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Abstract

We develop two closely related methods for parametrizing the rational irreducible

characters of an arbitrary finite Coxeter group W. The goal is to provide a uniform

approach to such a parametrization, independent of Coxeter type. The two methods

generalize two approaches to describing the irreducible representations of the sym-

metric groups, which coincide in type A but do not coincide generally. Our methods

associate characters to pairs of reflection subgroups, in one case by considering com-

mon constituents of permutation and signed permutation modules, and in the other case

by a generalization of the Specht modules. We ask whether, using either method, we

can identify a set of subgroup pairs for which the matrix of multiplicities of rational

irreducibles in the characters associated to these subgroup pairs is unitriangular. Such

a unitriangular matrix provides a parametrization of the irreducible rational characters.

For the noncrystallographic types H and I, we give a positive answer to this question. In

type H, we show computationally that we can parametrize the irreducible rational char-

acters of H4 using generalized Specht modules, and we can parametrize the irreducible

characters of H3 using both methods. Moreover, we give an explicit decomposition

of the generalized common constituents for the dihedral groups I2(n) for all n, and

we prove that we can always exhibit a unitriangular multiplicity matrix using general-

ized common constituents. In type A our theory coincides with the classical theory of

Specht modules and does not give any new information. In type B the approach we

take is closely related to an existing parametrization of the irreducible characters, but it

appears to have some novel elements.
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Chapter 1

Introduction

The irreducible complex characters of finite Coxeter groups have been known for a long

time. For the infinite families of Coxeter groups of types A, B and D, these characters

are constructed using combinatorial data based on integer partitions. In exceptional

Coxeter types that are not part of an infinite family, the character tables are known but

they are constructed on a type-by-type basis. Our goal is not just to identify all irre-

ducible characters but to parametrize them, by way of a bijection with some indexing set

that is defined combinatorially or algebraically. We want to generalize the well-known

parametrization by integer partitions in type A to an arbitrary finite Coxeter group W,

with a construction defined only in terms of general properties of Coxeter groups and

not on a type-by-type basis.

To do this, we consider two closely related but inequivalent approaches, which both

generalize the classical representation theory of the symmetric groups. One such ap-

proach is the construction of the Specht modules S λ as cyclic QS n-modules generated

by polytableaux. This approach is described in [20], for instance. In our construction,

we define generalized Specht characters φSpecht(P,Q), which are characters of cyclic

submodules of QW generated by certain group algebra elements analogous to poly-

tableaux. The other, more implicit approach can be found in [11] where it is shown, for

each partition λ of n, that there is a unique irreducible character which is a constituent

of both 1 ↑S n
S λ

and ε ↑S n
S λ′

, appearing in each with multiplicity 1. In our construction, we
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define a generalized character of common constituents φConst(P,Q), and this has φSpecht

as a summand. For an arbitrary Coxeter group, the generalized Specht module char-

acters and the generalized common constituents are not equal in general, and they are

not irreducible in general. We find, among other subtleties, that while the values of

φConst(P,Q) are always determined by the Coxeter types of P and Q alone, the Specht

characters φSpecht(P,Q) are not. In most Coxeter types one or both generalizations al-

lows us to establish a bijection between the irreducible rational characters of W and a

certain collection of reflection subgroup pairs.

In may ways our approach differs from the classical theory, in great part out of the

necessity to satisfy various properties our generalization ought to satisfy. First, while

we want to associate characters to subgroups of a given Coxeter group such as the

Young subgroups in type A, there are generally more irreducible characters than conju-

gacy classes of parabolic subgroups. It turns out that we need to consider all reflection

subgroups, but this still does not resolve the cardinality issue. Examples of Coxeter

groups which have more irreducible rational characters than reflection subgroup conju-

gacy classes include D4, H3, and H4.

Moreover, we want to generalize a natural dual operation on the set of Young sub-

groups of S n, arising from the dual operation on integer partitions. To our knowledge,

for an arbitrary Coxeter group there is no meaningful way to associate to each reflec-

tion subgroup a dual subgroup. However, if we index not by subgroups but by subgroup

pairs (P,Q), then we may ask whether the dual of the character constructed from (P,Q)

is the tensor product of the character constructed from (Q, P) with the sign character ε.

This is true for generalized common constituent characters, and Theorem 2.38 shows

that this also holds for characters of generalized Specht modules. This generalizes the

identity S λ′ ' S λ ⊗ ε in type A without reference to a combinatorial object that has P

and Q as row and column stabilizers. In many cases, our parametrization will be com-

patible with tensor-epsilon duality of irreducible rational characters, in that whenever φ

is mapped to (P,Q) in the parametrization, then φ ⊗ ε is mapped to (Q, P).

Finally, we choose to parametrize irreducible rational characters instead of irre-

ducible complex characters, due to certain desired properties of parametrizations and
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due to the rationality of the generalized characters described above. In type A, we

may think of Specht modules S λ as not only parametrized by integer partitions, but

parametrized using the unitriangular matrix〈χ(Q ↑S n
S µ

), χ(S λ)〉

〈χ(S λ), χ(S λ)〉


λ, µ ` n

whose rows and columns are ordered consistently with the dominance order on parti-

tions. We may then think of each module of the form Q ↑S n
S λ

as being the sum of a ‘new’

module S λ appearing with multiplicity one, plus a sum of ‘previously-encountered’

modules S µ with µ D λ. In our two approaches we attempt to construct a unitriangular

matrix as above, but with Q ↑S n
S λ

replaced by φConst and φSpecht. Since these characters

are rational, we can only parametrize rational irreducible characters in this way. In

particular, the reflection representation of a non-crystallographic Coxeter group can-

not be written over Q and cannot be included in a parametrization as described above.

However, a parametrization of rational irreducibles still gives a lot of representation-

theoretic information, even in non-crystallographic types where the reflection represen-

tation is not itself a rational representation.

We point out that our approach to the parametrization of representations of Coxeter

groups has been studied before, and there are many other approaches as well. In the

work of Halicioglu [6, 7, 8] and Halicioglu-Morris [9] there are constructed generalized

Specht modules with generalized polytableaux defined combinatorially using root sys-

tems. A parametrization of rational representations is not attempted by them. In [15]

Macdonald gives a construction of certain irreducible representations that works for all

finite Coxeter groups, and in types A and B his method constructs all irreducible repre-

sentations. This is not so in type D, and for non-crystallographic groups his representa-

tions need not be rational. Lusztig’s approach in [14] includes representations from left

cells and special representations, but only applies to Weyl groups. In [4], Al-Aamily,

Morris, and Peel exhibit the irreducible representations of Bn in arbitrary characteristic

as quotients of generalized Specht modules. James and Peel [12] construct generalized

Specht modules for symmetric groups by associating to each skew partition a pair of
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parabolic subgroups (the row and column stabilizers), and their construction coincides

with ours in type A.

The structure of this document is as follows. First, in Chapter 2 we develop our

general framework and define generalized common constituents and generalized Specht

modules. We prove several useful lemmas at this level of generality and pose several

properties which we are interested in investigating on a type-by-type basis.

Then, Chapter 3 reviews the classical constructions of irreducible characters in

Types A and B, both as Specht characters and as common constituent characters. With

either method, the characters constructed are absolutely irreducible rational characters,

and all such irreducibles can be constructed in this way.

Chapter 4 details our original computational results for parametrizing irreducible

rational characters in types H3 and H4. These are examples where certain properties

of φConst(P,Q) and φSpecht(P,Q) such as reducibility differ from type A. We prove that

the irreducible rational characters of H3 can be parametrized using generalized common

constituents or using generalized Specht modules. We show that parametrizing the irre-

ducible rational characters of H4 using generalized common constituents is impossible,

however there exists a parametrization using generalized Specht characters.

Chapter 5 describes our general computational process in constructing common

constituents and Specht modules. We describe both the construction of generalized

Specht modules over a finite field in GAP and the inference of the structure of the

corresponding rational Specht characters.

Finally, in Chapter 6 we explicitly construct and decompose the common con-

stituent characters for the non-crystallographic Coxeter groups of type I2(m), which

are the dihedral groups D2m. This allows us to give a parametrization of the irreducible

rational characters using common constituents.

We establish notation that we use throughout this document. Here, K denotes a field

of arbitrary characteristic, not necessarily algebraically closed. We use χ(−) to denote

the mapping that sends a module (defined over some subfield of C) to its character.

However, when referring to characters we use φ to denote a rational character and χ to

denote a complex character which may or may not be rational. We also sometimes refer
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to a CG-module, its corresponding linear representation, and its character interchange-

ably, especially in the cases of the trivial representation 1, the sign representation ε of

a finite Coxeter group W, and induced representations of the form 1 ↑W
W′ (permutation

modules) and ε ↑W
W′ (signed permutation modules). We may distinguish between the

trivial and sign representation of W and that of a subgroup W ′, for instance writing 1W

and 1W′ , but we will omit suffixes in certain settings where the context is clear or the

lack of distinction does not affect the discussion.

We also sometimes refer to a Coxeter group, its Coxeter type, and alternate descrip-

tions interchangeably (e.g. W(An−1) vs. An−1 vs. S n). In data and discussions that

reference a Coxeter type of a subgroup of a Coxeter group, either there is a canonical

choice of subgroup which has that type, or the discussion does not depend on the choice

of subgroup, or a choice of subgroup will be explicitly identified.

If v is an element of a group W or the group algebra KW and w ∈ W, we denote
wv := wvw−1 and vw := w−1vw. If P is a subgroup of W and w ∈ W, then we denote

by wP := wPw−1 and Pw := w−1Pw the conjugate subgroups of W. If w ∈ W and V

is a representation of a subgroup P of W, with character χ, then we denote by wV the

conjugate representation of wP.

If A is a finite-dimensional algebra over some field F, V is an A-module equipped

with a bilinear form, and U is an A-submodule of V , we denote by U⊥ the orthogonal

complement of U in V . We denote by U> the annihilator of U in A. If U is generated by

a vector u, then we write u> instead of U>. We denote by U∗ the linear dual HomF(U,F).



Chapter 2

Parametrizations of Rational
Characters by Subgroup Pairs

In this chapter we describe two closely related approaches to parametrizing the rational

characters of an arbitrary finite Coxeter group: the generalized common constituents

character φConst(P,Q) and the generalized Specht character φSpecht(P,Q) where P and

Q are reflection subgroups of W. For each approach, we define properties that can be

thought of as criteria for a suitable parametrization of the rational irreducible characters.

Throughout, let W be a fixed finite Coxeter group. We recall (for example, from [5]

or [10]) that any Coxeter group W has a presentation with a set of distinguished gener-

ators, called Coxeter generators. We write S = {si} for the set of Coxeter generators.

The Coxeter generators satisfy relations s2
i = 1 and (sis j)m(i, j) = 1, where m(i, j) ≥ 2 for

all i , j. We say that (W, S ) is a Coxeter system with Coxeter generators S . We denote

by `(w) the length of w, which is a well-defined positive integer equal to the number of

factors occurring in any reduced expression for w as a product of Coxeter generators.

The Coxeter diagram for W is the undirected graph with the Coxeter generators of

W as vertices, and an edge between each pair {si, s j} with m(i, j) > 2. If m(i, j) > 3,

then the edge is labeled with the value of m(i, j). The classification of finite Coxeter

groups of rank n > 1 is presented in Table 2.1, identifying Coxeter types in most cases

when the underlying abstract groups are isomorphic.

6



7
Coxeter type Coxeter diagram

An

Bn � Cn
4

Dn

E6

E7

E8

F4
4

G2 � I2(6)
6

H2 � I2(5)
5

H3
5

H4
5

I2(m)
m

Table 2.1: Classification of finite Coxeter groups of rank n ≥ 1.

The sign of an element w ∈ W is defined by ε(w) = (−1)`(w). This defines a group

homomorphism ε : W → {±1}. The alternating subgroup of W, denoted A(W), is the

subgroup ker ε, or equivalently, the set of all elements of W equal to the product of an

even number of Coxeter generators. The sign homomorphism extends to a nontrivial

1-dimensional representation of W, also denoted ε. The trivial representation 1 and the

sign representation ε are two one-dimensional representations defined on every finite

Coxeter group, over any field, and they are distinct whenever the characteristic of the

field is not equal to 2.

Without explicitly defining the term ‘parametrization,’ we will say that we want

to exhibit a bijection between the irreducible rational representations of W (or their

characters) and a certain finite set. The finite set should have some algebraic or com-

binatorial structure in its own right, or at least it should be relevant to the algebraic

or combinatorial structure of W. This set should generalize the set of partitions of a
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nonnegative integer n, which parametrizes the Specht modules of the symmetric group

S n � W(An−1). In practice, the index set will be a certain set of pairs of subgroups of W,

which generalize the row and column stabilizers of a Young tableau. The bijection is of-

ten defined using a matrix whose rows are labeled by the rational irreducible characters,

and whose columns are indexed by subgroup pairs. In this setup, the parametrization

maps the i-th subgroup pair to the i-th irreducible character.
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2.1 Reflection Subgroups

Every finite Coxeter group of rank n is isomorphic to a finite reflection group, which is

a group of isometries of an n-dimensional real vector space generated by its reflections

(see [5] or [10]). In our approach, we do not use the geometric structure of reflection

groups, but we may still define reflections algebraically.

Definition 2.1. Let W be a Coxeter group. A reflection is a conjugate of a Coxeter

generator in W. A reflection subgroup is a subgroup of W generated by reflections. A

parabolic subgroup is a conjugate of a subgroup of W generated by Coxeter genera-

tors.

If T is a set of Coxeter generators (resp. reflections) in W, then we denote by WT the

parabolic subgroup (resp. reflection subgroup) of W generated by T . For a reflection

subgroup P of W, denote by T (P) the set of reflections in P. Denote by R (resp. P)

the set of reflection subgroups (resp. parabolic subgroups) of W, partially ordered by

inclusion.

The structure of parabolic subgroups is well-known, see for instance [1] and [5].

Every parabolic subgroup is a Coxeter group: in particular, for each J ⊆ S , J is a set

of Coxeter generators for WJ. The length function `J of WJ satisfies `J(w) = `(w) for

all w ∈ WJ, and any reduced expression for w consists only of factors in J. Moreover,

WJ ∩WK = WJ∩K and 〈WJ ∪WK〉 = WJ∪K . More generally, it holds that the intersection

of any two parabolic subgroups is a parabolic subgroup (see Theorem 2.1.12 of [5] and

the discussion following).

Reflection subgroups share many but not all of the properties afforded by parabolic

subgroups. In particular, they are Coxeter groups. Letting T denote the set of reflections

in W, define N(w) = {t ∈ T : `(tw) < `(w)}. Dyer proved in [3] that a reflection

subgroup P of W is a Coxeter group with simple generators given by {t ∈ T : N(t)∩P =

{t}}. We have the following property of alternating subgroups of reflection subgroups:

Proposition 2.2. Let W ′ ≤ W be a reflection subgroup. Then A(W ′) = A(W) ∩W ′.
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Proof. Let w ∈ A(W ′). Then w is a product of an even number of reflections in W ′.

Writing each reflection as a conjugate of a Coxeter generator, we have that we have that

the reflections have odd length in W. Thus, w has even length in W, so w ∈ A(W)∩W ′.

Analogously, if w ∈ W ′ is a product of an odd number of reflections in W ′, then it has

odd length in W. Therefore, an element of W ′ is contained in A(W ′) if and only if it is

contained in A(W). �

We observe that the identity 〈WJ ∪WK〉 = WJ∪K still holds when J and K are sets

of reflections. However, the intersection of two reflection subgroups is not a reflection

subgroup in general. As a counterexample, let W = W(B2) = 〈a, b : a2 = b2 =

(ab)4 = 1〉. We take P = 〈a, bab〉 and Q = 〈b, aba〉 which are both Abelian subgroups

isomorphic to C2 × C2. Then P ∩ Q = 〈abab〉 which is contained in the alternating

subgroup A(W). Since reflections all have sign −1, and A(W) contains no elements of

sign −1, we conclude that P ∩ Q is not generated by reflections.

Proposition 2.3. The poset R is a lattice with join operation WJ ∨ WK = WJ∪K and

meet operation WJ ∧WK = WT (WJ)∩T (WK ).

Proof. For any fixed sets of reflections J and K, we immediately observe 〈WJ ∪WK〉 =

WJ∪K . Now, if WJ = WJ′ and WK = WK′ , then

WJ∪K = 〈WJ ∪WK〉 = 〈WT (WJ) ∪WT (WK )〉 = 〈WT (WJ′ ) ∪WT (WK′ )〉 = 〈WJ′ ∪WK′〉 = WJ′∪K′ .

Thus the operation WJ ∨WK = WJ∪K is a well-defined operation on the set of reflection

subgroups of W. Now WJ,WK ≤ WJ ∨ WK , and any reflection subgroup containing

WJ and WK must contain J ∪ K, so it contains WJ∪K . Therefore R is a join-semilattice.

Since R is finite and has the identity subgroup as a zero element, then R is a lattice with

meet operation given by

WJ ∧WK =
∨

P∈R,P≤WJ and P≤WK

P.

We show that this equals WT (WJ)∩T (WK ). Indeed, P is one of the terms in the join
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expression above if and only if T (P) is a subset of WJ and of WK . This is equivalent to

T (P) ⊆ T (WJ) ∩ T (WK), which is equivalent to P ≤ WT (WJ)∩T (WK ). �

We sometimes want to consider reflection subgroups of W taken up to conjugacy.

Let Ω be a partially ordered set with an order-preserving W-action. We denote by W\Ω

the set of W-orbits of Ω.

Proposition 2.4. Suppose W is finite. Then the set W\Ω is partially ordered with

ω ≤W\Ω ω′ if there exists ω ∈ ω, ω′ ∈ ω′ such that ω ≤ ω′ in Ω.

Proof. We have that ≤W\Ω is reflexive since ≤Ω is reflexive. To show transitivity, sup-

pose ω0 ∈ ω0, ω1, ω
′
1 ∈ ω1, and ω2 ∈ ω2 with ω ≤ ω1 and ω′1 ≤ ω2. Choose w such that

w · ω1 = ω′1. Then ω0 ≤ w−1 · ω′1 ≤ w−1 · ω2 and therefore ω0 ≤ ω2.

Finally, to show antisymmetry, suppose ω0 ≤ ω1. and ω1 ≤ ω0. Take ω0, ω
′
0 ∈ ω0

and ω1, ω
′
1 ∈ ω1 with ω0 ≤ ω1 and ω′1 ≤ ω

′
0. Choose w0,w1 ∈ W such that w0 ·ω0 = ω′0

and w1 · ω1 = ω′1. Then

ω0 ≤ ω1 = w−1
1 ω

′
1 ≤ w−1

1 ω
′
0 = w−1

1 w0ω0.

Then ω0 ≤ (w−1
1 w0)nω0 for all n ≥ 0. Since w−1

1 w0 has finite order, it follows that

ω0 = (w−1
1 w0)nω0 for all n. In particular, ω0 = w−1

1 w0ω0, and in view of the indented

inequality above, we have that ω1 = ω0 ∈ ω0, so ω0 = ω1 and therefore ≤W\Ω is a partial

order. �

When the action of W is conjugation (or pairwise conjugation) we use the notation

Ωconj instead of W\Ω. In particular, we are interested in the poset Rconj of conjugacy

classes of reflection subgroups ordered by conjugate-inclusion. Informally, we will

refer to elements of Rconj as reflection subgroups with the understanding that P ≤ Q if

and only if P is conjugate to a subgroup of Q.

There are two posets of interest to us when considering pairs of reflection sub-

groups: Rconj × Rconj and (R × R)conj. The product Rconj × Rconj consists of pairs of

subgroups (P,Q) of W where (P,Q) = (P′,Q′) if and only if P is conjugate to P′ and

Q is conjugate to Q′. In (R × R)conj, however, (P,Q) = (P′,Q′) if and only if there
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exists w ∈ W such that Pw = P′ and Qw = Q′. It will turn out that the Specht character

χ(S (−,−)) is not invariant under separate conjugacy of P and Q, so it is not a function

of Rconj × Rconj, but it is a function of (R × R)conj.

We note that Rconj is not a lattice even though R is. In Chapter 3, we will see

in type A that the conjugacy classes of reflection subgroups are the Young subgroups

up to conjugacy, so they are in bijection with the set of partitions of n. The classical

parametrization of irreducible characters of S n uses the poset of partitions of n, which

is a lattice that refines the conjugate-inclusion order on Rconj.
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2.2 Generalized Common Constituent Characters

We describe a first approach to parametrizing simple rational representations of arbi-

trary Coxeter groups. We will find, ultimately, that it does not give a full parametriza-

tion for all Coxeter groups (the group H4 is an example), but that it does work for

many. Because it is a natural generalization of the representation theory of the symmet-

ric groups, and because it does give a full parametrization in many cases, we develop

this approach here.

Definition 2.5. Let (P,Q) ∈ R×R. The common constituent character of P and Q (or

the common constituents of P and Q) is defined as

φConst(P,Q) =
∑

χ irr. comp. char

min
(
〈1 ↑W

P , χ〉, 〈ε ↑
W
Q , χ〉

)
χ.

Namely, the multiplicity of a complex character in φConst(P,Q) is the minimum of

its multiplicities in the permutation module on P and the signed permutation module

on Q. Observe that if P and P′ are conjugate subgroups of W, then the representations

1 ↑W
P and 1 ↑W

P′ are isomorphic, as are ε ↑W
P and ε ↑W

P′ . Therefore φConst is a well-defined

function on Rconj × Rconj.

We list some initial properties of φConst.

Proposition 2.6. φConst(P,Q) is the character of a rational representation of W.

Proof. Let ρ be an irreducible rational representation of W, and let ρ′ be any rational

representation of W. We may write ρ = ρa1
1 ⊕· · ·⊕ρ

ak
k where ρi are the distinct irreducible

complex constituents of ρ. Now, observe that we may write ρ′ as a nonnegative integer

direct sum of irreducible rational representations, and then write each irreducible ratio-

nal constituent as a nonnegative integer direct sum of irreducible complex representa-

tions. Observe that distinct irreducible rational representations have distinct complex

summands, since the space of homomorphisms is zero. It follows that the multiplicity

of ρi in ρ′ is equal to ai times some integer cρρ′ which is the multiplicity of ρ in ρ′ as

rational characters.
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We apply this simultaneously to ρ′ = 1 ↑W
P and ρ′ = ε ↑W

Q and now consider the

characters of these representations. Let χi be the complex character of the irreducible

representation ρi defined above, and denote by φρ the rational character of ρ. We have

that the multiplicity of χi in φConst(P,Q) is min{aic
ρ

1↑W
P
, aic

ρ

ε↑W
Q
}. Therefore

φConst(P,Q) =
⊕
ρ

min{cρ
1↑W

P
, cρ

ε↑W
Q
}φρ,

with this sum taken over a collection of rational irreducible representations ρ. Thus,

φConst(P,Q) is the character of a rational representation. �

The multiplicities defined in the above proof allow us to construct a rational repre-

sentation whose character is φConst(P,Q). However, there is no evident way to canoni-

cally identify this representation with a particular subrepresentation of 1 ↑W
P or ε ↑W

Q .

Lemma 2.7. If (P1,Q1) ≤ (P2,Q2) in (R × R)conj then φConst(P1,Q1) − φConst(P2,Q2) is

a character of W.

The expression in the lemma is always a virtual character, and the point is that it is

a character.

Proof. If (P1,Q1) ≤ (P2,Q2) in (R × R)conj then as subgroups of W and to within

conjugacy, P1 ≤ P2 and Q1 ≤ Q2. Then we have 1 ↑W
P2

is a summand of 1 ↑W
P1

and ε ↑W
Q2

is a summand of ε ↑W
Q1

. Thus, the common constituents of 1 ↑W
P2

and ε ↑W
Q2

appear in

both 1 ↑W
P1

and ε ↑W
Q1

, and the result follows. �

Lemma 2.8. For all P,Q ∈ (R × R)conj, φConst(Q, P) = φConst(P,Q) ⊗ ε.

Proof. We observe that the multiplicity of an irreducible complex character χ in a char-

acter χ′ equals the multiplicity of χ ⊗ ε in χ′ ⊗ ε. Thus, for each irreducible χ, the

minimum of the multiplicities of χ in 1 ↑W
Q and ε ↑W

P is equal to the minimum of the

multiplicities of χ⊗ε in (1 ↑W
Q )⊗ε � ε ↑W

Q and (ε ↑W
P )⊗ε � 1 ↑W

P . The claim follows. �

Common constituents of representations are closely related to homomorphisms be-

tween representations. The complex inner product 〈χ, χ′〉 is equal to the dimension of
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the space of W-equivariant linear maps between complex representations ρ : V → V

and ρ′ : V ′ → V ′ whose characters are χ and χ′. This value is often denoted i(ρ, ρ′) and

referred to as the intertwining number of ρ and ρ′.

Over any field K containingQ, the group algebraCW is semisimple and every finite-

dimensional KW-module is a direct sum of irreducible representations. A nonzero ho-

momorphism between U and V maps some nonzero submodule U′ ⊆ U isomorphically

onto a submodule V ′ ⊆ V . Then χ(ρ|V′) = χ(ρ′|U′) is a summand of both χ and χ′. Thus,

the modules U and V have a common constituent if and only if i(ρ, ρ′) = 〈χ, χ′〉 , 0.

In the case that χ1 = 1 ↑W
P and χ2 = χ ↑W

Q where P and Q are reflection subgroups of

W, and χ is a character of a one-dimensional representation of Q, we can give a more

explicit characterization of 〈χ1, χ2〉.

Proposition 2.9. Let W be any finite group, and let P and Q be subgroups of W. Let χ

be a character of Q of degree 1. Then

〈1 ↑W
P , χ ↑

W
Q 〉 = |{PwQ ∈ P\W/Q : P ∩ wQ ≤ ker χ}|.

Proof. Let ρ be a representation of W whose character is χ. By Mackey’s Decomposi-

tion Formula,

〈1 ↑W
P , ρ ↑

W
Q 〉 = 〈1P, ρ ↑

W
Q↓

W
P 〉

=
∑

PwQ∈P\W/Q

〈
1P,

(
w(ρ ↓Q

w−1Pw∩Q
)
)
↑P

P∩wQw−1

〉
=

∑
PwQ∈P\W/Q

〈
1P, (wρ) ↓wQw−1

P∩wQw−1↑
P
P∩wQw−1

〉
=

∑
PwQ∈P\W/Q

〈1 ↓P∩wQw−1 , (wρ) ↓P∩wQw−1〉.

Now, the characters 1 ↓P∩wQw−1 and wρ ↓P∩wQw−1 are absolutely irreducible, as they

have degree 1. Then the intertwining number of these characters is 1 if and only if

the characters are equal, otherwise it is 0. Moreover, (wρ) ↓P∩wQw−1≡ 1 if and only if

P ∩ wQw−1 ∈ ker(wρ) = ker(ρ) = ker(χ). The result follows. �
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We apply this to the restrictions of the degree-1 characters of W to reflection sub-

groups P and Q. When χ = 1, as a character of Q, we have ker χ = Q and we recover

the well-known identity 〈1 ↑W
P , 1 ↑

W
Q 〉 = |P\W/Q| which holds for all finite groups and

subgroup pairs. When χ = εQ, we obtain the following:

Corollary 2.10. Let P and Q be reflection subgroups of W. Then we have the following:

1. 〈1 ↑W
P , ε ↑

W
Q 〉 = |{PwQ ∈ P\W/Q : P ∩ wQ ≤ A(W)}|.

2. φConst(P,Q) , 0 if and only if there exists w ∈ W such that P ∩ wQ ≤ A(W).

Proof. Observe that ker εQ = A(Q) is the alternating subgroup of Q. By Proposition

2.2, A(Q) = A(W) ∩ Q. Then Part 1 follows from Proposition 2.9, and Part 2 follows

immediately from Part 1. �

Definition 2.11. We say a pair of reflection subgroups (P,Q) has the alternating inter-
section property if there exists w ∈ W such that wPw−1 ∩ Q ≤ A(W).

We will see later that in type A, the alternating intersection property becomes the

trivial intersection property of pairs of Young subgroups S λ, S µ ≤ S n, which states

that there exists σ ∈ S n such that σS λσ
−1 ∩ S µ = 1. This is because the intersection of

two Young subgroups is also a Young subgroup.

2.2.1 Parametrizations via Generalized Common Constituents

We now describe how a parametrization of the irreducible rational characters can arise

from common constituent characters. We take the viewpoint of φConst being a function

whose domain is Rconj × Rconj and whose codomain is the vector space of complex-

valued class functions on W. For any character-valued function φ whose domain is a

partially-ordered set Ω, we define the support of φ as {ω ∈ Ω : φ(ω) , 0}.

Suppose that the rational irreducible characters of W are linearly ordered χ1, . . . , χm,

and let (P j,Q j)m
j=1 be a list of pairs of reflection subgroups of W (inequivalent up to

either separate or joint conjugacy), and φ is a function that maps each subgroup pair

listed above to a class function of W. Then we define the multiplicity matrix to be M =
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Mφ =
(
〈φ(P j,Q j),χi〉

〈χi,χi〉

)m

i, j=1
. As discussed above, whenever we describe a parametrization in

terms of a matrix whose rows and columns are labelled respectively by irreducible

rational characters and by pairs of subgroups of W, the parametrization maps the i-th

subgroup pair to the i-th character.

For the character-valued function φ = φConst we consider the following properties:

Property 2.12. The values of φConst on the maximal elements of its support form a

complete list, without repetition, of the irreducible rational characters of W.

Property 2.13. All values of φConst on maximal elements of its support are irreducible

rational characters of W.

Property 2.14. All irreducible rational characters arise as values of φConst on maximal

elements of its support.

Property 2.15. There is a linear ordering φ1, . . . , φN on the set of rational characters of

W and a list of subgroup pairs (P j,Q j)N
j=1 such that MφConst is unitriangular.

Property 2.16. There is a linear ordering φ1, . . . , φN on the set of rational characters of

W and a list of subgroup pairs (P j,Q j)N
j=1 such that MφConst is unitriangular. Whenever

the resulting parametrization maps (P,Q) to φ, it maps (Q, P) to φ ⊗ ε.

Property 2.17. For each rational character φ of G there is a pair of reflection subgroups

(P,Q) for which φ occurs with multiplicity 1 in φConst(P,Q).

Remark 2.18. Property 2.16 implies that the multiplicity matrix is invariant under si-

multaneously interchanging the column of (P,Q) with (Q, P) and the row of φ with

φ ⊗ ε. This follows from Lemma 2.8, since φConst(Q, P) = φConst(P,Q) ⊗ ε.

Each of the above properties has the potential to provide a parametrization of the

irreducible characters in terms of pairs of reflection subgroups. However, for some

properties, a parametrization is not necessarily unique or canonical.
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Proposition 2.19. We have the following implications between the above properties:

2.13⇐ 2.12⇒ 2.14⇒ 2.15⇒ 2.17, 2.16⇒ 2.15.

Proof. By definition, Property 2.12 implies both Properties 2.13 and 2.14. Moreover,

Property 2.16 implies Property 2.15 by definition. Given Property 2.14, we may fix any

ordering φ1, . . . , φm on the irreducible rational characters, and then choose subgroup

pairs (Pi,Qi) such that φConst(Pi,Qi) is irreducible and equal to φi. Then the multiplicity

matrix is the identity matrix, so Property 2.15 holds. Finally, Property 2.15 directly

implies Property 2.17 by definition. �

Problem 2.20. Determine which properties hold for which finite Coxeter groups.

Example 2.21. Let W = A2 (isomorphic to the symmetric group S 3). This group has

three conjugacy classes of reflection subgroups, of types A2, A1, and 1. These classes

index the columns of Table 2.2, which gives character decompositions for all induced

characters of the form 1 ↑W
P and ε ↑W

Q . The character in the (P,Q)-entry is the common

constituent character of 1 ↑W
P and ε ↑W

Q .

A2 A1 1
ε φ2 + ε 1 + 2φ2 + ε

A2 1 0 0 1
A1 1 + φ2 0 φ2 1 + φ2

1 1 + 2φ2 + ε ε φ2 + ε 1 + 2φ2 + ε

Table 2.2: Table of common constituents of permutation and signed permutation char-
acters for W = A2.

(A2, 1) (A1, A1) (1, A2)
1 1 0 0
φ2 0 1 0
ε 0 0 1

Table 2.3: Multiplicity matrix for selected common constituents for W = A2.
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Here, the maximal elements of the support of φConst are exactly the pairs chosen

for the multiplicity matrix, and these give a complete list of the irreducible rational

characters of A2 without repetition. Thus Property 2.12 holds for A2, which implies all

other properties.

Example 2.22. We give an example in which the multiplicity matrix is not the identity

matrix. All relevant reflection subgroup conjugacy classes and character direct sum

decompositions were determined computationally in GAP.

Let W = D4. This group has twelve conjugacy classes of reflection subgroups.

There are three conjugacy classes of type D3, denoted D3a, D3b, and D3c, and three

conjugacy classes of type D2, denoted D2a, D2b, and D2c. In Rconj, the only conjugate-

inclusion relations among these six classes are D2a ≤ D3a, D2b ≤ D3b, and D2c ≤

D3c. The remaining subgroup classes are of type D4, A4
1, A3

1, A2, A1, and 1. There

are 13 irreducible complex characters, which are all rational. We denote these by

1, ε, φ2, φ3a, φ3b, φ3c, φ3d, φ3e, φ3 f , φ4a, φ4b, φ6, and φ8. Under this labeling, φ3a ⊗ ε = φ3d,

φ3b ⊗ ε = φ3e, φ3c ⊗ ε = φ3 f , and φ4a ⊗ ε = φ4b.

Table 2.4 gives the table of common constituents where the (P,Q) entry is the direct

sum decomposition of φConst(P,Q) into irreducible characters. Ellipses denote a nonzero

character which is omitted for conciseness, and we have also omitted the character

decompositions of the permutation and signed permutation modules. Table 2.5 gives

a unitriangular multiplicity matrix for one possible collection of subpairs, which has

the property that (P,Q) is mapped to φ if and only if (Q, P) is mapped to φ ⊗ ε. Thus,

Property 2.16 holds. However, Property 2.13 does not hold, as for instance (A2, A2)

is a maximal element of the support of φConst, but φConst(A2, A2) = φ6 + φ8 which is

reducible. Conversely, Property 2.14 does not hold, since the irreducible φ6 is not equal

to φConst(P,Q) for any (P,Q).

Proposition 2.23. A parametrization of simple characters in the manner of Property

2.15 allows us to construct the irreducible rational characters of W recursively, using

only representations induced from one-dimensional characters of reflection subgroups

of W.
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D4 D3a D3b D3c A4

1 A3
1 A2 D2a D2b D2c A1 1

D4 0 0 0 0 0 0 0 0 0 0 0 1

D3a 0 0 0 0 0 0 0 φ3d 0 0 φ3d + φ4b · · ·

D3b 0 0 0 0 0 0 0 0 φ3e 0 φ3e + φ4b · · ·

D3c 0 0 0 0 0 0 0 0 0 φ3 f φ3 f + φ4b · · ·

A4
1 0 0 0 0 φ2 φ2 0 φ2 + φ3d φ2 + φ3e φ2 + φ3 f · · · · · ·

A3
1 0 0 0 0 φ2 φ2 + φ8 φ8 · · · · · · · · · · · · · · ·

A2 0 0 0 0 0 φ8 φ6 + φ8 · · · · · · · · · · · · · · ·

D2a 0 φ3a 0 0 φ2 + φ3a · · · · · · · · · · · · · · · · · · · · ·

D2b 0 0 φ3b 0 φ2 + φ3b · · · · · · · · · · · · · · · · · · · · ·

D2c 0 0 0 φ3c φ2 + φ3c · · · · · · · · · · · · · · · · · · · · ·

A1 0 φ4a + φ3a φ4a + φ3b φ4a + φ3c · · · · · · · · · · · · · · · · · · · · · · · ·

1 ε · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 2.4: Table of common constituents of permutation and signed permutation char-
acters for W = D4.

(D4, 1) (D3a, A1) (D3a,D2a) (D3b,D2b) (D3b,D2b) (A2, A2) (A3
1, A

3
1) (A4

1, A
4
1) (A1,D3a) (D2a,D3a) (D2b,D3b) (D2c,D3c) (1,D4)

1 1 0 0 0 0 0 0 0 0 0 0 0 0

φ4b 0 1 0 0 0 0 0 0 0 0 0 0 0

φ3d 0 1 1 0 0 0 0 0 0 0 0 0 0

φ3e 0 0 0 1 0 0 0 0 0 0 0 0 0

φ3 f 0 0 0 0 1 0 0 0 0 0 0 0 0

φ6 0 0 0 0 0 1 0 0 0 0 0 0 0

φ8 0 0 0 0 0 1 1 0 0 0 0 0 0

φ2 0 0 0 0 0 0 1 1 0 0 0 0 0

φ4a 0 0 0 0 0 0 0 0 1 0 0 0 0

φ3a 0 0 0 0 0 0 0 0 1 1 0 0 0

φ3b 0 0 0 0 0 0 0 0 0 0 1 0 0

φ3c 0 0 0 0 0 0 0 0 0 0 0 1 0

ε 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2.5: Multiplicity matrix for selected common constituents for W = D4.

Proof. Without loss of generality, we may assume that the multiplicity matrix Mi, j is

upper unitriangular. Then we have φ1 = M1,1 = φConst(P1,Q1) which must be an irre-

ducible character, and recursively for j > 1 we have

φ j = φConst(P j,Q j) −
∑
i< j

Mi, jφi.
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�

Proposition 2.23 implies that, if we know the multiplicities of implicitly-defined

irreducibles in direct sum decompositions of permutation modules and signed permu-

tation modules (but not necessarily the values of the irreducible summands themselves),

then we can determine the values of the irreducibles using a unitriangular multiplicity

matrix. An example of this construction is given in Chapter 6, where we discuss the

dihedral groups. Even without this prior knowledge, a parametrization can be thought

of as a way of imposing a structure on the set of irreducible characters, or alternatively,

on a certain set of subgroup pairs for which a parametrization exists.

At one time we conjectured that Property 2.15 might hold for all finite Coxeter

groups, but we will see later that this is false: it does not hold for the group H4. It does,

however, hold for the group H3, as well as many others. We will also see a refinement of

the parametrization we consider here, using a generalization of the Specht modules for

the symmetric groups, that does parametrize the rational characters of H4. It remains

interesting to determine the Coxeter groups for which the function φConst exhibits a

‘nice’ parametrization using the properties above (or similar).

At this point we comment that we can also consider the parametrization of charac-

ters using pairs of parabolic subgroups of W, instead of pairs of reflection subgroups.

Let φ′Const be the restriction of φConst to the set of pairs of parabolic subgroups of W.

We may consider analogous properties, denoted for example as Property 2.12’, with

φConst replaced by φ′Const. Notice that, in the case of symmetric groups, the reflection

subgroups are all parabolic so φConst = φ′Const for these groups. The same is not true

for other Coxeter types and, indeed, parabolic subgroups are inadequate for the kind

of parametrizations we consider. The easiest example of this occurs with the dihedral

groups I2(m). Here I2(m) has three or four conjugacy classes of parabolic subgroups

when n is odd or even respectively, but the number of simple rational characters is

τ(m) + 1 or τ(m) + 2 respectively, where τ(m) is the number of divisors of m.

Because of this, we do not consider using the poset Pconj × Pconj after this section.

We observe that Property 2.14’ implies Property 2.14, since whenever an irreducible

character arises on a pair of parabolic subgroups (P′,Q′), then we may choose a pair
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of reflection subgroups (P,Q) greater than or equal to (P′,Q′) in Rconj × Rconj, which is

maximal on the support of φConst. The value of φConst on (P,Q) is necessarily equal to

φConst(P′,Q′).

Moreover, Property 2.15’ implies Property 2.15, Property 2.16’ implies Property

2.16, and Property 2.17’ implies Property 2.17, because because the choice of pairs of

parabolic subgroups that establishes each of these properties is also a set of pairs of

reflection subgroups. The remaining properties do not in general have an analogous

relationship.

We emphasize that computations involving common constituent characters depend

on a prior knowledge of the irreducible complex characters of W. The standard GAP

package “CHEVIE” includes the complex character tables for all Coxeter groups, so

common constituent characters are a viable computational tool. They cannot be used to

‘generate’ the irreducible rational characters or determine their values starting with no

assumed knowledge of the characters of W.



23

2.3 Generalized Specht Modules

In this section, we describe another approach to parametrization generalizing the Specht

modules for the symmetric groups. The characters of generalized Specht modules will

be summands of the common constituent characters, and in Coxeter types other than A,

they are often proper summands. Thus, this approach is a refinement of the approach via

generalized common constituents. That said, there are limitations to what combinatorial

properties of the classical Specht modules can be generalized in this way. In particular,

the dominance order has no natural generalization to arbitrary Coxeter type.

The generalized Specht modules S (P,Q) = S F(P,Q) will be indexed by pairs of

reflection subgroups P and Q of a Coxeter group W, where the subgroup pair (P,Q) is

taken up to simultaneous conjugacy. We will define S F(P,Q) in two equivalent ways:

as submodules of permutation modules; and as left ideals of the group algebra FW. We

note that there are related constructions in [4, 6, 7, 8, 9, 12]. Many of our results hold

when F is an arbitrary field, or a field of characteristic not dividing |W |. Some results

and proofs that are particularly relevant to constructing and decomposing the modules

S F(P,Q) are postponed until Chapter 5.

Definition 2.24. For each reflection subgroup P, let

P+ :=
∑
g∈P

g, P− :=
∑
g∈P

ε(g)g,

which are elements of the group algebra FW. Then, for a pair of reflection subgroups

(P,Q), define

κ(P,Q) := Q−P+ ∈ FW.

Definition 2.25. Let W be a finite Coxeter group, and let P and Q be reflection sub-

groups of W. Let F be a field.

1. (First definition) The generalized Specht module S (P,Q) = S F(P,Q) is the FW-

submodule of F ↑W
P generated by Q−1̄.
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2. (Second, equivalent definition) The generalized Specht module S (P,Q) is the FW-

submodule of FW generated by κ(P,Q).

Example 2.26. Let W = S n be the symmetric group, and let P and Q be the parabolic

subgroups P = Rt and Q = Ct, which are the row- and column-stabilizers of a Young

tableau t (all to be defined in Chapter 3. Then it is well known that S (P,Q) is the

ordinary Specht module S λ corresponding to the partition λ.

In view of this, we will frequently omit the word ‘generalized’ and refer simply to

‘Specht modules’ for a Coxeter group, meaning generalized Specht modules. This is

an extension of the standard terminology, even in the case of symmetric groups, in that

there is a Specht module defined for each pair of reflection subgroups.

Lemma 2.27. 1. The two definitions of the Specht module S (P,Q) in Definition 2.25

are equivalent: the left ideal FWκ(P,Q) of the group algebra FW is isomorphic to

the FW-submodule of F ↑W
P generated by Q−1̄.

2. S (P,Q) is isomorphic to a quotient module of the signed permutation module

ε ↑W
Q .

3. The Specht modules S Q(P,Q) are rational representations of W.

Proof. 1. We first define a FW-module homomorphism f : FWP+ → F ↑W
P by f (P+) =

1. Observe that the stabilizers of P+ and 1 in W are both equal to P. The set O :=

{wP+|w ∈ W} is then equivalent as a W-set to W/P. The distinct elements of O have

disjoint supports in the standard basis for FW, so the set O is linearly independent.

Since O spans FWP+ by definition, it is a basis. This establishes that f is a well-defined

linear map as well as a FW-module homomorphism. The map given by w 7→ wP+ is

similarly shown to be a well-defined FW-module homomorpism, and it is the inverse to

f .

Now let g be the restriction of f to (FW)κ(P,Q) which must be injective. Then for all

w ∈ W, g(wκ(P,Q)) = wQ−1, so the image of g is FWQ−1 = S (P,Q) which completes

the proof.
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2. We define a homomorphism ε ↑W
Q→ F ↑W

P of FW-modules whose image is

FWQ−1, as follows. The element Q−1̄ ∈ F ↑W
P spans a FQ-submodule that is an image

of ε, because each q ∈ Q acts on it as multiplication by ε(q). This homomorphism

extends to the desired homomorphism by the universal property of induction, and its

image is evidently the Specht module FWQ−1.

3. This is immediate because each Specht module is defined as a QW-submodule

of a permutation module over Q. �

Although we do not exploit this here, the Specht modules S Q(P,Q) are evidently

defined over Z. We denote φSpecht(P,Q) := χ(S Q(P,Q)).

Corollary 2.28. The character φSpecht(P,Q) is a summand of φConst(P,Q).

Proof. By Part 1 of Lemma 2.27, S (P,Q) is a quotient of ε ↑W
Q , so its character is a

summand of the character of ε ↑W
Q . Likewise, by the first characterization in Definition

2.25, φSpecht(P,Q) is a summand of χ(Q ↑Q
P ). Taking the minimum of the induced

character multiplicities gives the result. �

This means that Specht modules have the potential to discriminate more finely be-

tween different irreducible characters of W than the common constituents of permuta-

tion and signed permutation modules. We must be careful, though, when discussing the

invariance of the Specht module and its character.

Proposition 2.29. Let F be any field. Let P and Q be reflection subgroups of W, and let

w ∈ W. Then S F(P,Q) � S F(wP, wQ). When F = Q, we have that φSpecht is a well-defined

function on (R × R)conj.

Proof. Observe that

(wP)+ =
∑
σ∈wP

σ =
∑
p∈P

wpw−1 = w

∑
p∈P

p

 w−1 = w(P+).
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Moreover, since conjugation preserves the sign character, we also have

(wQ)− =
∑
σ∈wQ

ε(σ)σ

=
∑
q∈Q

ε(wqw−1)wqw−1

=
∑
q∈Q

ε(q)wqw−1

= w

∑
q∈Q

ε(q)q

 w−1

= w(Q−).

Combining these, we have κ(wP, wQ) = (wQ)−(wP)+ = w(Q−P+) = wκ(P,Q). We claim

there is a well-defined map f : FWκ(P,Q) → FWκ(wP,wQ) given by v 7→ vw−1. Indeed, if

v =
∑
σ∈W aσσQ−P+, then

vw−1 =
∑
σ∈W

aσσQ−P+w−1

=
∑
σ∈W

aσσw−1
[
wQ−P+w−1

]
=

∑
σ∈W

aσσw−1w(κ(P,Q)) ∈ FWκ(wP,wQ).

This map is invertible with inverse given by right multiplication by w. Moreover,

f commutes with left multiplication by elements of W, so it is a FW−module isomor-

phism as required.

�

While S (P,Q) is invariant up to joint conjugacy of P and Q, the following example

shows it is not invariant up to separate conjugacy:

Example 2.30. We mention an example whose Specht character calculations we post-

pone until Chapter 4. When W = H4, consider subgroups P of Coxeter type A2
2 and
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Q of type A4
1. We have calculated all possible characters of Specht modules across all

possible pairs of conjugates of P and Q. Our computations show that there are two

possible Specht modules that may arise, depending on the particular realization of P

and Q as subgroups of H4. Their characters, call them φ and φ′, have the following

rational decomposition:

φ = φ10 + φ18 + φ25b + φ40 + φ48a,

φ′ = φ8a + φ10 + φ18 + φ40 + φ48a.

Here the subscripts give the degrees of the irreducible rational constituents, consistent

with Table 4.6. We see that neither character is a summand of the other, so there is no

canonical choice of subgroup conjugates that gives the ‘largest’ Specht module. In our

calculation that establishes this Specht module decomposition, this pair of reflection

subgroups corresponds to φ40 in the parametrization given there. Either of the two

possible Specht modules could be used in our parametrization.

Thus, in the context of Specht modules, while we may speak of reflection subgroups

P and Q having the alternating intersection property P ∩ Qw ≤ A(W), the choice of w

matters.

We have a result for the existence of nonzero Specht modules analogous to Corol-

lary 2.10. This result is particularly relevant for computations, and we postpone the

proof to Chapter 5.

Proposition 2.31. Let F be a field. Then S (P,Q) , 0 if and only if P ∩ Q ≤ Ker(ε) and

|P ∩ Q| , 0 in F.

From this, we have the following observation that can be quite useful for certain

Coxeter types.

Proposition 2.32. Let P and Q be reflection subgroups of W. If φConst(P,Q) is nonzero,

then there exists w ∈ W such that φSpecht(P, wQ) is nonzero. If additionally φConst(P,Q) is

irreducible, then φSpecht(P, wQ) is irreducible and w arises from a unique (P,Q)-double

coset.
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Proof. If φConst(P,Q) is nonzero, then by Corollary 2.10, there exists w ∈ W such that

P ∩ wQ ≤ A(W). Since Ker(ε) = A(W) over the rational numbers, φSpecht(P, wQ) is

nonzero by 2.31. By Corollary 2.28, φSpecht(P, wQ) is a summand of φConst(P, wQ) =

φConst(P,Q), so it must be irreducible and equal to φConst(P,Q). The uniqueness of w

also follows from Corollart 2.10. �

Thus, if we can show that i(Q ↑W
P , ε ↑

W
Q ) = 1 using Proposition 2.9, then there exists

an irreducible Specht module of the form S (P, wQ), w ∈ W, such that P ∩ wQ ≤ A(W),

and any two such w, w′ lie in the same (P,Q)-double coset.

We summarize our criteria determined from Propositions 2.31 and 2.32, along with

Corollary 2.10 for common constituent characters:

Theorem 2.33. The following are equivalent:

1. 〈1 ↑W
P , ε ↑

W
Q 〉 , 0,

2. φConst(P,Q) , 0,

3. There exists w ∈ W such that φSpecht(P, wQ) , 0,

4. There exists w ∈ W such that P ∩ wQ ≤ A(W).

Moreover, φConst(P,Q) is irreducible if and only if there exists a unique (P,Q)-double

coset PwQ such that P ∩ wQ ≤ ker(ε). In this case, φSpecht(P, wQ) is also irreducible.

Example 2.34. Let W = W(B2) = 〈a, b : a2 = b2 = (ab)4 = 1〉 be the rank 2 Coxeter

group of type B. Let P = 〈a, bab〉 and Q = 〈b, aba〉 which are both Abelian subgroups

isomorphic to C2 × C2. Since P and Q have index 2 in W, they are normal subgroups.

There is a unique double coset in P\W/Q which we may write as P1Q. This double

coset has the alternating intersection property since P∩Q = 〈abab〉 ≤ A(W). Therefore

i(Q ↑W
P , ε ↑

W
Q ) = 1, and S (P,Q) is irreducible with character φConst(P,Q).

The following may be a helpful tool for determining direct sum decompositions of

generalized Specht modules.
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Proposition 2.35. Let F be a field of characteristic not dividing |W |. Let P,Q, P′,Q′

be reflection subgroups of W with P ≤ P′ and Q ≤ Q′. Then S (P,Q′) | S (P,Q) and

S (P′,Q) | S (P,Q).

Proof. First, let X be a transversal for the set of left cosets of Q in Q′. Then

S (P,Q′) = FWκ(P,Q′)

= FW
∑
q′∈Q′

∑
p∈P

ε(q′)q′p

= FW
∑
x∈X

∑
q∈Q

∑
p∈P

ε(x)xε(q)qp

= FW
∑
x∈X

ε(x)x
∑
q∈Q

∑
p∈P

ε(q)qp

= FW
∑
x∈X

ε(x)xκ(P,Q).

Since for each x ∈ X, ε(x)xκ(P,Q) ∈ S (P,Q), the cyclic generator
∑

x∈X ε(x)xκ(P,Q′) of

S (P,Q′) is contained in S (P,Q) as well, and the first claim follows from semisimplicity

of FW.

Next, let X be a transversal for the set of right cosets of P in P′. Then

S (P′,Q) = FWκ(P′,Q)

= FW
∑
q∈Q

∑
p′∈P′

ε(q)qp′

= FW
∑
q∈Q

∑
p∈P

∑
x∈X

ε(q)qpx

= FW
∑
q∈Q

∑
p∈P

ε(q)qp
∑
x∈X

x

= FWκ(P,Q)

∑
x∈X

x.
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Then S (P′,Q) is the image of S (P,Q) under the mapping FW → FW given as right

multiplication by
∑

x∈X x. Then S (P′,Q) is a homomorphic image of S (P,Q), and the

second claim again follows from semisimplicity. �

We emphasize that this result depends on the particular choices of P, Q, P′, and Q′.

If Q is merely conjugate to a subgroup of Q′, then S (P,Q) may not be isomorphic to a

summand of S (P,Q′). The Coxeter group W = H3 is a counterexample, see Table 4.5

in Section 4.1.

We will now show that S F(Q, P) � S F(P,Q) ⊗ ε whenever FW is semisimple. This

generalizes the identity S λ′ � S λ ⊗ ε which holds for Specht modules in type A. In the

following discussion, let F be a field whose characteristic does not divide |W |, and fix

reflection subgroups P and Q of W.

We have an isomorphism α : ε ⊗ FW → FW specified as follows. We take the basis

elements of FW to be the group elements w ∈ W. Then the elements e⊗w form a basis

of ε ⊗ FW. We check that the specification α(e ⊗ w) = ε(w)w defines an FW-module

isomorphism:

α(g(e ⊗ w)) = α(ε(g)e ⊗ gw)

= ε(g) ε(gw)gw

= g(ε(w)w)

= gα(e ⊗ w).

When P and Q are subgroups of W, observe that α(e⊗P+) = P− and α(e⊗Q−) = Q+.

Proposition 2.36. ε ⊗ S (P,Q) � FWQ+P−.

Proof. Consider the diagram
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FWQ− FWP+

FW FW

17→P+

17→P+

Right multiplication by P+ sends wQ− to wQ−P+, so the image of the top map is

S (P,Q). Now tensor with ε (an exact functor)

ε ⊗ (FWQ−) ε ⊗ (FWP+)

ε ⊗ S (P,Q)

ε ⊗ FW ε ⊗ FW

ε⊗17→ε⊗P+

ε⊗17→ε⊗P+

and apply α to get

FWQ+ FWP−

FWQ+P−

FW FW

17→P−

17→P−

We deduce ε ⊗ S (P,Q) � FWQ+P−. �

Proposition 2.37. S (Q, P)∗ � FWQ+P−.

Proof. Let P−> be the left annihilator of P− in FW and let Q+> be the left annihilator

of Q+ in FW. Observe that (P−>)2 = |P|P−>, with the right hand side being nonzero

by our assumption on F. Then the image of the map FW → FW given by x 7→ xP−

is FWP−, the kernel is P−> by definition, and these ideals have trivial intersection in

FW. It follows that FW � (FWP−) ⊕ P−>. Similarly, (Q+>)2 = Q+> , 0 and FW �

(FWQ+) ⊕ Q+>. Thus,

FW/P−> � FWP− ⊆ FW



32

and

FW/Q+> � FWQ+ ⊆ FW.

Also, as described in Exercises 13 and 14 from Chapter 4 in [22], under the isomor-

phism FW � (FW)∗ of Exercise 14, we have P−> � (FWP−)⊥ and Q+> � (FWQ+)⊥.

Consider the following submodule diagrams:

FW FW∗ � FW

(FWQ+) + P−> Q+> + (FW)P−

FWQ+ P−> Q+> FWP−

(FWQ+) ∩ P−> Q+> ∩ (FWP−)

0 0

The diagram on the right shows subspaces of the dual space FW∗ = HomF(FW,F)

arranged so that, on inverting the diagram, each submodule is in the same position as its

perpendicular space under the canonical pairing of FW and FW∗. By duality, sections

of the diagram on the right are isomorphic to the dual of corresponding sections of the

diagram on the left, after inversion.

In the left diagram

((FWQ+) + P−>)/P−> � FWQ+P−

with isomorphism given as the restriction of the map from FW/P−> to FWP− sending

1 + P−> to P−. The image of Q+ + P−> in this module is Q+P−, so the restricted map

is surjective and thus an isomorphism. By duality, the quotient module ((FWQ+) +

P−>)/P−> is isomorphic to the dual of the quotient

FWP−/(Q+> ∩ (FWP−))
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in the diagram on the right, and by the second isomorphism theorem this is isomorphic

to

(Q+> + (FWP−))/Q+>.

This, in turn, is the image of FWP− in FW/Q+> � FWQ+, namely S (Q, P). �

Putting this together we get

Theorem 2.38. Let F be a field whose characteristic does not divide |W |. Let P and Q

be reflection subgroups of W. Then ε ⊗ S F(P,Q) � S F(Q, P)∗ � S F(Q, P).

Proof. Propositions 2.36 and 2.37 give the first of the isomorphisms. The second fol-

lows from semisimplicity and self-injectivity of FW. �

2.3.1 Parametrizations via Generalized Specht Modules

We may consider Properties 2.39 through 2.44 analogous to those defined in the previ-

ous chapter but defined for the generalized Specht characters φSpecht instead of φConst.

Property 2.39. The maximal elements of the support of φSpecht form a complete list,

without repetition, of the irreducible rational characters of W.

Property 2.40. All values of φSpecht on maximal elements of its support are irreducible

rational characters of W.

Property 2.41. All irreducible rational characters arise as values of φSpecht on maximal

elements of its support.

Property 2.42. There is a linear ordering φ1, . . . , φN on the set of rational characters of

W and a list of pairs of reflection subgroups (P j,Q j)N
j=1 such that the multiplicity matrix

MφSpecht is unitriangular.

Property 2.43. There is a linear ordering φ1, . . . , φN on the set of rational characters of

W and a list of subgroup pairs (P j,Q j)N
j=1 such that MφSpecht is unitriangular. Whenever

the resulting parametrization maps (P,Q) to φ, it maps (Q, P) to φ ⊗ ε.
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Property 2.44. For each rational character φ of G there is a pair of reflection subgroups

(P,Q) for which φ occurs with multiplicity 1 in φSpecht(P,Q).

Proposition 2.45. The following implications hold:

2.40⇐ 2.39⇒ 2.41⇒ 2.42⇒ 2.44 2.43⇒ 2.42.

Proof. Analogous to the proof of Proposition 2.19. �

The logical connections between these properties and Properties 2.39 through 2.44

are more subtle. We do have the following:

Proposition 2.46. Property 2.14 implies Property 2.41: if the irreducible rational char-

acters of W arise as values of φConst on maximal elements of its support, then they arise

as values of φSpecht on maximal elements of its support.

Proof. Suppose that the irreducible complex characters arise as common constituent

characters φConst(Pi,Qi). By Proposition 2.32, for each i, there exists wi ∈ W so

that Pi ∩
wi Qi ⊂ A(W), and the value of φSpecht is irreducible on this pair, equal to

φConst(Pi,
wi Qi) = φConst(Pi,Qi). Now, we may choose subgroups P′i , Q′i such that

Pi ≤ P′i ,
wi Qi ≤ Q′i , and (P′i ,Q

′
i) is maximal on the support of φSpecht. Again, we must

have that φSpecht(P′i ,Q
′
i) = φSpecht(Pi,Qi) is irreducible. Thus, the irreducible complex

characters are equal to the Specht characters φSpecht(P′i ,Q
′
i), which proves the result. �

However, there are no other analogous logical implications among the other prop-

erties.

We pose the following conjecture:

Conjecture 2.47. Property 2.42 holds for all finite Coxeter groups W: there is a linear

ordering φ1, . . . , φm on the set of rational characters of W and a list of pairs of reflection

subgroups (P j,Q j)m
j=1 such that the multiplicity matrix MφSpecht is unitriangular.

We will see that for all the Coxeter groups considered here, this conjecture does

indeed hold.



Chapter 3

Parametrizations in classical types A

and B

The indecomposable finite crystallographic Coxeter groups are parametrized by Cox-

eter diagrams of types A, B,D, E, F and G, and they are the indecomposable Coxeter

groups that appear as Weyl groups of finite dimensional complex semi-simple Lie al-

gebras. In this chapter we reformulate the known parametrizations of characters of

Coxeter groups of types A and B in the terms we have been describing. In both of these

cases, the complex irreducible representations can be realized over Q, and we will see

that it is possible to parametrize them using common constituents of induced represen-

tations in the manner of Section 2.2. The more refined approach of generalized Specht

modules is not needed for these groups. In type A the parametrization by common

constituents is really the same as certain standard results, but in type B the deduction

appears to have some novel elements. Our main result in type B is Theorem 3.33. Aside

from types A and B, we note that the group of Coxeter type G2 is dihedral of order 12,

and the parametrization of its characters is done in Chapter 6 on dihedral groups. We

leave the parametrization of characters of the remaining crystallographic groups to fur-

ther investigation.

35



36

3.1 Coxeter type A

The Coxeter group of type An−1 has Coxeter diagram given by

and is the group of isometries of the regular simplex of dimension n− 1. It is abstractly

isomorphic to the symmetric groups S n, and under this isomorphism the Coxeter gen-

erators are identified with the adjacent transpositions (i, i + 1), 1 ≤ i < n. We discuss

algebraic and combinatorial properties of Young subgroups. Then, we summarize two

classical approaches to identifying the irreducible characters of S n: as common con-

stituent characters, and as characters of Specht modules. In type A both of these char-

acters coincide, though the two approaches can be seen as somewhat independent. This

is because the former is an implicit approach and the latter is an explicit construction

of representations.

The purpose of this summary is mostly to describe the existing theory in terms of

our generalized framework, as well as to establish notation for the following section.

This chapter has no new results about the symmetric groups, but proofs are sometimes

given for the sake of exposition.

3.1.1 Young subgroups

If ∆ = {∆i, i ∈ I} is a collection of disjoint subsets of [n], then for each i, S ∆i denotes

the set of permutations of ∆i. Observe that the S ∆i have pairwise trivial intersection and

are contained in each others’ centralizers in S n. Thus the product
∏

i S ∆i is isomorphic

to a direct product S ∆1 × S ∆2 × · · · .

Definition 3.1. A Young subgroup is a subgroup of S n of the form S ∆ =
∏

i S ∆i , where

∆ is a partition of {1, . . . , n}.

The reflections in S n are the transpositions (i, j), and the Coxeter generators in S n

are the adjacent transpositions (i, i + 1). From this it follows that every Young subgroup
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is a reflection subgroup. The following is well-known, but we reproduce the argument

here:

Proposition 3.2. For the Coxeter groups W = An−1 = S n, n ≥ 1, all reflection sub-

groups are parabolic subgroups, and these are exactly the Young subgroups of S n.

Proof. Let W ′ be a reflection subgroup of S n. Whenever W ′ contains the reflections

(i1, i2), (i2, i3), . . . , (ik−1, ik), it contains the symmetric group S {i1,...,ik}. Define a relation on

{1, . . . , n} as follows: i ∼ j if, for some k ≥ 0, there are reflections (i1, i2), . . . , (ik−1, ik)

in W ′ such that i1 = i and ik = j. This is an equivalence relation that induces a set

partition of {1, . . . , n} into blocks ∆1, . . . ,∆m. Then W ′ contains each subgroup S ∆i and

thus it contains
∏m

j=1 S ∆ j . Moreover, each transposition in W is contained in
∏m

j=1 S ∆ j

since it transposes two indices in ∆ j for some j. Thus,
∏m

j=1 S ∆ j contains all reflections

and it is equal to W ′.

Finally, we must show W ′ is conjugate to a subgroup generated by adjacent trans-

positions. We may order {1, . . . , n} as follows: If j ∈ ∆k and j′ ∈ ∆k′ , then j ≺ j′

if and only if k < k′, or k = k′ and j < j′. This gives a total ordering of the form

{σ(1) ≺ σ(2) ≺ . . . ≺ σ(n)} for some permutation σ ∈ S n. Then the subsets σ(∆i) are

intervals in {1, . . . , n}. If for a fixed i, σ(∆i) = {a, a + 1, . . . , b}, then S σ(∆i) is generated

by the adjacent transpositions (a, a + 1), . . . , (b − 1, b). Therefore σW ′σ−1 is generated

by adjacent transpositions and W ′ is a parabolic subgroup. �

Definition 3.3. A composition λ of a positive integer n is a sequence of nonnegative

integers λ1, λ2, . . . such that
∑∞

i=1 λi = n and λk+1 = 0 whenever λk = 0. A partition of n

is a composition λ such that λi ≥ λi+1 for all i ≥ 1.

We write λ � n when λ is an arbitrary composition of n and λ ` n when λ is

a partition of n. Denote by Λ(n) the set of compositions of n and Λ+(n) the set of

partitions of n. We will often write a partition λ in shorthand, condensing multiple

parts of size i. For example, we write λ = (3, 3, 2, 1, 1, 1) ` 11 as (32, 2, 13).

We associate with each partition λ its Ferrers diagram, which is a top- and left-

justified orthogonal array of squares with λi squares in the i-th row from the top.
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In the proof of Proposition 3.2, we may compose the permutation σ with a per-

mutation that rearranges the blocks of the partition ∆ in weakly decreasing order of

cardinality. This implies the following:

Proposition 3.4. Every Young subgroup is conjugate to a Young subgroup of the form

S {1,...,λ1} × S {λ1+1,...,λ1+λ2} · · · × S {λ1+···+λk−1+1,...,λ1+···+λk}, where λ = (λ1, . . . , λk) is a partition

of n.

We say a Young subgroup of S n is of type λ if it is isomorphic to S λ1 × · · · × S λk .

From here on, we will use S λ to denote “the” Young subgroup of type λ, with the

understanding that we may need to refer to a particular conjugacy class representative

depending on the context.

Before describing common constituents, we address how our alternating intersec-

tion property for an arbitrary Coxeter group coincides with the trivial intersection prop-

erty in type A:

Proposition 3.5. The intersection of two Young Subgroups is a Young subgroup. This

intersection is contained in the alternating subgroup if and only if it is equal to the

identity subgroup.

Proof. Let P =
∏

i S ∆i and Q =
∏

i S ∆′i
be Young subgroups corresponding to set

partitions ∆ and ∆′. Then P ∩ Q permutes the elements of each nonempty intersection

∆i ∩∆′j transitively, and it can only consist of permutations that fix each subset ∆i ∩∆′j.

Thus P ∩ Q is the Young subgroup corresponding to the common refinement of ∆ and

∆′. The second statement follows immediately from Proposition 3.2. �

3.1.2 Common constituent characters

We summarize exposition from Chapters 1-2 of [11] which proves the existence of

irreducible representations S λ occurring as the unique common constituents of 1 ↑S n
S λ

and ε ↑S n
S λ′

. This construction depends closely on the combinatorics of integer partitions,

especially the dominance order. However, it does not explicitly construct a submodule

of 1 ↑S n
S λ

or even use Young tableaux at all.
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Definition 3.6. Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be partitions of n. Then λ E µ

if for all k ≥ 0,
∑k

i=1 λi ≤
∑k

i=1 µi. This ordering on Λ+(n) is called the dominance
order.

We write λ C· µ if λ/µ and there does not exist a partition ν , λ, µ such that λ/ν/µ.

Proposition 3.7. The following are equivalent:

1. λ C· µ,

2. There exist i and j such that

(a) i < j,

(b) µ j = λ j − 1 and µi = λi + 1, and for k , i, j, we have λk = µk,

(c) i = j − 1 or λi = λ j.

3. The Ferrers diagram of µ can be obtained by moving the rightmost box of some

row of the Ferrers diagram of λ upwards to the end of another row, that row

being the lowest possible row where the resulting shape is the Ferrers diagram of

a partition.

The dual operation on Coxeter group representations given by V 7→ V ⊗ ε will have

a particular significance for the symmetric groups, in terms of a combinatorial dual

operation on integer partitions which we define below.

Definition 3.8. Let λ a n be a partition. Then the conjugate of λ, denoted λ′, has λ′j
equal to the number of parts of λ greater than or equal to j.

Equivalently, λ′ is the partition whose Ferrers diagram is obtained from the Ferrers

diagram of λ by transposing about the northwest / southeast diagonal.

Proposition 3.7 implies the following:

Proposition 3.9. λ E µ if and only if µ′ E λ′.

The dominance order and the trivial intersection property also have a close connec-

tion:
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Proposition 3.10. Let λ and µ be partitions of n. Then the number of 0-1 matrices with

row sums λ1, λ2, · · · and column sums µ′1, µ
′
2, . . . is equal to the number of double cosets

S λσS µ′ such that S λ ∩ σS µ′σ
−1 = {1}. This number is nonzero if and only if λ E µ.

Proof. The first statement is Corollary 1.3.13 of [11]. The second statement was origi-

nally proven by Gale and Ryser using 0-1 matrices, and the proof appears in [19]. �

Applying Equation 1.3.7 in [11] (which is generalized by our Proposition 2.9), we

have the following result:

Proposition 3.11. λ E µ if and only if 1 ↑S n
S λ

and ε ↑S n
S µ′

have nonzero common con-

stituents.

If λ = µ, then we can recover a unique (irreducible) common constituent.

Proposition 3.12. There exists a unique 0-1 matrix with with row sums λ1, λ2, · · · and

column sums λ′1, λ
′
2, . . .

Proof. Suppose M is such a matrix. If λ has k parts, then for each i, 1 ≤ i ≤ k, the i-th

row of M has λi 1’s. The j-th column sum of M is λ′j which is the number of parts of

λ which are greater than or equal to j. Then whenever λi ≥ j, row i must have one of

its ones at the (i, j)-th position by the pigeonhole principle. Therefore M is uniquely

determined with Mi j = 1 if and only if j ≤ λi. This matrix indeed has row sums λi and

λ′j, completing the proof. �

The following is Theorem 2.1.3, Equation 2.1.8, Lemma 2.1.10, and Theorem

2.1.11 from [11].

Proposition 3.13. 1. For all λ a n, the representations 1 ↑S n
S λ

and ε ↑S n
S λ′

have a

unique shared irreducible summand S λ, necessarily a rational representation,

which occurs in these representations with multiplicity one.

2. S λ ⊗ ε � S λ′ for all λ a n.

3. The multiplicity 〈1 ↑S n
S λ
, S µ〉 is nonzero if and only if λ E µ.
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4. The set {S λ | λ a n} is a complete set of irreducible representations for S n.

We mention that our Lemma 2.8 generalizes the deduction that S λ ⊗ ε � S λ′ that

appears in Equation 2.1.8 of [11].

We now connect the above theorem to our list of parametrization properties for the

function φConst.

Lemma 3.14. Let λ and µ be partitions of n. Then the multiplicity 〈ε ↑S n
S λ
, S µ〉 is nonzero

if and only if µ E λ′.

Proof. Observe that 〈ε ↑S n
S λ
, S µ〉 , 0 if and only if 〈ε⊗ε ↑S n

S λ
, ε⊗S µ〉 , 0. But ε⊗S µ � S µ′

and ε ⊗ ε ↑S n
S λ
� 1 ↑S n

S λ
. By Part 3 of Proposition 3.13, this multiplicity is nonzero exactly

when λ E µ′, which occurs if and only if µ E λ′. �

Proposition 3.15. For all partitions λ and µ, φConst(1 ↑
S n
S λ
, ε ↑S n

S µ′
) is irreducible if and

only if λ = µ′.

Proof. Let λ, µ and ν be partitions. By Lemma 3.14, S ν is a constituent of both 1 ↑S n

S λ

and ε ↑S n
S µ if and only if λ E ν E µ′. In particular, if φConst(S λ, S µ) is nonzero then λ E µ′.

Moreover, if λ , µ′ then both S λ and S µ′ are distinct constituents of φConst(S λ, S µ) which

proves the result. �

Before establishing our parametrization, we define another partial order on the set

of partitions of n:

Definition 3.16. The lexicographic ordering on the set of partitions of n has, for λ =

(λi)i≥1 and µ = (µi)i≥1, λ ≤lex µ if and only if λ = µ or there is some m ≥ 1 such that

λi = µi for all i < m, and λm < µm.

Observe that the lexicographic ordering is a linear ordering that refines the domi-

nance order.

Theorem 3.17. For W = S n, Properties 2.12 and 2.16 hold for all n. Thus, all listed

properties hold for the function φConst.
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Proof. We prove both Properties 2.12 and 2.16 by exhibiting a parametrization of the

rational characters φConst(S λ, S λ′), on a collection of subgroup pairs which are maximal

on the support of φConst, such that the multiplicity matrix is the identity matrix. For

our choice of reflection subgroup pairs, we may choose subgroup pairs of the form

(S λ, S λ′), λ ` n such that (S λ′ , S λ) is chosen whenever (S λ, S λ′) is. We order these by

the lexicographic ordering on the partitions λ appearing in the first coordinate.

Propositions 3.11 and 3.15 imply that the chosen subgroup pairs are maximal on

the support of φConst, and the values of φConst on these pairs, χ(S λ), are irreducible. By

Part 4 of Proposition 3.13, the S λ are a complete list of irreducibles, so Property 2.12

holds.

Property 2.16 follows from our choice of subgroup pairs and by Part 2 of Proposi-

tion 3.13, since φConst(S λ, S λ′) ⊗ φε = χ(S λ) ⊗ φε = χ(S λ′) = φConst(S λ′ , S λ). �

3.1.3 Specht modules

In type A, the Specht modules are defined in terms of Young tableaux, combinatorial

objects that model many algebraic properties of the symmetric groups. Our summary

most closely follows [20].

Definition 3.18. A Young tableau of shape λ (or λ-tableau) of a partition λ is a dia-

gram t = tλ obtained from the Ferrers diagram of λ by labeling the boxes in bijection

with the indices 1, . . . , n.

Let ti, j denote the label of t in row i and column j. Denote by t′ the λ′-tableau

obtained by reflecting t along the main diagonal. Explicitly, t′i, j = t j,i whenever t j,i is

defined.

The symmetric group acts transitively on the set of all λ-tableaux, with (σt)i, j =

σ(ti, j).

Definition 3.19. Let t = tλ be a λ-tableau. Then the row stabilizer Rt of t is the Young

subgroup S ∆ where the blocks of ∆ are the rows of t. The column stabilizer Ct of t is

the Young subgroup S ∆′ where the blocks of ∆′ are the columns of t.
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Immediately we have that Rt is of type λ and Ct is of type λ′. Observe that σRtσ
−1 =

Rσt and σCtσ
−1 = Cσt, so the pairs (Rσt,Cσt), σ ∈ S n, all correspond to the same

element of (R × R)conj.

We note as well that Rt′ = Ct and Ct′ = Rt.

Definition 3.20. A tabloid (of shape λ) is an orbit of the action of Rt on the set of λ-

tableaux. We denote by Mλ the free C-vector space with basis the set of tabloids of

shape λ.

The action of S n on the set of λ-tableaux is free and transitive and descends to

a well-defined action on tabloids. The set of tabloids, as an S n-set, is isomorphic to

S n/Rt. Thus, Mλ is isomorphic to 1 ↑S n
S λ

.

Definition 3.21. A polytabloid is an element of Mλ of the form et = (Ct)−{t} where {t}

is a λ-tabloid.

Definition 3.22. The (classical) Specht module S λ is the cyclic module CS n(Ct)−{t}

where (Ct)−{t} is any polytabloid.

We omit the justification that S λ does not depend on the choice of t. We also reuse

the notation S λ knowing this will turn out to coincide with the common constituent rep-

resentation S λ defined earlier. In our notation of generalized Specht modules, Lemma

2.27 implies that the classical Specht module S λ is isomorphic to

S (Rt,Ct) = CS n(Ct)−(Rt)+ = CS n(Rt′)−(Rt)+ = S (Rt,Rt′)

.

Irreducibility of the Specht modules in characteristic zero follows from James’ Sub-

module Theorem, which holds in arbitrary characteristic:

Proposition 3.23. Any submodule of Mλ either contains S λ or is contained in (S λ)⊥.

Moreover, both the dimension of the space of homomorphisms of S λ into Mµ, and

the dimension of S λ itself, may be enumerated by combinatorial objects associated to

λ and µ.



44

Definition 3.24. A generalized Young tableau (of shape λ) is a diagram t obtained

from the Ferrers diagram of λ by labeling the boxes with any positive integers. The

content of t is the composition α = (αi)i≥1 where αi is the number of i’s occurring in t.

Definition 3.25. A semistandard Young tableau is a generalized Young tableau t whose

labels are weakly increasing along rows and strictly increasing along columns. If both

rows and columns are strictly increasing and the label set is {1, . . . , n}, then t is a

standard Young tableau.

Definition 3.26. The Kostka numbers are the multiplicities Kλ,µ of S λ in Mµ.

The following is Corollary 2.4.7 and Theorem 2.11.2 of [20].

Proposition 3.27. For all λ, µ ` n, Kλ,µ is equal to the number of semistandard Young

tableaux with shape λ and content µ. If Kλ,µ > 0, then λ D µ. Moreover Kλ,λ = 1 for all

partitions λ.

In particular, the Specht modules are pairwise distinct, so they are in bijection with

the set of conjugacy classes of S n, namely, the set of partitions. Thus, the Specht

modules give a full list of the irreducible complex S n-representations (though this may

be deduced without a combinatorial description of Kλ,µ). As in our proof of Lemma

2.27, we note that the Specht modules are rational by definition, as they are generated

by polytableaux, which are rational vectors in Mµ.

The following is Parts 1 and 2 of Theorem 2.6.5 of [20], noting as in this text that

Part 2 also follows from Proposition 3.27 as the special case µ = [1n].

Proposition 3.28. The set {et | t is a standard Young tableaux of shape λ} is a basis for

S λ. The dimension f λ of S λ equals the number of standard Young tableaux of shape λ.

Finally, we observe that the identity S λ′ � S λ ⊗ ε can be proven analogously to our

proofs of Lemma 2.27 and Theorem 2.38, by way of an isomorphic identification of S λ

with a certain cyclic left ideal in the group algebra.

The preceding exposition establishes that the characters of the Specht modules

of symmetric groups are irreducible and equal to the common constituent characters

φConst(S λ, S λ′). Thus, we have the following:
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Theorem 3.29. Properties 2.39 and 2.43 (and thus all other listed properties for the

function φSpecht(−,−)) hold for W = S n.

Proof. For each λ, choose a λ-tableau t such that the tableau corresponding to λ’ is t′.

We take our collection of subgroup pairs to be {(Rtλ ,Ctλ)}, λ ` n, ordered lexicographi-

cally. By Propositions 3.23 and 3.27 and the discussions following, the representations

S (Rtλ ,Ctλ) � S λ are pairwise distinct irreducible representations, and the subgroup pairs

(Rtλ ,Ctλ) are maximal elements of the support of φSpecht(−,−). This establishes Property

2.39. The multiplicity matrix is thus the identity matrix. Since (Ct,Rt) = (Rt′ ,Ct′), then

the collection of subgroup pairs includes (Q, P) whenever it includes (P,Q). The cor-

responding parametrized rational characters are φ(S λ) and φ(S λ′) = φ(S λ) ⊗ ε, which

establishes Property 2.43. �

We remark that there many choices of subgroup pairs that give a unitriangular

parametrization of the irreducibles S λ. In the proofs of Theorems 3.17 and 3.29, the

multiplicity matrix was the identity matrix. We may also take our collection of sub-

group pairs to be {(S λ, 1), λ ` n} where S λ is any Young subgroup of type λ. With this

choice, φConst(S λ, 1) = φSpecht(S λ, 1) = χ(Mλ), and the multiplicity matrix is equal to

the unitriangular matrix (Kλ,µ)λ,µ. This parametrization gives a recursive construction

of the irreducible characters, since each of the characters φConst(P,Q) (or φSpecht(P,Q))

consists of a ‘new’ character φ associated with (P,Q), together with ‘previously cal-

culated’ characters associated with subgroup pairs preceding (P,Q) in the ordering.

However, this parametrization is not invariant under tensor product with the sign repre-

sentation, as Mλ′ � Mλ⊗ε. We believe that this additional invariance may be of interest

to arbitrary finite Coxeter groups, but it may give no additional information in type A.
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3.2 Coxeter type B

The Coxeter group of type Bn has Coxeter diagram given by

4

and is the group of isometries of the hypercube of dimension n. Our main result is The-

orem 3.33, which states that the already-known complex irreducible characters χλ,µ of

Bn arise as common constituent characters. From this, we may obtain a parametrization

satisfying Property 2.14 of φConst, and also a parametrization satisfying Property 2.41

of φSpecht.

3.2.1 Common constituent characters

The irreducible complex representations of Coxeter groups of type B are described in

the book of Geck and Pfeiffer [5] and they are all realizable overQ. We summarize their

construction here. The Coxeter group of type Bn is a semidirect product Wn = Cn
2 o S n.

The symmetric group S n permutes the n factors C2 regularly. Letting t be a generator for

the first C2 factor and letting s1, s2, . . . sn−1 be Coxeter generators for S n, the conjugates

t, s1ts1, . . . , sn−1 · · · s1ts1 · · · sn−1 form a basis for the subgroup Cn
2 as an F2-vector space.

Furthermore, {t, s1, s2, . . . sn−1} is a set of Coxeter generators of Wn, showing that it is a

Coxeter group of type Bn (see [5, Sec. 1.4.1]).

The sign representation ε of Wn has ε(t) = ε(si) = −1 for all i, and there is another

homomorphism ε† : Wn → {±1} specified by ε†(t) = −1, ε†(si) = 1 for all i. Now

W†
n := Ker ε† is a subgroup of the form V o S n that is a Coxeter group of type Dn, and

V identifies as the ‘coordinate-sum-zero’ subspace of Cn
2.

The irreducible representations are conventionally parametrized by pairs of parti-

tions (λ, µ) where |λ| + |µ| = n. We write |λ| = a and |µ| = b, and these numbers

determine a reflection subgroup Wa × Wb ≤ Wn which in turn contains a reflection
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subgroup Wa ×W†

b . The irreducible character χ(λ,µ) of Wn has the form

χ(λ,µ) = (χ̃λ � ε†χ̃µ) ↑
Wn
Wa×Wb

where χ̃λ is the represention of Wa that is the irreducible representation of S a corre-

sponding to λ, made into a representation of Wa via the homomorphism Wa → S a,

and similarly with χ̃µ. We write ε† to denote the homomorphim Wa → {±1}, not the

homomorphism Wn → {±1}. The outer tensor product � of irreducible representations

of Wa and Wb is an irreducible representation of Wa ×Wb. The proof that this describes

the irreducible characters of Wn depends on Clifford theory with respect to the normal

subgroup Cn
2 of Wn in a way that is well described in section 8.2 of [21].

For each partition λ of a (and similarly with partitions µ of b) we define the subgroup

Wλ of Wa as Wλ = Ca
2 o S λ, where S λ is a Young subgroup of S a of type λ. If λ =

(λ1, λ2, . . .), then Wλ is a product Wλ � Wλ1 × Wλ2 × · · · of Coxeter groups of type B.

We also define W†

λ = W†

λ1
×W†

λ2
× · · · , and this is a product of Coxeter groups of type

D. By convention we set W(0) = W†

(0) = 1. These are all reflection subgroups of Wn. We

denote the conjugate partition of λ by λ′.

Our main result is Theorem 3.33 and there will be several identifications in the

calculations required for the proof. We present these identifications as the following

lemmas.

Lemma 3.30. Let J be a subgroup of G and let K be a subgroup of H. If U is a

representation of J and V is a representation of K then

(U � V) ↑G×H
J×K � U ↑G

J �V ↑H
K .

Proof. We may break up the induction into two steps: ↑J×H
J×K followed by ↑G×H

J×H , and be-

cause these are handled similarly it suffices to consider only the first step ↑J×H
J×K . Taking

a set of left coset representatives {h1, . . . , ht} of K in H, the elements {(1, h1), . . . , (1, ht)}

form a set of coset representatives of J × K in J × H and so (U � V) ↑J×H
J×K is a direct

sum of spaces (1, hi)(U ⊗ V), which identifies with the sum of spaces U ⊗ hiV that is
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U � V ↑H
K . �

Lemma 3.31. Let λ be a partition of a. Then 1 ↑Wλ

W†λ
= 1 + ε† as representations of Wλ.

Proof. We have that W†

λ is a subgroup of index 2 in Wλ with coset representatives

{1, t} so the induced representation is the sum of the trivial representation and a 1-

dimensional representation on which t acts as −1 and all the si act as 1, because they

lie in W†

λ . This 1-dimensional representation must then be ε† with W†

λ as its kernel. �

Lemma 3.32. Let k be a positive integer, and let λ ` k. Let χ̃Wk
λ be the irreducible S k-

character corresponding to λ, inflated to Wk. Then (ε · ε†) · χ̃Wk
λ = χ̃Wk

λ′ as Wk-characters.

Proof. The 1-dimensional Wk-character ε · ε† is equal to ε when restricted to S k and

equal to 1 on Ck
2. It follows that both sides of the identity are trivial on Ck

2, so they

descend to characters on S n and it suffices to show that they are equal on S n. The left-

hand character becomes (εS k) · χS k
λ and the right-hand character becomes χS k

λ′ , and these

are equal due to Theorem 3.13. �

Theorem 3.33. Let λ be a partition of a and µ a partition of b, where a + b = n. Then

φConst(Wλ ×W†
µ ,W

†

λ′ ×Wµ′) = χ(λ,µ).

Proof. For reasons of explanation we find it easier to exclude the cases a = n, b = 0

and a = 0, b = n at first, although the argument in these cases is the same. We consider

1 ↑Wn

Wλ×W†µ
and ε ↑Wn

W†
λ′
×Wµ′

= ε · (1 ↑Wn

W†
λ′
×Wµ′

) and factor both of these inductions through the

intermediate group Wa ×Wb. We may write

1 ↑Wa
Wλ

= χ̃Wa
λ +

∑
θ>λ

Kθ,λχ̃
Wa
θ

where the natural numbers Kθ,λ are the Kostka numbers, and where we use a superscript

in χ̃Wa
λ to indicate the group for which this is a character. Similarly

1 ↑Wb
Wµ

= χ̃Wb
µ +

∑
η>µ

Kη,µχ̃
Wb
η
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so that

1 ↑Wb

W†µ
= (1 + ε†)(χ̃Wb

µ +
∑
η>µ

Kη,µχ̃
Wb
η )

by Lemma 3.31. It follows that

1 ↑Wn

Wλ×W†µ
= (1 � 1) ↑Wa×Wb

Wλ×W†µ
↑

Wn
Wa×Wb

= (1 ↑Wa
Wλ
�1 ↑Wb

W†µ
) ↑Wn

Wa×Wb

= ((χ̃Wa
λ +

∑
θ>λ

Kθ,λχ̃
Wa
θ ) � (1 + ε†)(χ̃Wb

µ +
∑
η>µ

Kη,µχ̃
Wb
η )) ↑Wn

Wa×Wb

= ((χ̃Wa
λ +

∑
θ>λ

Kθ,λχ̃
Wa
θ ) � (χ̃Wb

µ +
∑
η>µ

Kη,µχ̃
Wb
η )) ↑Wn

Wa×Wb

+ ((χ̃Wa
λ +

∑
θ>λ

Kθ,λχ̃
Wa
θ ) � ε†(χ̃Wb

µ +
∑
η>µ

Kη,µχ̃
Wb
η )) ↑Wn

Wa×Wb
.

The first term in the last expression (before the main + sign) consists of characters

that are 1 on the subgroup Cn
2, and the second term is a sum of characters that are

neither trivial, nor a multiple of the sign ε on Cn
2, provided a , 0 , b. Similarly (and

suppressing some of the analogous computation) we have

ε ↑Wn

W†
λ′
×Wµ′

= ε · (1 ↑Wn

W†
λ′
×Wµ′

)

= ε · ((χ̃Wa
λ′ +

∑
θ>λ′

Kθ,λ′ χ̃
Wa
θ ) � (χ̃Wb

µ′ +
∑
η>µ′

Kη,µ′ χ̃
Wb
η )) ↑Wn

Wa×Wb

+ ε · (ε†(χ̃Wa
λ′ +

∑
θ>λ′

Kθ,λ′ χ̃
Wa
θ ) � (χ̃Wb

µ′ +
∑
η>µ′

Kη,µ′ χ̃
Wb
η )) ↑Wn

Wa×Wb

= ε · ((χ̃Wa
λ′ +

∑
θ>λ′

Kθ,λ′ χ̃
Wa
θ ) � (χ̃Wb

µ′ +
∑
η>µ′

Kη,µ′ χ̃
Wb
η )) ↑Wn

Wa×Wb

+ ((χ̃Wa
λ +

∑
θ>λ′

Kθ,λ′ χ̃
Wa
θ′ ) � ε†(χ̃Wb

µ +
∑
η>µ′

Kη,µ′ χ̃
Wb
η′ )) ↑Wn

Wa×Wb
.

Here the first term in the last expression (before the main + sign) consists of characters

that are ε on Cn
2 and the second term is a sum of characters that are neither trivial, nor a

multiple of the sign ε on Cn
2, provided a , 0 , b.
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The characters from 1 ↑Wn

Wλ×W†µ
that are trivial on Cn

2 do not appear in the expression

for ε ↑Wn

W†
λ′
×Wµ′

and the characters in ε ↑Wn

W†
λ′
×Wµ′

that are ε on Cn
2 do not appear in the

expression for 1 ↑Wn

Wλ×W†µ
. Thus the common constituents are the common constituents

of

((χ̃Wa
λ +

∑
θ>λ

Kθ,λχ̃
Wa
θ ) � ε†(χ̃Wb

µ +
∑
η>µ

Kη,µχ̃
Wb
η )) ↑Wn

Wa×Wb

and

((χ̃Wa
λ +

∑
θ>λ′

Kθ,λ′ χ̃
Wa
θ′ ) � ε†(χ̃Wb

µ +
∑
η>µ′

Kη,µ′ χ̃
Wb
η′ )) ↑Wn

Wa×Wb
.

The characters that appear here have the form (χ̃Wa
θ � ε

†χ̃Wb
η ) ↑Wn

Wa×Wb
where θ ≥ λ and

η ≥ µ in the first case and θ ≤ λ and η ≤ µ in the second. We see that there is a unique

common constituent, and it is (χ̃Wa
θ � ε

†χ̃Wb
η ) ↑Wn

Wa×Wb
with multiplicity 1.

Returning to the cases a = n, b = 0 and a = 0, b = n, when a = n, b = 0 we have

Wb = Wµ = W†
µ = 1. The terms on the right of the � are all the trivial character. The

expression for 1 ↑Wn
Wλ

consists entirely of characters that are the identity on Cn
2. In the

expression for ε ↑W†
λ′

Wn the terms with a factor ε are not common constituents, and the

analysis of the remaining terms is the same as before. When a = 0, b = n the argument

is similar. �

While the subgroup pairs (Wλ×W†
µ ,W

†

λ′×Wµ′) may or may not be maximal elements

of the support of φConst, each such pair is less than or equal to such a maximal pair (P,Q).

Necessarily φConst(Wλ ×W†
µ ,W

†

λ′ ×Wµ′) = φConst(P,Q) by Lemma 2.7, because the value

on the left is irreducible. This establishes our main result for common constituent

characters:

Corollary 3.34. Property 2.14 of the function φConst holds for Coxeter groups of type

B.

We see from this that the common constituents function φConst provides a parametriza-

tion of the simple representation in type B that is essentially the same as the usual

parametrization of these representations.
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We note that the analogous result to Corollary 3.34 holds for generalized Specht

modules as a consequence of our general theory, so that these modules also provide a

construction of the irreducible modules in type B.

Corollary 3.35. Property 2.41 of the function φSpecht holds for Coxeter groups of type

B.

Proof. This follows immediately from Proposition 2.46. �



Chapter 4

Parametrizations in Coxeter type H

In this chapter we parametrize the characters of rational representations of the non-

crystallographic Coxeter groups H3 of order 120, abstractly isomorphic to A5 ×C2, and

H4 of order 14400. These are the groups of isometries of a regular icosahedron and of

the 600-cell.

The approach of this section is to investigate Properties 2.15 and 2.42 for the groups

H3 and H4. We show that Property 2.15 holds for H3. Moreover, Property 2.42 holds

for both H3 and H4 which establishes part of Conjecture 2.42. We will see also that

Property 2.15 does not hold for H4. From this it follows by Proposition 2.19 that Prop-

erties 2.12 and 2.14 do not hold. The main conclusion is, in Theorems 4.2 and 4.6,

that the irreducible rational characters of H3 and H4 can be parametrized by pairs of

reflection subgroups. In the case of H3 it can be done using common constituents, but

for H4 this approach is insufficient and generalized Specht modules are needed. The

situation with H4 provides a justification for the introduction of the generalized Specht

modules. The proofs are highly computational and, in the case of H4, the computational

feasibility approaches the limits of what is currently available. We present our results

in this chapter, and the computations that underlie them are described in Chapter 5.

52
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4.1 The group H3

The Coxeter group of type H3 has Coxeter diagram given by

5

and is the group of isometries of the dodecahedron and its dual polytope, the icosahe-

dron.

Table 4.1 gives the complex character table of H3, which is well-known. In this

table, we denote a := −ζ5 − ζ
4
5 where ζ5 is a primitive complex 5th root of unity.

Order of element 1 2 2 3 5 10 5 6 10 2
χ1 1 1 1 1 1 1 1 1 1 1
χε 1 -1 1 1 1 -1 1 -1 1 -1
χ3a 3 -1 1 -1 a a a 0 a 3
χ3b 3 -1 1 -1 a a a 0 a 3
χ3c 3 1 0 -1 a −a a 0 −a -3
χ3d 3 1 0 -1 a −a a 0 −a -3
χ4a 4 0 1 0 -1 -1 -1 1 -1 4
χ4b 4 0 1 0 -1 1 -1 -1 1 -4
χ5a 5 1 -1 1 0 0 0 -1 0 5
χ5b 5 -1 -1 1 0 0 0 1 0 -5

Table 4.1: Complex character table for W = H3.

As for the rational characters, we define several characters as follows. Let φ1 := χ1,

φε := χε , φ4a := χ4a, φ4b := χ4b, φ5a := χ5a, and φ5b := χ5b. Then, define φ6a := χ3a +χ3b

and φ6b := χ3c +χ3d. We observe that these characters are rational, and as complex char-

acters they are either irreducible or the sum of two distinct complex irreducibles which

are complex conjugates. Thus these characters are irreducible rational characters, and

since every complex irreducible is a summand of one such character, this gives a com-

plete list of the rational irreducible characters.

The list of reflection subgroups can be found in [13]. We list them here by Coxeter
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1 A1 A2

1 A2 A3
1 I2(5) H3

H3 φ1 0 0 0 0 0 0
I2(5) φ1 + φ6b + φ5a φ6b + φ5a φ5a 0 0 0 0
A3

1 φ1 + φ4a + 2φ5a φ4a + 2φ5a φ4a + φ5a φ4a 0 0 0
A2 φ1 + φ6b+ φ6b + φ4a+ φ4a + φ4b + φ5a φ4a + φ4b φ4b 0 0

+φ4a + φ4b + φ5a +φ4b + φ5a

A2
1 φ1 + φ6b + φ4a+ φ6b + φ4a+ φ4a + φ4b+ φ4a + φ4b + φ5b φ4b + φ5b φ5b 0

φ4b + 2φ5a + φ5b +φ4b + 2φ5a + φ5b +φ5a + φ5b

A1 · · · · · · φ6a + φ4a+ φ6a + φ4a+ φ4b + 2φ5b φ6a + φ5b 0
+φ4b + φ5a + 2φ5b +φ4b + φ5b

1 · · · · · · φε + φ6a + φ4a+ φε + φ6a+ φε + φ4b + 2φ5b φε + φ6a + φ5b φε

+φ4b + φ5a + 2φ5b +φ4a + φ4b + φ5b

Table 4.2: Table of common constituents of reflection subgroup pairs, for W = H3.

type, noting that all reflection subgroups of a given Coxeter type are conjugate in H3:

1, A1, A2
1, A2, A3

1, I2(5), H3.

4.1.1 Common constituent characters for H3

We now set about presenting a parametrization of the characters by pairs of reflec-

tion subgroups, verifying that Property 2.15 holds for H3. Table 4.2 has rows and

columns indexed by reflection subgroups P,Q, and the (P,Q)-entry is the decompo-

sition φConst(P,Q) into irreducible rational characters. The reflection subgroups are

denoted by their Coxeter type. The entries for (1, 1), (1, A1), (A1, 1) and (A1, A1) are

omitted because they are lengthy and do not contribute.

We immediately have the following observation:

Proposition 4.1. Property 2.13 does not hold for H3: There exist maximal pairs on the

support of φConst with reducible common constituents.

Proof. From Table 4.2 we see that the maximal elements of the support of φConst for H3

are as follows:

(H3, 1), (I2(5), A2
1), (A3

1, A
2
1), (A3

1, A2), (A2, A2), (A2, A3
1), (A2

1, A
3
1), (A2

1, I2(5)), (1,H3).
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Moreover, φConst(A3
1, A

2
1) = φ4a + φ5a, φConst(A2

1, A
3
1) = φ4b + φ5b, and φConst(A2, A2) =

φ4a + φ4b, which establishes the claim. �

To establish a parametrization of characters of rational representations of H3 us-

ing Property 2.15, we exhibit a multiplicity matrix showing the values of φConst on a

collection of reflection subgroup pairs. We take our collection to be

(H3, 1), (I2(5), A1), (I2(5), A2
1), (A3

1, A2), (A2, A3
1), (A2

1, I2(5)), (A1, I2(5)), (1,H3).

Table 4.3 gives the multiplicity matrix for this collection and for a suitable ordering of

the rational characters. Table 4.4 gives a summary of the parametrization, indicating

which rational character is associated to each subgroup pair.

(H3, 1) (I2(5), A1) (I2(5), A2
1) (A3

1, A2) (A2, A3
1) (A1, I2(5)) (A2

1, I2(5)) (1,H3)

φ1 1 0 0 0 0 0 0 0
φ5a 0 1 0 0 0 0 0 0
φ6b 0 1 1 0 0 0 0 0
φ4a 0 0 0 1 0 0 0 0
φ4b 0 0 0 0 1 0 0 0
φ6a 0 0 0 0 0 1 0 0
φ5b 0 0 0 0 0 1 1 0
φε 0 0 0 0 0 0 0 1

Table 4.3: Multiplicity matrix for selected subgroup pairs for W = H3.

We observe that the chosen subgroup pairs have the property that (P,Q) labels the

i-th column from the left if and only if (Q, P) labels the i-th column from the right.

Moreover, the character labelling the j-th lowest row is equal to the tensor product of

the character labelling the j-th highest row with the sign character. This establishes the

following result:

Theorem 4.2. The irreducible rational representations of H3 admit a parametrization

using pairs of reflection subgroups, using Property 2.16 of the function φConst.
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Rational irr. char. Complex char. sum Associated subgroup pair

φ1 χ1 (H3, 1)
φ5a χ5a (I2(5), A1)
φ6b χ3c + χ3d (I2(5), A2

1)
φ4a χ4a (A3

1, A2)
φ4b χ4b (A2, A3

1)
φ6a χ3a + χ3b (A2

1, I2(5))
φ5b χ5b (A1, I2(5))
φε χε (1,H3)

Table 4.4: Summary of chosen subgroup pairs for unitriangular parametrization, for
W = H3.

4.1.2 Specht modules for H3

For most reflection subgroup pairs (P,Q), the Specht modules S (P,Qw) are all iso-

morphic, with character equal to the common constituents. The only exceptions are

(A2, A2
1), (A2

1, A2), (A2
1, A1), (A1, A2

1), and (A1, A1).

The pairs (A2, A2
1) and (A2

1, A2) have two equivalence classes of pairs of subgroups

when taken up to simultaneous conjugacy, which admit a nonzero Specht module. For

one of these pairs, the Specht module character is equal to the common constituents,

and for the other the Specht module is a proper submodule of the common constituents.

For the pair (A2, A2
1), the common constituents character is φ4a + φ4b + φ5a. The proper

submodule has character φ5a + φ4b. We may obtain the corresponding characters for

(A2
1, A2) by tensoring with φε , by Theorem 2.38.

The pairs (A2
1, A1) and (A1, A2

1) have four equivalence classes of pairs of subgroups

when taken up to simultaneous conjugacy, which admit a nonzero Specht module.

For three of these pairs, the Specht module character is equal to the common con-

stituents, and for the fourth subgroup pair the Specht module is a proper submodule of

the common constituents. For the pair (A2
1, A1) the common constituents character is

φ6b + φ4a + φ4b + 2φ5a + φ5b The proper submodule has character φ6b + φ4b + φ5b. Again,

we may obtain the corresponding characters for (A1, A2
1) by tensoring with φε .

The pair (A1, A1) has five equivalence classes of pairs of subgroups when taken up to
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simultaneous conjugacy, which admit a nonzero Specht module. For two of these pairs,

the Specht modules have dimension 48 and their characters are equal to φConst(A1, A1) =

φ6b + 2φ5a + 2φ4a + 2φ4b + 2φ5b + φ6a. One subgroup pair has a 40-dimensional Specht

module with character equal to φ6b+2φ5a+φ4a+φ4b+2φ5b+φ6a. The other two subgroup

pairs have 30-dimensional Specht modules with characters equal to φ6b + φ5a + φ4a +

φ4b + φ5b + φ6a.

1 A1 A2
1 A2 A3

1 I2(5) H3

H3 φ1 0 0 0 0 0 0
I2(5) φ1 + φ6b + φ5a φ6b + φ5a φ5a 0 0 0 0
A3

1 φ1 + φ4a + 2φ5a φ4a + 2φ5a φ4a + φ5a φ4a 0 0 0
A2 φ1 + φ6b+ φ6b + φ4a+ φ4b + φ5a φ4a + φ4b φ4b 0 0

+φ4a + φ4b + φ5a +φ4b + φ5a

A2
1 φ1 + φ6b + φ4a+ φ6b + φ4a + φ5a φ4a + φ4b+ φ4a + φ5b φ4b + φ5b φ5b 0

φ4b + 2φ5a + φ5b +φ5a + φ5b

A1 · · · φ6b + φ4a + φ5a φ6a + φ4b + φ5b φ6a + φ4a+ φ4b + 2φ5b φ6a + φ5b 0
+φ5b + φ4b + φ6a +φ4b + φ5b

1 · · · · · · φε + φ6a + φ4a+ φε + φ6a+ φε + φ4b + 2φ5b φε + φ6a + φ5b φε

+φ4b + φ5a + 2φ5b +φ4a + φ4b + φ5b

Table 4.5: Table of Specht module characters of least dimension, for W = H3.

For all subgroup pairs we found it sufficient to consider the Specht module of least

dimension, which for W = H3 we found to be unique up to isomorphism. In Table

4.5, the (P,Q) entry gives the direct sum decomposition of the character of the form

φSpecht(P,Qw) which has least dimension, omitting a few values for conciseness. In

view of the comment following Corollary 2.35, we observe that the (P,Q)-entry is not

always a summand of the (P,Q′)-entry or the (P′,Q)-entry when P′ ≤ P and Q′ ≤ Q in

Rconj.

We record some results established by these computations:

Proposition 4.3. 1. For each pair of Coxeter types of reflection subgroups of W =

H3, there is a subgroup pair (P,Q) having those Coxeter types such that φSpecht(P,Q) =

φConst(P,Q).

2. Suppose P and P′ have the same Coxeter type and Q and Q′ have the same
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Coxeter type, and suppose dim(S (P,Q)) ≤ dim(S (P′,Q′)). Then S (P,Q) is iso-

morphic to a summand of S (P′,Q′).

3. Each pair in the collection chosen to verify Property 2.16 in Theorem 4.2 has all

possible Specht modules isomorphic to one another, with character equal to the

common constituents. That is, the collection of pairs of Coxeter types chosen to

verify Property 2.16 of common constituents also verifies Property 2.43 of Specht

modules, for any choice of subgroup pairs having those Coxeter types.

Corollary 4.4. The irreducible rational representations of H3 admit a parametrization

using pairs of reflection subgroups, using Property 2.43 of the function φSpecht.



59

4.2 The group H4

The Coxeter group of type H4 has Coxeter diagram given by

5

and is the group of isometries of the 120-cell and its dual polytope, the 600-cell.

The complex character table of H4 was first obtained by Read in [17]. From that

table we may deduce the characters of rational representations of H4, although we do

not immediately need the complete argument to proceed with our own parametrization.

The list of characters of rational representations appears below in Table 4.6, and also

in Table 4.8 that gives their parametrization in terms of reflection subgroup pairs. It

turns out that in all cases where there is an irrational entry in the complex character

table, the sum of that character and its algebraic conjugate is the character of a ratio-

nal representation. Aside from this, there is a complex character with rational values

and Schur index 2, as documented in [5, Theorem 6.3.8]. It is the unique irreducible

complex character of degree 48. It means that representation cannot be realized over Q,

but that the direct sum of two copies of it can be so realized, so there is an irreducible

rational representation of degree 96. This representation has to be treated carefully in

our computations, which were done over the finite field F23. Because there all finite

division algebras are commutative, the irreducible representation of degree 48 can in

fact be realized over this field. Whenever this representation appears with multiplicity

2k in a generalized Specht module, the corresponding 96-degree rational representation

must appear in the rational generalized Specht module with multiplicity k.

In practice, our computations with Specht modules constructed as many rational

representations as there are characters of the form just described, and so we are able

to deduce the form of the rational characters, but we should point out that they should

be regarded as already known in the literature. Table 4.6 gives a listing of the rational

characters φd of H4, indexed by their degree d and with their decomposition as a sum

of complex characters. With the exception of φ96, every irreducible rational character

is either absolutely irreducible or the sum an irreducible complex character with its
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Rational irreducible

character of H4

Complex character
decomposition

1 φ1 χ1

2 φ8d χ4c + χ4d

3 φ16d χ16d

4 φ18b χ9c + χ9d

5 φ16b χ16b

6 φ12 χ6a + χ6b

7 φ8b χ8b

8 φ36b χ36b

9 φ32 χ16e + χ16 f

10 φ48b χ24c + χ24d

11 φ60 χ30a + χ30b

12 φ96 2χ48

13 φ40 χ40

14 φ48a χ24a + χ24b

15 φ25b χ25b

16 φ10 χ10

17 φ18c χ18

18 φ8a χ8a

19 φ8c χ4a + χ4b

20 φ16c χ16c

21 φ36a χ36a

22 φ18a χ9a + χ9b

23 φ16a χ16a

24 φ25a χ25a

25 φε χε

Table 4.6: Decomposition of irreducible rational characters of W = H4.

algebraic conjugate.

We also list the reflection subgroups up to conjugacy, which can also be found in

[13]. As with H3, there is a unique reflection subgroup of each listed Coxeter type:

1, A1, A2
1, A3

1, A4
1, A2, A2A1, A2

2, A3, A4, D4, H3, H3A1, I2(5), I2(5)A1, I2(5)2, H4.

4.2.1 Common constituent characters for H4

We construct the common constituent characters by way of constructing the complex

character table, which is computationally feasible in GAP. We may readily calculate

multiplicities of these characters in permutation characters and in the tensor products
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of these characters with the sign character.

We show that Property 2.15 fails for H4. This means that, unlike H3, we are unable

to parametrize the irreducible rational representations using the function φConst.

Proposition 4.5. Property 2.15 does not hold for the Coxeter group H4.

Proof. We will show that there are two irreducible rational characters φ and φ′ of H4

such that 〈φConst(P,Q), φ〉 , 0 if and only if 〈φConst(P,Q), φ′〉 , 0 for all H, K. We take

φ to be an irreducible rational 48-dimensional character (either φ48a or φ48b, which are

related by − ⊗ φε), and we take φ′ to be the unique 40-dimensional character φ40 of H4.

Table 4.7 gives character data for the multiplicities of φ and φ′ in φConst(P,Q), among

all maximal choices of (P,Q) for which 〈φConst(P,Q), φ〉 or 〈φConst(P,Q), φ′〉 is nonzero.

(P,Q) 〈φConst(P,Q), χ〉 〈φConst(P,Q), χ′〉
(I2(5) × A1, I2(5) × A1) 1 2

(I2(5) × A1, A3) 1 1
(I2(5) × A1, A2

2) 1 1
(I2(5) × A1, A4

1) 1 2
(A3, I2(5) × A1) 1 1

(A3, A3) 1 1
(A3, A2

2) 1 1
(A3, A4

1) 1 1
(A2

2, I2(5) × A1) 1 1
(A2

2, A3) 1 1
(A2

2, A
2
2) 1 1

(A2
2, A

4
1) 1 1

(A4
1, I2(5) × A1) 1 2

(A4
1, A3) 1 1

(A4
1, A

2
2) 1 1

(A4
1, A

4
1) 3 5

Table 4.7: Multiplicities of φ = φ48a and φ′ = φ40 in φConst(P,Q).

For all other subpairs, either 〈φConst(P,Q), χ〉 = 〈φConst(P,Q), χ′〉 = 0, or P and Q

are both subgroups of one of I2(5) × A1, A3, A2
2, or A4

1. In the latter case φConst(P,Q) has

as a summand φConst(P′,Q′) for some (P′,Q′). �
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4.2.2 Specht modules for H4

We now show that if we use generalized Specht modules associated to pairs of reflec-

tion subgroups, encoded in the function φSpecht, rather than φConst, then we can indeed

parametrize the irreducible rational characters of H4 using Property 2.42. The result

depends upon extensive calculation, and we describe these calculations in Chapter 5.

Theorem 4.6. The irreducible rational representations of H4 may be parametrized by

pairs of reflection subgroups, using generalized Specht modules, to exhibit Property

2.42.

Reflection subgroup
pair (Pi,Qi) Specht module dimensions

Chosen
dimension

Parametrized
rat. character

Complex char.
Decomposition

1 (H4, 1) 1(1) 1 φ1 χ1

2 (H3, A1) 60(1), 119(44) 60 φ8d χ4c + χ4d

3 (H3, A2
1) 111(16) 111 φ16d χ16d

4 (H3 × A1, A2
1) 59(8) 59 φ18b χ9c + χ9d

5 (H3 × A1, A2) 41(3) 41 φ16b χ16b

6 (I2(5), I2(5)) 144(2), 508(50), 900(40) 144 φ12 χ6a + χ6b

7 (A2 × A1, A2 × A1)
440(6), 504(4), 572(2), 620(8), 664(8),
716(2), 742(2), 744(4), 748(4), 750(2),
796(2), 814(20), 822(4), 840(8)

440 φ8b χ8b

8 (H3, I2(5)) 36(1) 36 φ36b χ36b

9 (I2(5) × A1, I2(5) × A1) 216(2), 364(8), 392(8) 364 φ32 χ16e + χ16 f

10 (I2(5) × A1, A3) 166(1), 292(8), 310(4) 310 φ48b χ24c + χ24d

11 (I2(5) × A1, A4
1) 241(30) 241 φ60 χ30a + χ30b

12 (A2
2, A

2
2) 220(4) 220 φ96 2χ48

13 (A2
2, A

4
1) 124(12), 141(6) 124 φ40 χ40

14 (A2
2, A3) 66(1), 192(4), 210(4) 66 φ48a χ24a + χ24b

15 (H3 × A1, A2 × A1) 25(1) 25 φ25b χ25b

16 (I2(5)2, A2
2) 28(2) 28 φ10 χ10

17 (I2(5)2, A3) 18(1) 18 φ18c χ18

18 (D4, A3) 8(1) 8 φ8a χ8a

19 (A1,H3) 60(1), 119(44) 60 φ8c χ4a + χ4b

20 (A3
1,H3) 52(3), 77(2) 52 φ16c χ16c

21 (I2(5),H3) 36(1) 36 φ36a χ36a

22 (A2
1,H3 × A1) 59(8) 59 φ18a χ9a + χ9b

23 (A2,H3 × A1) 41(3) 41 φ16a χ16a

24 (A2 × A1,H3 × A1) 25(1) 25 φ25a χ25a

25 (1,H4) 1(1) 1 φε χε

Table 4.8: Reflection subgroup pairs used in unitriangular parametrization of Specht
module characters for W = H4.
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φ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

φ1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ8d 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ16d 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ18b 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ16b 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ8b 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ36b 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ32 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ48b 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ60 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ96 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
φ40 0 0 0 0 0 0 1 0 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
φ48a 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
φ25b 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
φ10 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
φ18c 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
φ8a 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
φ8c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
φ16c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
φ36a 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
φ18a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ16a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
φ25a 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
φε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.9: Multiplicity matrix of chosen generalized Specht modules, for W = H4.

Proof. We have computed Specht modules for a collection of reflection subgroup pairs

given in Table 4.8, then chosen a module for each pair and exhibited direct sum decom-

positions with multiplicities given in Table 4.9.

In Table 4.8, notation such as 60(1), 119(44) in the list of Specht module dimensions

means there are 45 Specht modules computed for this pair of subgroups, of which 1 had

dimension 60 and the other 44 had dimension 119. The Specht modules for subgroup

pairs (P,Qw) are all computed as submodules of F ↑W
P as indicated in Lemma 5.1.

These correspond to regular orbits of Q on the cosets W/P which, in turn, biject with

the double cosets QwP in W in which P ∩ Qw = 1 by Lemma 5.2. This does not give a

complete list of all possible Specht modules, but enough to choose Specht modules of

small enough dimension that we may compute a satisfactory multiplicity matrix.

In the multiplicity matrix given in Table 4.9, the i-th parametrized rational character
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from Table 4.8 appears as a consituent of φSpecht(Pi,Qi) with multiplicity 1 and corre-

sponds to the (i, i)-entry equal to 1. Because this matrix is unitriangular, the theorem is

proven.

�

In many instances, Specht modules of different dimension could have been chosen

in the proof of Theorem 4.6 that would still produce a unitriangular multiplicity matrix.

Most often, the Specht module of smallest dimension for that subgroup pair was chosen,

but sometimes a larger Specht module had to be chosen in order to include all rational

irreducible characters as summands in the decomposition.

Currently, we do not know whether a suitable choice of subgroup pairs exhibits the

slightly stronger Property 2.43.



Chapter 5

Computational methods for
determining Specht modules and their
composition factor multiplicities

Our results for the types H3 and H4 were entirely based on computations in the software

GAP. Our implementation generally used the expanded features of Peter Webb’s GAP

software ‘reps’ [23]. Sometimes, though, we directly used Meataxe routines on which

‘reps’ relies [16]. We give an overview of the computation.

65



66

5.1 Constructing generalized Specht modules in GAP

First, we constructed a list of representatives of conjugacy classes of reflection sub-

groups of W. For each pair of listed reflection subgroups (P,Q), we constructed for

F = F23 a complete list of all nonzero Specht modules of the form S F(P, wQ) for which

wP is a regular orbit in the action of Q on W/P. Through trial and error we selected

a list of Specht modules whose module decompositions contained a complete set of

irreducible representations over F23, and whose multiplicity matrix was unitriangular.

From this we inferred that the multiplicity matrix for the corresponding rational char-

acters was also unitriangular.

Because the ‘reps’ package only allows for module constructions over a finite field,

we constructed permutation modules and generalized Specht modules in characteristic

p coprime to the order of W, where the representations are still semisimple. From these

constructions in characteristic p, in most cases it is possible to completely deduce the

structures of the analogous constructions in characteristic zero. We chose F23 as the

field as it has the following properties:

1. The prime 23 is not a factor of the order of any Coxeter group of rank 4 or less.

2. The group of units F×23 is such that no roots of unity exist of order dividing |W |,

other than the roots of unity that already exist in Q (namely {±1}).

3. The prime 23 is the smallest prime with these properties.

Condition (1) has the effect that all F23W-modules are semisimple. Furthermore,

over the algebraic closure, the irreducible F23W-modules have the same dimension

as the irreducible C-modules, and the decomposition of modules such as permutation

modules is the same (see [22]).

Condition (2) has the effect that irreducible representations over Q do not split fur-

ther when reduced to representations over F23, with one exception. The exception is

the complex representation of degree 48, which has Schur index 2 (see Theorem 6.3.8

of Geck and Pfeiffer [5], page 193). This means that the representation cannot be real-

ized over Q although its character is rational-valued, but the direct sum of two copies
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of it can be so realized. Over F23 there are no non-commutative division algebras by

Wedderburn’s Theorem ([18], Theorem C-2.31) and a single copy of the degree 48

representation can be realized.

We constructed the Specht module for a given pair (P,Q) following the definition

of S (P,Q) as a submodule of the permutation module F ↑W
P on the cosets of P in W. In

particular, we constructed a signed sum of basis vectors for the action of Q on F ↑W
P .

Initially, we generated a list of distinct vectors of the form σv, σ ∈ Q for a fixed vector

v. Recursively, we would append with new vectors of the form −sσv where s is one of

the Coxeter generators of W and σv is already listed. Taking the sum of these gives the

signed sum in the definition of S (P,Q).

Our method for computing all Specht modules for pairs of reflection subgroups

(P,Qw) as w ranges over W depends on the following result. It means that they can all

be computed as submodules of a single permutation module, namely the submodules

FW · Q− · wP of the permutation module on the cosets of P. This streamlines the

computation.

Lemma 5.1. Let F be a field. Let (P,Q) be a pair of reflection subgroups of W and let

w ∈ W. Then the Specht module S F(wP,Q) � S F(P,Qw) is isomorphic to FW ·Q− · (wP),

where wP is the coset of P determined by w in the permutation module on the cosets of

P.

Proof. The fact that S (wP,Q) � S (P,Qw) is the content of Proposition 2.29. For

the remaining isomorphism, there is an isomorphism of left W-sets W/P → W/(wP)

that sends xP 7→ xw−1wP. Under this isomorphism the coset wP is sent to the coset
wP. The isomorphism extends to an isomorphism of permutation modules F[W/P] →

F[W/(wP)], under which Q− · (wP) is sent to Q−(wP), so that FW · Q− · (wP) is mapped

isomorphically to the submodule FW · Q−(wP) = S (wP,Q).

�

We now prove Proposition 2.31 which says, over an arbitrary field F, that S (P,Q) ,

0 if and only if P ∩ Q ≤ Ker(ε) and |P ∩ Q| , 0 in F.
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Proof. First, observe that the cyclic module S (P,Q) is zero if and only if its generator

Q−P+ is zero. We write

Q−P+ = (
∑
σ∈Q

ε(σ)σ)(
∑
τ∈P

τ)

=
∑

(σ,τ)∈Q×P

ε(σ)στ.

Suppose (P ∩ Q) � ker(ε). Then there exists α ∈ P ∩ Q with ε(α) = −1 and every

element of Q with ε(σ) = −1 can be written σ = σ′α where σ′ = σα−1 and ε(σ′) = 1.

Since left multiplication by α permutes the elements of P, we have the following:

∑
(σ,τ)∈Q×P

ε(σ)στ =
∑

(σ,τ)∈Q×P:ε(σ)=1

στ −
∑

(σ,τ)∈Q×P:ε(σ)=−1

στ

=
∑

(σ,τ)∈Q×P:ε(σ)=1

στ −
∑

(σ′,τ)∈Q×P:ε(σ′)=1

σ′ατ

=
∑

(σ,τ)∈Q×P:ε(σ)=1

στ −
∑

(σ,τ)∈Q×P:ε(σ)=1

στ

= 0.

So now suppose (P ∩ Q) ≤ ker(ε). Then the number of unique group algebra basis

elements appearing in Q−P+ is [Q : P ∩ Q]|P|, and each basis element appears with

multiplicity |P ∩ Q|. Then Q−P+ , 0 if and only if |P ∩ Q| , 0 in F. �

Due to the computation time in calculating Specht modules for the group H4, we

had to develop more efficient techniques. To do this, we only considered subgroup pairs

(P,Q) such that P ∩ Q = 1.

Lemma 5.2. If w ∈ W and P ∩ Qw = {1}, then in the action of Q on the cosets of P in

W, the orbit of the coset wP is a regular orbit. Moreover, S (P,Qw) is nonzero.

Proof. Suppose P ∩ Qw = {1}, and suppose σ ∈ Q fixes the coset wP. Then σw ∈ Qw
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fixes P, so σw is an element of P ∩ Qw = {1}. Then σw = 1 and so σ = 1. Therefore

the elements (σwP)σ∈Q are all distinct and the orbit of wP is a regular orbit. That

S (P,Qw) , 0 follows from the second part of Lemma 5.1. �

Our method for constructing a Specht module started with a list of all regular Q-

orbits on the set W/P. We obtained the regular orbits by using the built-in GAP com-

mand that finds orbits and tests which had size |Q|. We constructed the signed sum of

elements in this orbit by tensoring the permutation representation on W/P with the sign

representation, and then taking the unsigned sum of the elements of Q on the orbit.

Though this does not give all possible nonzero Specht modules of the form S (P, wQ), it

still gives many inequivalent Specht modules of unequal dimensions (see Table 4.8).

When decomposing a Specht module, we used the Meataxe command that finds a

complete list of composition factors of a module. Since semisimplicity holds over our

chosen field, this gave a list of irreducible modules V , which are all direct summands

of S (P,Q). To determine the multiplicity of a fixed simple module U in S (P,Q), we

iterated over all summands V and checked how many times dim(Hom(U,V)) , 0 using

the DimHom() command from Peter Webb’s package ‘reps’.

We had to identify which complex characters were summands of S (P,Q) over C

by way of our construction in positive characteristic. By our choice of finite field, the

dimensions of the irreducible constituents of S (P,Q) over F23 equaled the dimensions of

the simple summands of S (P,Q) over Q (with the 48-dimensional exception). Though

the group H4 has several sets of rational characters with the same dimension, these

could be disambiguated by considering which are common constituents of 1 ↑W
P and

ε ↑W
Q , for which we had computational data.

In determining the rational ireducible representations of H4 we took the complex

character table and used the fact that all Schur indices are 1 except for the representation

of degree 48, which has Schur index 2, as stated in Theorem 6.3.8 of Geck and Pfeiffer

[5], page 193. This means that the irreducible complex representation of degree 48 is

not realizable over the rationals, even though its character is rational valued. However,

the direct sum of two copies of this representation can be written in the rationals. For

the remaining rational representations their characters were taken by summing Galois
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conjugacy classes of characters.



Chapter 6

Parametrizations in Coxeter Type I

In this chapter we discuss the dihedral groups I2(m), m > 2, also commonly denoted

D2m as they are of order 2m. These have Coxeter diagrams given by

m

and are the groups of isometries of regular polygons.

Our main result in this chapter is Theorem 6.10, which states that for all m, the

rational irreducible characters of I2(m) admit a parametrization by generalized common

constituents that satisfies Property 2.16.

Our main results are Theorems 6.10 and 6.12, which show that for all m, the ra-

tional irreducible characters of I2(m) admit a parametrization by generalized common

constituents that satisfies Property 2.16, and also that φConst(P,Q) is irreducible when-

ever (P,Q) is maximal, in the manner of Property 2.12. We discuss several examples

and explicitly give the decomposition matrices in these cases. We do not discuss gen-

eralized Specht modules of dihedral groups.

Throughout this section, D2m will always denote the Coxeter group of type I2(m),

with presentation 〈x, y | x2 = y2 = (xy)m = 1〉. Let Cm denote the cyclic subgroup

〈xy〉 ≤ D2m, and let ζm denote the complex number e
2πi
m .

71
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6.1 Parametrization of rational characters in type I with

common constituents

The complex character tables for D2m are well known; see for example [22]. We include

these as Table 6.1:

D2m, m odd

g 1 x xy (xy)2 . . . (xy)
m−1

2

χ1 1 1 1 1 . . . 1
χε 1 -1 1 1 . . . 1

χζ s
m ↑

D2m
Cm

(1 ≤ s ≤ m−1
2 ) 2 0 ζ s

m + ζ−s
m ζ2s

m + ζ−2s
m . . . ζ

m−1
2 s

m + ζ
−m−1

2 s
m

D2m, m even

g 1 x y xy (xy)2 . . . (xy)
m−2

2 (xy)
m
2

χ1 1 1 1 1 1 . . . 1 1
χε 1 -1 -1 1 1 . . . 1 1
χ1a 1 -1 1 -1 1 . . . (−1)

m−2
2 (−1)

m
2

χ1b 1 1 -1 -1 1 . . . (−1)
m−2

2 (−1)
m
2

χζ s
m ↑

D2m
Cm

(1 ≤ s ≤ m−2
2 ) 2 0 0 ζ s

m + ζ−s
m ζ2s

m + ζ−2s
m . . . ζ

m−2
2 s

m + ζ
−m−2

2 s
m -2

Table 6.1: Complex character tables for W = D2n.

From now on, we write φ1, φ1a, φ1b, and φε instead of χ1, χ1a, χ1b, and χε to empha-

size that they are rational characters. We note that φ1b = φ1a ⊗ φε .

We identify a family of rational characters of D2m constructed using subgroups of

Cm. We denote for every s ∈ Z the complex character χ2,s := χζ s
m ↑

D2m
Cm

. We immediately

observe the following:

Lemma 6.1. The following properties hold:

1. For all a ∈ Z , χ2,am+s = χ2,s.

2. For all s ∈ Z , χ2,m−s = χ2,s.

3. We have that χ2,0 is rational and decomposes as φ1 + φε .
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4. When m is even, we have that χ2,m
2

is rational and decomposes as φ1a + φ1b.

5. For all s ∈ Z , χ2,s ⊗ χε = χ2,s.

We establish some preliminary results and then give a description of all rational

characters of D2m. For a finite group G let CF(G) denote the complex space of class

functions on G.

Proposition 6.2. If k is odd and relatively prime to m, then the mapping Ψk : CF(D2m)→

CF(D2m) given by Ψk f (g) = f (gk), for all g ∈ D2m, is a linear isomorphism which per-

mutes the irreducible complex characters and is the identity on rational characters.

Moreover, the character identity

〈χ, χ2,s〉 = 〈Ψkχ, χ2,ks〉

holds.

Proof. If f is a class function and g, h ∈ D2m then Ψk f (hgh−1) = f ((hgh−1)k) =

f (hgkh−1) = f (gk) = Ψk f (g), so Ψk f is also a class function. Then Ψk is well-defined,

and it is clearly linear.

Now suppose that χ is any character of degree 1. Since k is odd, gk = g when g is one

of 1, x, or y. Moreover, when m is even, the character table shows that χ((xy)d) = −1 if

and only if χ((xy)kd) = (−1)k = −1. Therefore Ψk fixes each one-dimensional character

of D2m.

For the remaining irreducible characters, we again have for all s that Ψkχ2,s evalu-

ates to 2, 0, and 0 on 1, x, and y respectively. Moreover,

Ψkχ2,s((xy)d) = χ2,s((xy)kd) = ζkds
m + ζ−kds

m = χ2,ks((xy)d).

Therefore Ψkχ2,s = χ2,ks which establishes that Ψk takes irreducible characters to

irreducible characters. Since k is relatively prime to n, then Ψk is invertible on the two-

dimensional irreducibles. Thus Ψk is a permutation on irreducible characters, so it is a

linear isomorphism on CF(D2m). The character identity also immediately follows.
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We will now show that Ψk is the identity on rational characters. Observe that the

complex characters of D2m all take on values in the cyclotomic field Q(ζm). The Galois

group of this field is naturally isomorphic to (Z/mZ)×, where the residue k (mod m)

with gcd(k,m) = 1 corresponds to the field automorphism σk which sends ζd
m to ζdk

m .

Then for all integers s and d,

Ψkχ2,s((xy)d) = χ2,s((xy)kd)

= ζkds
m + ζ−kds

m

= σk(ζds
m + ζ−ds

m )

= σk(χ2,s((xy)d)).

This gives the identity Ψkχ(g) = σk(χ(g)) for any two-dimensional irreducible char-

acter χ and for any g of the form (xy)d. If χ is a one-dimensional character or g is not

a power of xy, then the character table shows that χ(g) is rational, so it is fixed by σk:

σk(χ(g)) = χ(g). In the case that χ is a one-dimensional character, then we saw earlier

that Ψk(χ) = χ and so Ψkχ(g) = χ(g) = σkχ(g). In the case that g is not a power of xy,

then gk = g since k is odd and |xy| is 1 or 2. Therefore Ψkχ(g) = χ(gk) = χ(g) = σkχ(g).

Therefore Ψkχ(g) = σk(χ(g)) holds for all irreducible complex characters χ and

all g ∈ D2m. Taking linear combinations, we see that this identity holds for all class

functions on D2m.

Then suppose that φ is an arbitrary rational character (which may be irreducible as

a rational character but reducible as a complex character). Then

Ψkφ(g) = σk(φ(g)) = φ(g)

since σk fixes the rational subfield. Thus Ψk fixes all rational characters pointwise. �

Corollary 6.3. 1. Let φ be a rational character of D2m. If s ∈ Z and k is relatively

prime to m, then 〈φ, χ2,s〉 = 〈φ, χ2,ks〉.
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2. Let φ be as above. For all divisors d of m, 2 < d < m
2 , the multiplicities in φ of all

characters χ2,s such that gcd(s,m) = m
d , are all equal.

3. Now let φ̂ be a rational character of the cyclic subgroup Cm. Then for all divisors

d of m, d > 2, the multiplicities in φ̂ of all characters ζ s
m such that gcd(s,m) = m

d ,

are all equal.

Proof. 1. Notice that if m is odd and k happens to be even, then m + k is odd and will

serve as well as k, so we may assume that k is relatively prime to 2m. Proposition 6.2

implies that 〈φ, χ2,s〉 = 〈ψkφ, χ2,ks〉, and since φ is rational the right-hand side is equal

to 〈φ, χ2,ks〉, again by Proposition 6.2.

2. Let d be a divisor of m with d > 2. Then the condition gcd(s,m) = m/d

implies 〈φ, χ2,s〉 = 〈φ, χ2,gcd(s,m) s
gcd(s,m)
〉 = 〈φ, χ2,gcd(s,m)〉 by Part 1 of this corollary, since

gcd( s
gcd(s,m) ,m) = 1. Thus the multiplicities of χ2,s where gcd(s,m) = m

d are all equal to

〈φ, χ2,m
d
〉.

3. Let φ̂ be a rational character of Cm and suppose that gcd(s,m) = gcd(s′,m) = m
d .

If 〈φ̂, ζ s
m〉 = a, then taking complex conjugates we have 〈φ̂, ζ−s

m 〉 = a as well. Inducing

to D2m, we observe that a complex summand of χ2,s in φ̂ ↑D2m
Cm

arises from inducing

a summand of φ̂ equal to either ζ s
m or ζ−s

m . Thus, 〈φ̂ ↑D2m
Cm
, χ2,s〉 = 2a. Likewise if

〈φ̂, ζ s′
m 〉 = a′, then 〈φ̂ ↑D2m

Cm
, χ2,s′〉 = 2a′. By Part 2 of this corollary, a = a′ which

completes the proof. �

Corollary 6.3 implies that whenever an irreducible rational character has a con-

stituent χ2,s where |ζ s
m| = d, then it also has as a constituent any other character χ2,s′

with |ζ s′
m | = d.

From here on, we define reflection subgroups based on the presentation D2m =

〈x, y | x2 = y2 = (xy)m = 1〉. For each divisor d of m, let D2d,x = 〈x, (yx)
m
d −1y〉 and

D2d,y = 〈y, (xy)
m
d −1x〉. Note in the case of d = 1 that the subgroups D2,x and D2,y are

rank one Coxeter groups with D2,x = 〈x〉 and D2,y = 〈y〉. When m is odd, D2d,x and D2d,y

are conjugate, and we denote D2d = D2d,x. We record the following observation:
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Proposition 6.4. Every nonidentity reflection subgroup is conjugate to D2d,x or D2d,y

for some d | m. If d , m, then each of the subgroups D2d,x and D2d,y contains a unique

Coxeter generator.

Proof. Let P be a nonidentity reflection subgroup. If P has rank one then it is generated

either by a conjugate of x or a conjugate of y. Otherwise, P is dihedral, and we may

simultaneously conjugate its generators so that one of them is equal to x or y. This

establishes the first claim, and the second claim follows immediately. �

We will now show that there exist representations of D2m with rational characters of

the form ∑
1≤s<m

2 ,gcd(s,m)= m
d

χ2,s

which are necessarily irreducible.

Proposition 6.5. 1. The cyclic group Cm = 〈g〉 has irreducible rational characters

φ̂H in bijection with its subgroups H, such that

Q ↑Cm
H =

∑
H′≥H

φ̂H′

for each subgroup H. If |Cm : H| = d, the value φ̂H at g is equal to the sum of the

primitive d-th roots of unity.

2. Each of the representations φ̂H of Cm extends to an irreducible representation φJ

of D2m whenever J is a dihedral subgroup whose alternating subgroup is equal

to H.

3. The irreducible rational representations of D2m are the above representations,

together with the sign representation.

4. For all divisors d of m, the virtual complex character∑
1≤s<m

2 ,gcd(s,m)= m
d

χ2,s
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is the character of a rational representation of D2m. When d > 2, this character

is irreducible.

Proof. 1. Fix a divisor d of m. If H = 〈g
m
d 〉 then Q ↑Cm

H has a basis of d elements

cyclically permuted by g. Thus the characteristic polynomial for the action of g is xd−1.

Then we define the complex representation ρ̂H to be the sum of the ζk
d-eigenspaces of

Q ↑Cm
H , for all k with gcd(k, d) = 1. This has dimension φ(d) (as in the Euler phi

function). Denote by φ̂H the character of ρ̂H.

We will show by induction on |Cm : H| that Q ↑Cm
H is a sum of rational repre-

sentations of the form ρ̂H′ with characters φ̂H′ as specified. For the base case, when

|Cm : H| = 1 (that is, d = m), then ρ̂H is the trivial module, which is equal to Q ↑Cm
H .

Now suppose that |Cm : H| > 1. Let d′ be a divisor of m with d | d′, so H′ := 〈g
m
d′ 〉 ≥

〈g
m
d 〉 = H. Then Q ↑Cm

H′ is a direct summand of Q ↑Cm
H . The former of these permutation

representations is, by induction, the sum of ρ̂H′′ where H′′ ≥ H′. In particular, ρ̂H′ is

a summand of Q ↑Cm
H . It follows that Q ↑Cm

H has each such ρ̂H′ as a constituent, and by

definition ρ̂H is also a constituent. All of these constituents have trivial intersections

because the actions of g on these representations have distinct eigenvalues. Then by

dimension counting, the multiplicities of the ρ̂H′ , H′ ≥ H, must equal one since d =∑
d′ |d φ(d′). Thus Q ↑Cm

H =
∑

H′≥H ρ̂H′ , and if all ρ̂H′ , H′ > H, are rational characters,

then so is ρ̂H. To conclude Part 1, the irreducibility of the ρ̂H follows from Part 3 of

Corollary 6.3, except in the case that m is even and |Cm : H| = 2. In this case, ρ̂H is

equal to the nontrivial character of Cm of degree 1 in which gk acts as multiplication by

(−1)k.

2. We may extend the representations ρ̂H to D2m-representations, as follows. The

Cm-representation Q ↑Cm
H has a basis of cosets which are permuted cyclically by the

action of g. We also consider the linear transformation θ that sends each g jv to g− jv,

which has a rational matrix. Now if J is one of the dihedral subgroups of the form

D2d,x or D2d,y, we let z denote the unique Coxeter generator contained in J according

to Proposition 6.4. The action of z as the transformation θ, together with the action

of g = xy, determines a rational representation ρJ of D2m. Each subrepresentation
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ρ̂H is invariant under the action of θ, with θ mapping each ζ s
m-eigenspace to the ζ−s

m -

eigenspace. The matrices of θ on these subrepresentations are still rational, so this

determines a D2m-representation ρJ extending ρ̂H. This is irreducible since the restricted

representation ρ̂H is irreducible.

3. The number of rational irreducible representations of a finite group equals the

number of conjugacy classes of its cyclic subgroups, as a consequence of Artin’s in-

duction theorem (see [2], Exercise 15.4). For D2m, the cyclic subgroups not contained

in Cm are generated by reflections. When m is odd, the reflections are all conjugate

and there is one additional conjugacy class. When m is even, there are two conjugacy

classes which contain the two Coxeter generators. Thus the total number of rational

irreducible characters of D2m is τ(m) + 1 if m is odd and τ(m) + 2 if m is even, where

τ(m) is the number of divisors of m.

For all m, the trivial character arises as φD2m . When m is odd and d | m is a proper

divisor, the characters φD2d all have degree equal to φ(d), and this is greater than 1

when d < {1, 2}. These characters are distinct since they have distinct Cm-eigenspaces.

The φJ, along with the sign character, constitute τ(m) + 1 distinct rational irreducible

characters.

When m is even and d | m is a divisor with d < m
2 , then the characters φD2d,x all

have degree greater than 1, and again they are distinct since they have distinct Cm-

eigenspaces. In the case of d = m
2 , we have that Q ↑Cm

〈g2〉
= ρ̂Cm + ρ̂〈g2〉. If J = Dm,x,

then the action of x as θ, on this coset space of dimension 2, is trivial, so the action

of y equals the action of xy and has a (−1)-eigenspace. Thus, φDm,x = φ1b. Likewise,

φDm,y = φ1a. We have identified τ(m) + 1 distinct characters of the form φJ when m

is even, and these along with the sign character constitute τ(m) + 2 distinct rational

irreducible characters.

4. When d > 2 this complex character is the character of the irreducible represen-

tation ρH constructed in Part 2, corresponding to φH, where |Cm : H| = d. When d > 2,

the claim follows from Corollary 6.3. �
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Remark 6.6. The proof of Part 3 shows that, when m is even, the irreducible ratio-

nal characters of the form φD2d,x with d < m
2 are uniquely determined by their Cm-

eigenspaces. It follows that φD2d,x = φD2d,y whenever the degrees of these characters are

greater than 1.

Corollary 6.7. 1. Each irreducible rational representation of D2m restricts to an

irreducible representation of the cyclic subgroup Cm.

2. The above establishes a bijection between the irreducible rational representa-

tions of D2m of degree at least 2, and the irreducible rational representations of

Cm of degree at least 2.

3. For each irreducible rational representation φ of D2m of degree at least 2, φ =

φ ⊗ φε .

4. The trivial representation and sign representation of D2m both restrict to the triv-

ial representation of Cm. When m is even, the remaining two 1-dimensional rep-

resentations of D2m both restrict to the non-trivial 1-dimensional representation

of Cm.

Proposition 6.8. Let J be a dihedral subgroup of D2m and write H = J ∩Cm. Then, to

within 1-dimensional representations,

Q ↑D2m
J ≡ ε ↑

D2m
J ≡

∑
J′
φJ′ (modulo characters of degree 1),

where the sum is taken over dihedral subgroups J′ of D2m containing J, one of each

possible order. The value of φConst(J, J) is equal to the above sum, without characters

of degree 1.

Proof. When V is Q or ε we have

V ↑D2m
J ↓

D2m
Cn
�

⊕
Cm\G/J

V ↓J
Cm∩J↑

Cm
Cm∩J= Q ↑Cm

H =
⊕

Cm≥K≥H

φ̂K
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noting that V restricts to the trivial module on Cm and there is only one double coset.

Since each φ̂K is the restriction of φJ′ whenever φJ′ has degree at least 2 and K = A(J′),

the first claim follows.

The characters of degree 1 occurring in Q ↑D2m
J are φ1 = φD2m and, if m is even,

one of φ1b = φDm,x or φ1a = φDm,y . The characters of degree 1 occurring in ε ↑D2m
J are

the tensor products of these characters with ε, so they are distinct and do not occur as

common constituents. �

Remark 6.9. This result also holds, with the same proof, when J is a rank one reflection

subgroup.

We come now to one of the main results of this section, which says that the ir-

reducible rational representations of dihedral groups can be parametrized by pairs of

reflection subgroups.

Theorem 6.10. Property 2.16 holds for the Coxeter groups of type I. That is, there is a

set of ordered pairs of reflection subgroups of D2m, in bijection with the irreducible ra-

tional characters of D2m, and an ordering on these pairs and on the irreducible rational

characters, so that the multiplicity matrix of the characters φConst(P,Q) is unitriangu-

lar. Moreover, whenever (P,Q) corresponds to φ in the parametrization then (Q, P)

corresponds to φ ⊗ φε .

Proof. To verify Property 2.16 when m is odd, we may choose the following collection

of subgroup pairs:

• The pair (D2m, 1) with common constituents character equal to φ1.

• The pair (D2,D2). By Proposition 6.8 and the following remark, the common

constituents are equal to the sum of one copy of each irreducible of the form φJ

of degree greater than 1.

• The pairs (D2d,D2d) for 1 < d < m, ordered increasing in d. The common con-

stituents character equals the sum of characters of degree greater than 1 described

in the statement of Proposition 6.8, each occurring with multiplicity 1.
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• The pair (1,D2m) with common constituents character equal to φε .

When m is even, we take the following collection of pairs:

• The pair (D2m, 1) with common constituents character equal to φ1.

• The pair (Dm,x,Dm,y). By the proof of Proposition 6.5, Part 3, the permutation

character on Dm,x decomposes as φ1 + φ1b. By an analogous construction, the

permutation character on Dm,y decomposes as φ1 +φ1a, so the signed permutation

character is φε + φ1b. Thus the common constituents are irreducible, equal to φ1b.

• The pair (D2,x,D2,x) with common constituents again equal to the sum of one

copy of each irreducible of the form φJ of degree greater than 1, by Proposition

6.8 and the following remark.

• The pairs (D2d,x,D2d,x) for 1 < d < m
2 , ordered increasing in d. The common

constituents are again equal to the sum of characters of degree greater than 1 de-

scribed in the statement of Proposition 6.8, each irreducible summand occurring

with multiplicity 1.

• The pair (Dm,y,Dm,x) which, analogously to the pair (Dm,x,Dm,y), has φ1a as its

common constituents.

• The pair (1,D2m) with common constituents character equal to φε .

Immediately from the above descriptions of the characters, we have that the mul-

tiplicity matrix is lower unitriangular. Moreover, it is clear by our choice of pairs that

(P,Q) corresponds to φ if and only if (Q, P) corresponds to φ ⊗ ε. �

Remark 6.11. For dihedral groups, we may consider the effect on parametrizations

of an additional dual operation given by the nontrivial automorphism of the Dynkin

diagram of type I2(m). The corresponding outer automorphism of D2m swaps the gen-

erators x and y. Suppose m is even. If we take the parametrization from the proof of

Theorem 6.10 and replace every subgroup D2d,x occurring in each subgroup pair with
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D2d,y, and vice-versa, the resulting collection of subgroup pairs gives another (distinct)

parametrization of the irreducible rational characters. This parametrization also satis-

fies Property 2.16, and the order of the characters φ1a and φ1b is swapped.

Theorem 6.12. For dihedral groups I2(m), m > 1, Property 2.13 holds. That is, the

maximal subgroup pairs in the support of the function φConst are all irreducible.

Proof. The maximal elements of the support of φConst when m is odd are the following

pairs:

• The pairs (D2m, 1) and (1,D2m). For any finite Coxeter group W, the only re-

flection subgroup Q such that ε ↑1
Q contains the irreducible constituent 1 =

1 ↑W
W is Q = 1. Thus, the pair (W, 1) is maximal for every Coxeter group W,

and φConst(W, 1) = φ1 is irreducible. Likewise, (1,W) is always maximal and

φConst(1,W) = φε is irreducible.

• The pairs (D2 m
p
,D2 m

p
), for each prime divisor p of m. By Proposition 6.8,

φConst

(
D2 m

d
,D2 m

d

)
=

∑
1<d′≤d

φD2 m
d′

with the summands φD2 m
d′

all irreducible characters of degree greater than 1. There

is a unique summand if and only if d is prime.

When m is even, the maximal pairs are as follows:

• The pairs (D2m, 1) and (1,D2m) as in the odd case.

• The pairs (Dm,x,Dm,y) and (Dm,y,Dm,x). In the proof of Theorem 6.10, the common

constituents of these pairs were determined as φ1b and φ1a respectively.

• The pairs (D2 m
p ,x,D2 m

p ,x) and (D2 m
p ,y,D2 m

p ,y), for each odd prime p dividing m
2 . As

with the m odd case, the common constituents are irreducible equal to φD2 m
p ,x

=

φD2 m
p ,y

.
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• The pairs (D m
2 ,x,D m

2 ,x) and (D m
2 ,y,D m

2 ,y) in the case that 4 | m. As with the previous

pairs, the common constituents are irreducible equal to φD m
2 ,x

= φD m
2 ,y

.

These are all of the maximal pairs of the support of φConst, and we see that the

common constituents on these pairs all consist of a single irreducible module. �
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6.2 Examples

We present several computations that show the parametrization of irreducible rational

representations of dihedral groups by pairs of reflection subgroups.

Example 6.13. We consider the 2-group D16. We write φ2 = φ4,x = φ4,y and φ4 =

φ2,x = φ2,y. Table 6.2 gives the direct sum decompositions of all generalized common

constituent characters of reflection subgroup pairs.

1 D2,x D4,x D8,x D2,y D4,y D8,y D16

D16 φ1 0 0 0 0 0 0 0
D8,y 0 φ1b φ1b φ1b 0 0 0 0
D4,y 0 φ1b + φ2 φ1b + φ2 φ1b φ2 φ2 0 0
D2,y 0 φ1b + φ2 + φ4 φ1b + φ2 φ1b φ2 + φ4 φ2 0 0
D8,x 0 0 0 0 φ1a φ1a φ1a 0
D4,x 0 φ2 φ2 0 φ1a + φ2 φ1a + φ2 φ1a 0
D2,x 0 φ2 + φ4 φ2 0 φ1a + φ2 + φ4 φ1a + φ2 φ1a 0

1 0 0 0 0 0 0 0 φε

Table 6.2: Table of common constituents for all reflection subgroup conjugacy class
pairs for W = D16.

We see from this table that the maximal elements of the support of φConst are as

follows:

(D16, 1), (D8,x,D8,y), (D8,y,D8,x), (D4,x,D4,x), (D4,y,D4,y), (1,D16).

In each case the common constituents consist of a single irreducible representation. Al-

though there are 6 maximal elements and 6 irreducible rational characters, the mapping

(P,Q) 7→ φConst(P,Q) does not give a parametrization as it is not a bijection.

However, there are many possibilities for parametrizing the irreducible represen-

tations by pairs of reflection subgroups in order to obtain a unitriangular multiplicity

matrix. Table 6.3 gives the parametrization discussed in the proof of Theorem 6.10.

Example 6.14. We generalize the previous example to all dihedral 2-groups. Let W =
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(D16, 1) (D8,x,D8,y) (D2,x,D2,x) (D4,x,D4,x) (D8,y,D8,x) (1,W)

φ1 1 0 0 0 0 0
φ1b 0 1 0 0 0 0
φ4 0 0 1 0 0 0
φ2 0 0 1 1 0 0
φ1a 0 0 0 0 1 0
φε 0 0 0 0 0 1

Table 6.3: Multiplicity matrix of selected common constituents for W = D16, invariant
under simultaneously interchanging P with Q and φ with φ ⊗ ε.

D2k , k > 2. For 1 ≤ i ≤ k− 2, denote by φ2i the irreducible character φD2k−1−i ,x
= φD2k−1−i ,y

.

Table 6.4 displays the parametrization discussed in Theorem 6.10.

(D2k , 1) (D2k−1,x,D2k−1,y) (D2,x,D2,x) (D4,x,D4,x) · · · (D2k−2,x,D2k−2,x) (D2k−1,y,D2k−1,x) (1,W)

φ1 1 0 0 0 · · · 0 0 0
φ1b 0 1 0 0 · · · 0 0 0
φ2k−2 0 0 1 0 · · · 0 0 0
φ2k−3 0 0 1 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

φ2 0 0 1 1 · · · 1 0 0
φ1a 0 0 0 0 · · · 0 1 0
φε 0 0 0 0 · · · 0 0 1

Table 6.4: Multiplicity matrix of selected common constituents for W = D2k , invariant
under simultaneously interchanging P with Q and φ with φ ⊗ ε.

In the case of dihedral 2-groups, we see that this multiplicity matrix satisfies a

further additional property: it is symmetric about the matrix antidiagonal. However,

the next example shows that this is not always possible for dihedral groups.

Example 6.15. Let W = D30. We write φ2 = φD10 , φ4 = φD6 , and φ8 = φD2 . The table

of common constituents and the multiplicity matrix are given in Tables 6.5 and 6.6.

We observe from Table 6.5 that the subgroup pair (D2,D2) must occur in any

parametrization, as only its common constituents character has φ8 as a summand. To

have a multiplicity matrix symmetric about the matrix antidiagonal, there should ex-

ist a common constituent character equal to the sum of two of the terms appearing in
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φConst(D2,D2), but such a character does not exist. Although we do not have symmetry

about the antidiagonal, note that the invariance given in Property 2.16 still holds.

1 D2 D6 D10 D30

D30 φ1 0 0 0 0
D10 0 φ2 0 φ2 0
D6 0 φ4 φ4 0 0
D2 0 φ2 + φ4 + φ8 φ4 φ2 0
1 0 0 0 0 φε

Table 6.5: Table of common constituents for all reflection subgroup conjugacy class
pairs for W = D30.

(D30, 1) (D2,D2) (D6,D6) (D10,D10) (1,D30)
φ1 1 0 0 0 0
φ8 0 1 0 0 0
φ4 0 1 1 0 0
φ2 0 1 0 1 0
φε 0 0 0 0 1

Table 6.6: Multiplicity matrix of selected common constituents for W = D30, invariant
under simultaneously interchanging P with Q and φ with φ ⊗ ε.
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