k arrows from v2, j to the vertex in Ti corresponding to the

module Mi, j. �
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Chapter 7

Transporter categories of finite
representation type

The classification of transporter categories in ICT of finite representation type can be

determined using classical results. We remind the reader that a transporter category

algebra kP oG is isomorphic to the skew group ring kP#G. We are able to deduce the

next result immediately from work of Reiten and Riedtmann on skew group rings.

Theorem 7.0.1 (Reiten-Riedtmann [12]). Let P oG be a finite transporter category,

and let k be a field with char(k) - |G|. Then kP oG has finite representation type if and

only if kP is of finite representation type. In particular, the transporter categories in

ICT of finite representation type are those whose base poset is one listed in [5].

Proof. Because kP oG is a skew group ring, this theorem follows immediately from

[12] Theorems 1.1 and 1.3 and the fact that the clamped posets that arise in ICT are

the same as the posets that arise in ICP in [5], by Proposition 6.2.1. �

Below is the table of the posets in ICP of finite representation type, as shown in

[5]. The posets of finite representation type were first determined by Loupias in [10],

and they were later categorized by Drozdowski and Simson in [6]. The Rys labels in

the righthand column refer to the labels given in [6].
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Poset Rys Label

p
28

p ≥ 1

p
28

2 ≤ p ≤ 4

n
p

29

n ≥ 0

p ≥ 0

p

r

n 30

n ≥ 1

r ≥ 1

p ≥ 1

q
30

1 ≤ q ≤ 4
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Poset Rys Label

p
30

1 ≤ p ≤ 3

30

30

30
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The following table shows the posets in the table above which have nontrivial au-

tomorphism groups, and thus admit a nontrivial group action. We then list the auto-

morphism group and the slice of the component of the Auslander-Reiten quiver for

Db(P oG) containing the projective-injective modules. This gives us the following

result.

Theorem 7.0.2. Let P oG be a transporter category algebra with P oG ∈ ICT , and

let k be a field with char(k) - |G|. Of the transporter category algebras kP oG of finite

representation type where k = C and the action of the nontrivial group G on P is free,

we have that CP oG is derived equivalent to a quiver algebra of wild representation

type, with the following exceptions:

1. The base poset and group is in row 4 of the following table and p = 1 or p = 2,

in which case CP oG is derived equivalent to a quiver algebra of finite repre-

sentation type.

2. The poset and underlying group are one of the following rows of this table: row 1,

row 1 with S 3 replaced with C2 or C3 (not shown), row 2 (p = 1), row 4 (p = 3),

row 5 (p = 1), or row 6. In these cases CP oG is derived equivalent to a quiver

algebra of tame representation type.
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Poset P G = Aut(P) Slice of AR quiver for Db(CP oG)

S3

p C2

pp

C2

p p C2

p

p

r

n

C2

pp 2(n + r) + 1

C2
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Chapter 8

An example involving Young’s lattice
of partitions

The following example illustrates how the structure of the slice associated to a trans-

porter category in ICT can relate to other combinatorial structures.

Definition 8.0.1. Let G be a finite group, and let H1 ≤ H2 ≤ · · · ≤ Hn = G be a

sequence of nested subgroups of G. Define the G-poset P(H1, . . . ,Hn) to be the ranked

poset of rank 2n − 1 whose ith row for 1 ≤ i ≤ n consists of the left G-cosets of Hn+1−i.

The partial order between the first n rows is gH ≤ hK if and only if gH ⊇ hK (not

gH ⊆ hK). For 1 ≤ i ≤ n, the elements in row n + i − 1 are the left G-cosets of Hi. For

gH and hK in rows greater than or equal to n, we have gH ≤ hK if and only if gh ⊂ hK

(not gH ⊇ hK). This makes P(H1, . . . ,Hn) isomorphic to its opposite poset. The action

of G on these cosets is given by left multiplication.

The poset P(H1, . . . ,Hn) is related to the coset poset of K.S. Brown [3]. The coset

poset of a finite group G is the set of all cosets in G ordered by inclusion. Brown found

that the topological properties of the geometric realization of the coset poset of G was

related to the probabilistic zeta function of G.

Example 8.0.2. Let S n act on [1, . . . , n] in the usual way. For n ≥ 1, we will identify

S n ⊂ S n+1 with the subgroup of S n+1 which fixes n + 1. Using this convention, we
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can describe P(S 1, S 2, . . . , S n) iteratively: the poset P(S 1) consists of a single point. If

P(S 1, . . . , S n−1) is defined, we can construct P(S 1, . . . , S n) by taking the disjoint union

of n copies of P(S 1, . . . , S n−1) and adding a minimal and maximal element. Note that

this makes P(S 1, . . . , S n−1) a clamped interval in P(S 1, . . . , S n). Below are the posets

P(S 1, S 2) and P(S 1, S 2, S 3).

S 2

S 1 (1 2) S 1

S 2

S 3

S 2 (1 3)S 2 (2 3)S 2

S 1 (1 2)S 1 (1 3)S 1 (1 2 3)S 1 (2 3)S 1 (1 3 2)S 1

S 2 (1 3)S 2 (2 3)S 2

S 3

Before presenting an example, we recall the definition of Young’s lattice of partitions.

This is the ranked poset whose n row consists of the partitions of n. The partial order is

generated by the covering relation λ ≤ µ if and only if the Ferrers diagram of λ can be

obtained by removing a leftmost node from the Ferrers diagram of µ. As in the rest of

this document, we write the poset with the least element on top with greater elements

below the lesser ones, and row n is below row n−1 for all n. For our purposes, we omit

the empty partition from Young’s lattice.

The Auslander-Reiten quiver of Db(CP(S 1, . . . , S n) o S n) has a component that can

be described in the following way.

Proposition 8.0.3. The underlying graph of a slice of the component of the Auslander-

Reiten quiver of Db(CP(S 1, . . . , S n) o S n) containing the projective-injective modules
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is a modification of Young’s lattice of partitions. Starting with the Hasse diagram for

Young’s lattice, we eliminate rows in positions greater than n, and for rows greater than

the first, we replace each vertex by two vertices joined by a new edge. The bottom row

of this modified lattice (i.e. row 2n−1) corresponds to the projective-injective modules.

An example of Young’s lattice and the modification corresponding to Db(CP(S 1, S 2, S 3, S 4)o

S 4) is shown below.

•

• •

• • •

• • • • •

•

• •

• •

• • •

• • •

• • • • •

• • • • •

Proof. We prove this by induction on n. When n = 1, then the transporter category al-

gebra is C and the underlying graph of the slice T is a single vertex. Let α and ω denote

the minimal and maximal elements of P(S 1, . . . , S n), and let a and z denote the mini-

mal and maximal elements of P(S 1, . . . , S n−1). Note that (α, ω) consists of n copies of

P(S 1, . . . , S n−1), and S n acts on these intervals transitively with stabilizers isomorphic

to S n−1. It follows that, as a category, we have (α, ω) o S n ' P(S 1, . . . , S n−1) o S n−1,

and there is one maximal clamped interval in (α, ω) o S n up to isomorphism. Thus by
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Theorem 6.2.8, the underlying graph of the slice T of the component of the Auslander-

Reiten quiver of Db(CP(S 1, . . . , S n) o S n)) containing the projective-injective modules

is obtained by taking the the underlying graph T̃ of the slice of the Auslander-Reiten

quiver of Db(CP(S 1, . . . , S n−1)oS n−1) and adding 2k vertices (v1,1, v2,1, . . . , v1,k, v2,k to it

where k is the number of isomorphism classes of simpleCS n-modules. By the induction

hypothesis, the underlying graph T̃ of the slice is the modification of Young’s lattice

described in the proposition where the top row corresponds to the projective-injective

CP(S 1, . . . , S n−1)oS n−1-modules Pa,V . There is an edge between v1, j and v2, j for each j,

and if v2, j corresponds to the simple CS n-module W, and V is a simple CS n−1-module,

then the number of edges between v2, j and the vertex in T̃ corresponding to Pa,V is the

multiplicity of V in W ↓S n
S n−1

. By the branching rule for representations of the symmetric

group, the edges added between v2, j and the vertices in T̃ are the same as the edges

appearing between rows n and n − 1 of Young’s lattice. The result is the modification

of Young’s lattice. �
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