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Chapter 1

Introduction

Let G be a fixed finite group throughout. An induction formula for a complex char-

acter χ of G is the existence of

(1) some characters ηH for various (preferably proper!) subgroups H of G,

(2) some scalars λH ∈ Q, and

(3) an equation with induced characters of the form χ =
∑

H λH indGH(ηH).

A classical result of Artin [Art31, page 293] (or see Benson [Ben98, Theorem 5.6.1])

says that such a formula always exists where H ranges over the cyclic subgroups of

G. This then allows Artin to reduce certain arguments from a general finite group to a

cyclic one. Brauer later gave an explicit version for Artin’s induction theorem:

Theorem 1.1 ([Bra51, Satz 1]1). Writing C for the set of cyclic subgroups of G and

1H for the trivial character of H, we have

1G =
∑
H∈C

−µC+(H,∞)

|G : H|
indGH(1H) .

Here, the poset C+ is given by adding a unique maximum element ∞ to C , and µC+ is

its Möbius function.

Remark 1.2. Although Theorem 1.1 is on the surface only an induction formula for

1This theorem is not what is usually meant by “Brauer’s induction theorem” [Ben98, Theorem 5.6.4],
which has integral coefficients.
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the trivial character, a similar formula for an arbitrary character χ can be obtained

immediately by multiplying both sides of the equality with χ and using Frobenius reci-

procity:

χ =
∑
H∈C

−µC+(H,∞)

|G : H|
indGH resGH χ .

Of course, being over cyclic groups, the Möbius coefficients in Theorem 1.1 can be

expressed in terms of the number-theoretic Möbius function, but it is the formula we

present that generalizes. The generalization of Artin’s induction theorem to other rings

was obtained by Dress [Dre69, Theorem 1’, Theorem 2], succeeding Conlon [Con68,

Corollary 4.6] who treated the local case. Later, Webb [Web87a, Theorem D’] found a

way to make these existence theorems explicit (as Brauer did for Artin) and obtained a

formula which has exactly the same coefficients as Brauer’s formula but with a larger

set C of subgroups, whose size depends, not surprisingly, on how many primes divide

the order |G| and remain non-invertible in R.

In this thesis, we give a meaning to the right hand side of Brauer’s (and Webb’s)

formula as an entity of its own, for any set C of subgroups of G which is closed under

conjugation. We emphasize that the coefficients in this formula are usually not integers,

but rationals. To that end, we consider the integral Burnside ring of G. A quick

definition is

ΩZ(G) := K0(G-Set,×,t) ,

the Grothendieck ring of finite G-sets under cartesian product and disjoint union. We

then extend the scalars Ω(G) := Q ⊗Z ΩZ(G) to allow rational coefficients. We refer

the reader to Benson’s book [Ben98, Section 5.4] for more about the Burnside ring. We

write [G/H] for the equivalence class of the transitive left G-set G/H as an element of

Ω(G).

Berger–Leinster defined a notion of series Euler characteristic χΣ [BL08], a partial

assignment

χΣ : {finite categories} 99K Q ,
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that extends the classical notion of Euler characteristic when it is defined (this is made

precise in Section 2.4). We shall define, as an equivariant generalization of χΣ, a partial

assignment

ΛΣ : {finite categories with a (strict) G-action} 99K Ω(G) .

The subscript Σ in χΣ and ΛΣ is there to indicate that a divergent series is involved in

the definition, coming from the fact that the nerve of most finite categories have cells

in arbitrarily high dimensions, due to loops. If ΛΣ(D) is defined for a G-category D, we

call it the series Lefschetz invariant of D, to keep consistent notation with Thévenaz

[Thé86] (he defines Λ(P) for a finite G-poset P and calls it the Lefschetz invariant) and

other papers that build on his work.

Given any set C of subgroups of G, Dwyer [Dwy97, Dwy98] introduced a G-category

EOC (to be defined in Section 2.7) for obtaining so-called subgroup decompositions

in group (co)homology. We call EOC the subgroup decomposition category of C .

For the reader familiar with Dwyer’s work, we are using Grodal’s notation [Gro02, GS06]

for this category here instead of Dwyer’s Xβ
C . We compute its series Lefschetz invariant:

Theorem A. Let C be any set of subgroups of G closed under conjugation. The G-

category EOC has series Lefschetz invariant

ΛΣ(EOC ) =
∑
H∈C

−µC+(H,∞)

|G : H|
[G/H] ∈ Ω(G) .

Here, the poset C+ is given by adding a unique maximum element ∞ to C , and µC+ is

its Möbius function.

To state Webb’s result (it generalizes Brauer’s) precisely, let us introduce some nota-

tion. Given a commutative ring R, we write AR(G) for the rational representation

ring or rational Green ring of G over R (see Section 3.1 for a definition). For any

group H and a prime p, we write Op(H) for the largest normal p-subgroup of H.

Theorem 1.3 ([Web87a, Theorem D’] for R = Z∧p ). Let R be a unital commutative

ring. Suppose C is a set of subgroups of G closed under conjugation which satisfies the

following:

(1) Every cyclic subgroup is in C .
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(2) If H is a subgroup such that H/Op(H) is cyclic for some prime p with pR 6= R,

then H ∈ C .2

Then the trivial representation R can be written as

R =
∑
H∈C

−µC+(H,∞)

|G : H|
indGH(R) ∈ AR(G) .

Here, the poset C+ is given by adding a unique maximum element ∞ to C , and µC+ is

its Möbius function.

In more elementary terms, Theorem 1.3 will yield a formula such as U = 1
2V −

1
2W , where U, V,W are certain RG-modules. This means that U ⊕ U ⊕W is stably

isomorphic with V , that is, there exists another finitely generated RG-module N

such that U ⊕ U ⊕W ⊕ N ∼= V ⊕ N as RG-modules. Of course the extra N will be

unnecessary if finitely generated RG-modules have a cancellative property such as being

Krull–Schmidt.

We will show that Webb’s (hence also Brauer’s) explicit formula can be deduced by

linearizing Theorem A. In this sense the coefficients involved in the formula “come from”

the category EOC , which may be regarded as an instance of categorification.

In his work, Dwyer [Dwy97, Dwy98] defined another G-category EAC , this time for

obtaining so-called centralizer decompositions in group (co)homology. Thus we call

EAC the centralizer decomposition category of C . As with the subgroup decompo-

sition case, with the centralizer decomposition category we are using Grodal’s notation

[Gro02, GS06] instead of Dwyer’s Xα
C . We compute its series Lefschetz invariant, which

aptly involves centralizer subgroups.

Theorem B. Let C be any set of subgroups of G closed under conjugation. The G-

category EAC satisfies

ΛΣ(EAC ) =
∑
H∈C

−µC−(−∞, H)

|G : CG(H)|
[G/CG(H)] ∈ Ω(G) .

Here, the poset C− is given by adding a unique minimum element −∞ to C , and µC−

is its Möbius function.

2Note that the existence of a prime p with pR 6= R renders condition (1) superfluous.
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As an application, the expansion for EAC in Theorem B linearizes into an induction

formula which appears to be new:

Theorem C. Let R be a unital commutative ring. Suppose C is a set of subgroups of

G closed under conjugation which satisfies the following:

(1) If K is a cyclic subgroup, the centralizer CG(K) is in C .

(2) If K is a subgroup such that K/Op(K) is cyclic for some prime p with pR 6= R,

then the centralizer CG(K) is in C .

Then the trivial representation R can be written as

R =
∑
H∈C

−µC−(−∞, H)

|G : CG(H)|
indGCG(H)(R) ∈ AR(G) .

Here, the poset C− is given by adding a unique minimum element −∞ to C , and µC−

is its Möbius function.

An induction formula for group (co)homology immediately follows from Theorem C

by applying an Ext or Tor, similar to [Web87a, Theorem D]. Here AR(1) is simply

the Grothendieck group of finitely generated R-modules under direct sum, extended to

Q-coefficients.

Theorem C′. Let C and R be as in the hypotheses of Theorem C. Fix a cohomological

degree k ≥ 0, and a finitely generated RG-module M . We have

Hk(G;M) =
∑
H∈C

−µC−(−∞, H)

|G : CG(H)|
Hk(CG(H);M) ∈ AR(1) .

A similar statement holds for homology Hk(G;M) and Tate cohomology Ĥk(G;M).

Webb’s formula can be made even more general, where the representation ring is

replaced by an arbitrary rational Green functor, see Section 3 and more specifically

Theorem 3.4. There is an analog of Theorem C in the Green functor generality as well:

Theorem 3.5.

On the topology side, Minami showed that [Min99, Theorem 6.6] Webb’s formulae

in cohomology can be lifted to suspension spectra of p-completed classifying spaces.
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Minami’s general setup allows us to deduce a similar lift with the centralizer decompo-

sition:

Theorem C′′. Let p be a fixed prime. Suppose C is a set of subgroups of G closed

under conjugation, such that the centralizer CG(K) is in C whenever K/Op(K) is cyclic.

Then, writing X∧p for the p-completion of a space X, there is a formal stable equivalence

BG∧p '
∨
H∈C

−µC−(−∞, H)

|G : CG(H)|
BCG(H)∧p .

of spectra, with respect to the wedge sum ∨.

With the words formal stable equivalence above, we mean that after clearing the

denominators and transferring the negative terms to the left, the genuine spaces on

both sides have homotopy equivalent suspension spectra.

1.1 Outline

Below is a graph of logical dependencies among the main theorems of this thesis. To

highlight the analogies, we include some of the previously known results like Webb’s

formulae in this graph, distinguishing the results of this thesis by bold font.

Theorem A Theorem 3.4 Theorem 1.3

Theorem 2.36 Theorem 2.38

Theorem B Theorem 3.5 Theorem C Theorem C′

Theorem C′′

Theorem 2.36 is in a sense the master theorem here. It has three notions involved in it:

skeletal weighting of a category C, the Grothendieck construction
∫
Cof a functor, and the

series Lefschetz invariant ΛΣ of a G-category. The definitions of and the relationships

between these three notions is essentially what Section 2 is about. Skeletal weighting

is obtained from what we call skeletal Möbius inversion, introduced in Section 2.1.

Skeletal Möbius inversion is more of an auxilliary tool, which gives a way to perform
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Leinster’s [Lei08] (ordinary) Möbius inversion without the need to pass to a skeleton.

We recall the skeletal weighting computations of Jacobsen–Møller [JM12] for the orbit

and fusion categories associated to a set of subgroups C in Section 2.3. The series

Lefschetz invariant ΛΣ(D) of a G-category D, is a direct adaptation of the series Euler

characteristic χΣ of Berger–Leinster [BL08] to the equivariant context. We review

the series Euler characteristic in Section 2.4 and define the series Lefschetz invariant in

Section 2.5.

The Grothendieck construction is a general way of gluing different categories together.

We review it both in the non-equivariant and the equivariant contexts in Sections 2.2

and 2.6. The main categories of interest in this thesis, EOC and EAC , are both obtained

as Grothendieck constructions. After proving Theorem 2.36 which tells us how to com-

pute ΛΣ of a general Grothendieck construction, we use the computations of Jacobsen–

Møller [JM12] (we prove these independently in Section 2.3) to compute ΛΣ(EOC ) and

ΛΣ(EAC ) in Theorem 2.38.

Having defined and computed ΛΣ(EOC ) and ΛΣ(EAC ) in the rational Burnside ring

Ω(G), Section 3 proceeds in a rather formal fashion by pushing them in any Q-Green

functor, culminating in the explicit induction formulae: Theorem 3.4 and Theorem 3.5.

The final section (Section 3.2) addresses the canonicity of the induction formulae, in

the sense of Boltje [Bol98]. It has no bearing on our main results and can be safely

skipped in a first reading.

1.2 Related work

The divergent series for Euler characteristic type alternating sums come about for

the categories we are interested in because their nerves are infinite-dimensional cell-

complexes. On the other hand, there are several results in the literature which yield

induction theorems in group theory by putting a finite G-complex X into work. With-

out divergent summations like
∑

n(−1)n = 1
2 that arise for infinite-dimensional spaces,

this approach naturally results in integral coefficients. In this case, one usually writes

Λ(X) ∈ Ω(G) for the finite alternating sum (the more classical Lefschetz invariant

[Thé86]) and its linearization L(X) for the Lefschetz module. Here is a sampling for
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previous work in this vein:

(1) Snaith [Sna88] gave a categorification of Brauer’s induction theorem [Ben98, Theo-

rem 5.6.4]. Snaith takes X to be a certain quotient of unitary matrices U(n) with

n = dimC(V ), which has a translation G-action by a defining homomorphism

ρV : G→ U(n) of V . The discussion through the vanishing of the Lefschetz mod-

ule appears explicitly in [Sna87, 2.10(d)].

(2) Symonds [Sym91, §2] gave a different categorification of Brauer induction. For a

G-module V , he takes X = P(V ) , the projective space on V , and a twisted version

of the Lefschetz module using the tautological line bundle. The formula Symonds

gets is indeed different than Snaith’s, and the two are compared in Boltje–Snaith–

Symonds [BSS92].

(3) Fix a prime number p and write Z∧p for the p-adic integers. Webb [Web87a] takes

X to be either the order complex Sp(G) of the poset of non-identity p-subgroups

(the Brown complex), or more generally any G-complex with certain fixed point

conditions. He shows that the reduced Lefschetz module is a virtual projective

[Web87a, Theorem A’] Z∧pG-module. This can be seen as an induction theorem

in the stable sense, which is a formula that holds “modulo projectives”. Because

the (Tate)-cohomology of a projective module vanishes, an induction theorem for

group cohomology [Web87a, Theorem A] follows. Webb revisited these results

later in two ways. First, he showed that the two induction formulae are actu-

ally equivalent to each other [Web86, Main Theorem]. And second, he refined

them into a structure theorem about the augmented chain complex C̃∗(X;Z∧p ) in

[Web91, Theorem 2.7.1].

(4) A surprising theorem of Bouc [Bou99, Theorem 1.1] says that it is enough for

X to be non-equivariantly contractible as a space for C̃∗(X;R) to be equiv-

ariantly chain homotopy equivalent to the zero complex, regardless of what the

commutative ring R is. That X is a finite complex is a crucial assumption here,

through use of Smith theory. Kropholler–Wall [KW11, Section 5] observed that

using Bouc’s theorem together with Oliver’s classification [Oli75] of the class of
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finite groups which can act on a contractible complex with no fixed points, one

obtains Dress’s induction theorem [Dre73, page 47, Proposition 9.4].

It is also imperative to mention the work of Grodal [Gro02] and Villarroel-Flores–Webb

[VFW02] which work with the same categories that we do. In these papers, the infinite-

dimensionality of EOC and EAC is dealt with by separating the isomorphisms from the

non-isomorphisms. The isomorphisms in these categories all come from conjugations in

G, whereas the non-isomorphisms basically yield C itself as a poset, whose order complex

is of course finite-dimensional. For both EOC and EAC , the main induction statement

of these papers is the existence of a finite split exact chain complex [Gro02, Theorem

1.4, Corollary 8.13-14], [VFW02, Main Theorem] involving group (co)homology, when

the set of subgroups C is large enough. As a result the Lefschetz module of these

chain complexes vanish, resulting in induction formulae for group (co)homology. These

formulae are different than ours. Most importantly, they are integral and they involve

(co)invariants.



Chapter 2

Möbius inversion, Euler

characteristic, Lefschetz invariant

2.1 Skeletal Möbius Inversion

In this section we will extend Leinster’s notion of Möbius inversion [Lei08] in a category,

to incorporate isomorphisms. We call this procedure skeletal Möbius inversion. The

algebra of skeletal Möbius inversion makes certain computations go through more easily.

In Section 2.3, we apply the general theory here to certain subgroup categories.

Convention 2.1. Throughout this thesis, C is assumed to be a finite category: C has

finitely many objects, and the set C(x, y) of morphisms between any two objects x, y is

finite.

Definition 2.2 ([Lei08, 1.1]). We denote by MC(Q) the Q-algebra of functions ObjC×
ObjC→ Q with pointwise addition and scalar multiplication, multiplication defined by

αβ(x, y) =
∑

z∈ObjC

α(x, z)β(z, y) .

Similarly we define MC(R) for any commutative ring R, considering R-valued functions.

The Kronecker delta δ is the multiplicative identity of MC(Q). The zeta function

10
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ζC ∈ MC(Q) is defined by ζC(x, y) := |C(x, y)|. If ζC is invertible in MC(Q), then C is

said to have Möbius inversion, and µC := ζ−1
C is called the Möbius function of C.

Remark 2.3. If C is a finite poset considered as a finite category in the standard way,

then ζC is guaranteed to be invertible (see Example 2.7 for a generalization). In this case

the µC defined above is nothing but the classical Möbius function [Sta97, Section 3.7],

[Lei08, Example 1.2.a] for the poset. The µC+ and µC− that appear in the Introduction

are defined in this way.

The problem with this Möbius inversion is that it usually does not exist. Regarding

ζC as a matrix whose rows and columns are labeled by the objects of C, we see that ζC

will have repeated rows (and columns) if C has two objects isomorphic to each other.

One solution to this would be to work with a skeleton of C. What we call skeletal

Möbius inversion is another solution, which has the benefit that it can be performed in

the same algebra MC(Q) without throwing any objects of C away.

We begin setting the stage for skeletal Möbius inversion. Write [x]C or shortly [x] for

the isomorphism class of an object x in C, so that |[x]| is the size of the isomorphism

class. Now define

eC : ObjC×ObjC→ Q

(x, y) 7→


1

|[x]|
if x, y are isomorphic in C,

0 otherwise.

We claim that e = eC ∈MC(Q) is an idempotent. Indeed,

e2(x, y) =
∑

z∈ObjC

e(x, z)e(z, y) =
1

|[x]|
∑
z∼=x

e(z, y)

is
1

|[x]|
if x and y are isomorphic, and zero otherwise.

We consider the Q-algebra eMC(Q)e, whose multiplicative identity is eC. Note that

for α ∈MC(Q),

eαe(x, y) =
∑

z,t∈ObjC

e(x, z)α(z, t)e(t, y) =
1

|[x]| · |[y]|
∑

z∈[x],t∈[y]

α(z, t) ;
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so the linear map MC(Q)→ eMC(Q)e given by α 7→ eαe is a kind of averaging operation

on the isomorphism classes of C. This yields the following characterization for eMC(Q)e:

Proposition 2.4. A function α ∈MC(Q) lies in eMC(Q)e if and only if α is invariant

under isomorphisms; that is, α(x, y) = α(x′, y′) whenever x ∼= x′, y ∼= y′.

In particular, the zeta function ζC is always in eMC(Q)e.

Definition 2.5. The category C is said to have skeletal Möbius inversion if ζC has

an inverse in eMC(Q)e, in which case we denote the inverse by νC = ν ∈ eMC(Q)e.

It turns out skeletal Möbius inversion is possible exactly when the skeleton has or-

dinary Möbius version, as we prove in the next proposition. The upshot with skeletal

Möbius inversion is that the size of each isomorphism class is incorporated to its defi-

nition, which would require extra bookkeeping if we were to work with a skeleton.

Proposition 2.6. The following are equivalent:

(1) C has skeletal Möbius inversion.

(2) C has a skeleton [C] with (ordinary) Möbius inversion.

(3) There exists β ∈MC(Q) such that ζCβ = eC.

(4) There exists α ∈MC(Q) such that αζC = eC.

(5) There exist α, β ∈MC(Q) such that αζCβ = eC.

Proof. To see (1) ⇔ (2), pick any skeleton [C] of C, and consider the Q-linear isomor-

phism

eMC(Q)e→M[C](Q)

α 7→ α∗

given by composing the inclusion eMC(Q)e ↪→ MC(Q) with the restriction MC(Q) �

M[C](Q). We see that e∗ ∈ M[C](Q) is invertible, and a straightforward computa-

tion shows that for every α, β ∈ eMC(Q)e we have (αβ)∗ = α∗(e∗)−1β∗. Therefore

α is invertible in eMC(Q)e if and only if α∗ is invertible in M[C](Q) with (α∗)−1 =

(e∗)−1(α−1)∗(e∗)−1. In particular, ζC ∈ eMC(Q)e is invertible if and only if (ζC)∗ =

ζ[C] ∈ M[C](Q) is invertible. The rest of the equivalences follow from basic linear alge-

bra.
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Example 2.7. There is a wide class of finite categories with skeletal Möbius inversion

called EI-categories; that is, categories in which every endomorphism is an isomor-

phism. To see this, suppose C is an EI-category. A skeleton of C is still EI, hence by

Proposition 2.6(2) we may assume C is skeletal and show C has Möbius inversion. In

this case the a priori preorder on Obj(C) defined by x ≤ y ⇐⇒ C(x, y) 6= ∅ is actually

a partial order. Extend this partial order ≤ to a linear order on Obj(C). With this

ordering, we may regard MC(Q) as a matrix algebra, in which ζC corresponds to an

upper triangular matrix with nonzero diagonal (because of identity morphisms). Thus

ζC ∈MC(Q) is invertible.

Remark 2.8. For any commutative ring R, The space RObj(C) of functions from Obj(C)

to R with pointwise addition and scalar multiplication is a left (resp. right) MC(R)-

module via

(αf)(x) :=
∑

y∈Obj(C)

α(x, y)f(y) , resp. (fβ)(y) :=
∑

x∈Obj(C)

f(x)β(x, y) .

There is nothing fancy going on here. Once we put an ordering on Obj(C), what we have

described is just the left and right action of the matrix algebra on the set of column and

row vectors, respectively. We just do not commit to such an ordering as the expressions

are cleaner with the indexing given by the objects themselves. However, in a concrete

example, putting an ordering and proceeding with good old matrices is the most efficient

way to do calculations.

We have

eCQObj(C) = QObj(C)eC = {f : Obj(C)→ Q : f(x) = f(y) whenever x ∼= y} ,

which has both left and right eMC(Q)e-module structures via restricting from MC(Q).

We are ready to introduce Leinster’s notions of weighting, coweighting, and Euler

characteristic.

Definition 2.9 ([Lei08, 1.10, 2.1, 2.2]). Write 1 ∈ QObj(C) for the function that sends

every object of C to 1. A function k ∈ QObj(C) is called a weighting on C if ζCk = 1,

and a coweighting if kζC = 1. If C has both a weighting k and a coweighting k′, then
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the common value

χ(C) :=
∑

x∈Obj(C)

k(x) =
∑

x∈Obj(C)

k′(x) ∈ Q

is called the Euler characteristic of C, and χ̃(C) := χ(C) − 1 is called the reduced

Euler characteristic of C.

Remark 2.10. Write Cop for the opposite category of C. Then k ∈ Obj(C)Q =

Obj(Cop)Q is a weighting of C if and only if it is a coweighting of Cop.

If C has (ordinary) Möbius inversion µ, the functions µ1 and 1µ are the unique weight-

ings and coweightings on C, respectively. Also the sum of the values of µ equals χ(C)

[Lei08, page 32]. Proposition 2.11 and Corollary 2.12 are generalizations of these facts

to the case when C has skeletal Möbius inversion, replacing µ with ν.

Proposition 2.11. Suppose C has skeletal Möbius inversion, such that α, β ∈ MC(Q)

satisfy ζCβ = e and αζC = e. Then β1 is a weighting on C, and 1α is a coweighting on

C. In particular, νC1 (resp. 1νC) is the unique weighting (resp. coweighting) on C that

is constant on the isomorphism classes of Obj(C).

Proof. Note that 1 ∈ eQObj(C); so ζ(β1) = (ζβ)1 = e1 = 1 via the left MC(Q)-

module structure on QObj(C). Similarly, (1α)ζ = 1. The uniqueness claim follows from

ζ ∈ eMC(Q)e acting invertibly on eQObj(C) = QObj(C)e from both sides.

Corollary 2.12. If C has skeletal Möbius inversion, then C has Euler characteristic

χ(C) =
∑

x,y∈Obj(C) νC(x, y).

Definition 2.13. If C has skeletal Möbius inversion, we call the unique (co)weighting

that is constant on the isomorphism classes the skeletal (co)weighting of C.

Note that the skeletal (co)weighting of C can also be obtained via distributing the

unique (co)weighting of a skeleton [C] uniformly among the isomorphism classes of

objects.
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2.2 Grothendieck construction (non-equivariant)

This is a very important construction for us that we will come back to again in the

equivariant case. We recall the standard definition.

Definition 2.14. Given any functor F : C → Cat, the Grothendieck construction∫
CF is a category defined as follows:

• Obj(
∫
CF ) = {(x, a) : x ∈ Obj(C), a ∈ Obj(F (x))},

•
∫
CF ((x, a), (y, b)) = {(α, u) : α : x→ y in C, u : F (α)(a)→ b in F (y)},

with composition defined in the natural way: (β, v) · (α, u) := (βα, v · F (β)(u)).

The Grothendieck construction is significant in homotopy theory, due to a theorem

of Thomason [Tho79, Theorem 1.2] which identifies
∫
CF as the homotopy colimit of F .

Its Euler characteristic is the weighted sum of pointwise Euler characteristics under F :

Proposition 2.15 ([Lei08, Proposition 2.8]). Let k : Obj(C) → Q be a weighting on

C and suppose that F : C → Cat is a functor such that
∫
CF and each F (x) have Euler

characteristics. Then

χ

(∫
C
F

)
=

∑
x∈Obj(C)

k(x)χ(F (x)) .

We will prove an equivariant version of this weighted sum formula in Theorem 2.36.

All of the formulae in this paper will follow from it.

2.3 Orbit and fusion categories

In this section, we work out the skeletal Möbius inversion in certain subgroup categories

associated to a finite group. We will need the computations we obtain here later.

Euler characteristics, weightings and coweightings of subgroup categories for various

collections of p-subgroups have been worked out in Jacobsen-Møller [JM12]. We revisit

some of these categories defined over an arbitrary set C of subgroups closed under

conjugation.
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We first consider the following generality: Let G be a finite group and C be a finite

G-category, that is, a category with a G-action (G acts on both the objects and the

morphisms in a compatible way).

Considering G itself as a category with a single object and C : G→ Cat as a functor in

the natural way, we can form the Grothendieck construction CG :=
∫
GC. Spelling out,

CG is a category that has the same objects with C, and

CG(x, y) = {(g, α) : g ∈ G,α ∈ C(gx, y)}

for every x, y ∈ Obj(C). Although we will not use this, we remark that the classifying

space B(CG) is, by a baby version of Thomason’s theorem, homotopy equivalent to what

is classically known as the Borel construction EG×G BC of the G-space BC.

Note that, since C and CG has the same objects, MC(Q) = MCG
(Q) as Q-algebras; so

we can compare various functions associated to these categories in the same algebra.

Proposition 2.16. Assume the G-category C has (ordinary) Möbius inversion. Then

ζCG
· µC = |G|eCG

= µC · ζCG

in the algebra MC(Q), and hence CG has skeletal Möbius inversion.

Proof. We observe that

ζCG
(x, y) =

∑
g∈G

ζC(gx, y)

=
∑

z∈Obj(C)

∑
g∈G
gx=z

ζC(z, y)

=
∑

z∈Obj(C)

ζC(z, y)
∑
g∈G
gx=z

1 ;

thus defining θ(x, y) = |{g ∈ G : gx = y}|, we have ζCG
= θζC in MC(Q).

As C has Möbius inversion, we get ζCG
· µC = θ. Moreover C has to be skeletal. For

this reason, given x ∈ Obj(C), we just write [x], instead of [x]CG
, for the isomorphism

class of x in CG without causing ambiguity (as [x]C is always a singleton). Also, if x, y

are isomorphic in CG, there exists g, h ∈ G and morphisms α : gx→ y, β : hy → x in C
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such that (hg, β ◦ hα) = (1, idx) and (gh, α ◦ gβ) = (1, idy). Thus h = g−1, and hence

hα ◦ β = h(α ◦ gβ) = h idy = idhy .

We see that hα and β establish an isomorphism between x and hy in C. But C is skeletal,

so x = hy. Conversely, objects of C lying in the same G-orbit are always isomorphic in

CG. Therefore, [x] is nothing but the G-orbit of x. Now if y ∈ [x], we have y = hx for

some h ∈ G; so there is a bijection

Gy → {g ∈ G : gx = y}

a 7→ ah .

And if y 6∈ [x], the set {g ∈ G : gx = y} is empty. Thus

θ(x, y) =


|Gx| =

|G|
|[x]|

if y ∈ [x],

0 otherwise.

Hence θ = |G|eCG
∈ eMCG

(Q)e and so ζCG
· µC = |G|eCG

. The first equality follows by

Proposition 2.6, condition (3). For the second, we observe the symmetry

ζCG
=
∑
g∈G

ζC(g−1x, y) =
∑
g∈G

ζC(x, gy)

=
∑

z∈Obj(C)

∑
g∈G
gy=z

ζC(x, z)

=
∑

z∈Obj(C)

ζC(x, z)
∑
g∈G
gx=z

1 ,

which yields ζCθ = ζCG
.

Let C be a set of subgroups of G closed under conjugation. We naturally consider

C as a poset with respect to inclusion on which G acts by conjugation. Thus we may

regard C as a G-category in the standard way posets can be regarded as categories. In

particular, with an abuse of notation we have Obj(C ) = C and ζC ∈ MC (Q) is given
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by

ζC : C × C → Q

(H,K) 7→

1 if H ⊆ K

0 otherwise.

Of course this is the zeta function for the poset C with respect to which the classical

Möbius inversion µC is defined. We will write C≥H for the set that consists of subgroups

in C that contain or equal to H, regardless of whether H is in C or not. We will similarly

write C<H , etc. Note that these subposets no longer have a G-action, but retain an

NG(H)-action.

Let TC :=
∫
GC = CG be the corresponding Grothendieck construction, called the

transporter category.

Corollary 2.17. Let C be a set of subgroups of G closed under conjugation. In the

algebra MTC
(Q) = MC (Q), we have ζTC

µC = |G|eTC
. In particular, the transporter

category TC has skeletal Möbius inversion.

Proof. Apply Proposition 2.16 to C .

There are two other crucial categories whose sets of objects are both C . First one

is the orbit category OC , where OC (H,K) is the set of G-maps from G/H to G/K.

Note that OC is an EI-category, hence has skeletal Möbius inversion by Example 2.7.

Proposition 2.18. Let C be a set of subgroups of G closed under conjugation. Defining

d : C × C → Q

(H,K)→

|H| if H = K,

0 otherwise.

we have ζOC
d = |G|eOC

ζC in the algebra MC (Q) = MOC
(Q).

Proof. We shortly write O for OC , and set T for TC . Then for every H,K ∈ C , there
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is a surjective map

T (H,K) = {g ∈ G : gHg−1 ⊆ K} → O(H,K)

g 7→ (aH 7→ g−1aK)

which is |K|-to-1. Hence ζO(H,K)|K| = ζT (H,K), yielding ζOd = ζT = |G|eT ζC by

Proposition 2.16. Finally, we observe that H,K ∈ C are isomorphic in T if and only if

they are isomorphic in O, and if and only if they are conjugate. Thus eT = eO.

Theorem 2.19 ([JM12, Theorem 3.3]). Let C be a set of subgroups of G closed un-

der conjugation. The orbit category OC has skeletal Möbius inversion, with skeletal

weighting

k : C → Q

H 7→
−µC+(H,∞)

|G : H|
=
−χ̃(C>H)

|G : H|
.

Proof. Defining u : C × C → Q as in Proposition 2.18, so that ζOC
· dµC
|G| = eOC

. Now

by Proposition 2.11,
dµC

|G|
1 is a weighting on OC . Expanding, we have

(
dµC

|G|
1

)
(H) =

∑
K∈C

(dµC )(H,K)

|G|

=
∑
K∈C

µC (H,K)

|G : H|

=
1

|G : H|
∑
K∈C

µC (H,K) =
−µC+(H,∞)

|G : H|
= k(H) ,

using the defining properties of the Möbius function µC+ , because µC+ restricted to C

equals µC . It is clear from its formula that the weighting k is constant on the conjugacy

classes, hence skeletal (Definition 2.13).

Remark 2.20. We emphasize the poset Möbius function interpretation of the weighting

in Theorem 2.19 because the best way to compute the weights of the orbit category is

to draw the Hasse diagram of the poset C , insert a unique maximum element∞ on top,

and then compute the µC+(H,∞)’s at one go. A similar emphasis happens in Theorem
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2.22.

The second category whose object set is C is the fusion category FC , where f ∈
FC (H,K) if and only if there exists g ∈ G such that f(h) = ghg−1 ∈ K for every h ∈ H.

Proposition 2.21. Let C be a set of subgroups of G closed under conjugation. Defining

u : C × C → Q

(H,K)→

|CG(K)| if H = K,

0 otherwise.

we have uζFC
= |G|ζC eFC

in the algebra MC (Q) = MFC
(Q).

Proof. We shortly write F for FC , and set T for TC . Then for every H,K ∈ C , there

is a surjective map

T (H,K) = {g ∈ G : gHg−1 ⊆ K} → A(H,K)

g 7→ (h 7→ ghg−1)

which is |CG(H)|-to-1. Hence ζT (H,K) = |CG(H)|ζF (H,K), yielding uζF = ζT =

|G|ζC eT by Proposition 2.16. Finally, we observe that H,K ∈ C are isomorphic in T
if and only if they are isomorphic in F , and if and only if they are conjugate. Thus

eT = eF .

Theorem 2.22 ([JM12, Theorem 3.3]). Let C be a set of subgroups of G closed un-

der conjugation. The fusion category FC has skeletal Möbius inversion, with skeletal

coweighting

t : C → Q

K 7→
−µC−(−∞,K)

|G : CG(K)|
=
−χ̃(C<K)

|G : CG(K)|
.

Proof. Defining u : C ×C → Q as in Proposition 2.21, we have
µCu

|G|
· ζFC

= eFC
. Thus
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by Proposition 2.11, we see that 1 · µCu

|G|
is a coweighting on FC . Expanding, we have

(
1 · µC u

|G|

)
(K) =

∑
H∈C

(µC u)(H,K)

|G|

=
∑
H∈C

µC (H,K)

|G : CG(K)|

=
1

|G : CG(K)|
∑
H∈C

µC (H,K) =
−µC−(−∞,K)

|G : CG(K)|
= t(K) ,

using the defining properties of the Möbius function µC− , because µC− restricted to

C equals µC . It is clear from its formula that the coweighting t is constant on the

conjugacy classes, hence skeletal (Definition 2.13).

2.4 Series Euler characteristic

In this section, we review the notion of series Euler characteristic, due to Berger–

Leinster [BL08] with our skeletal Möbius inversion framework from Section 2.1. This

way, we obtain a simpler proof in Corollary 2.28 of a theorem of Berger–Leinster [BL08,

Theorem 3.2] about the coincidence of the series Euler characteristic with Leinster’s

earlier notion of Euler characteristic (given here in Definition 2.9). In addition, this

section will serve as a template and be used itself when we define the equivariant analog

of series Euler characteristic in Section 2.5.

To any finite category C, we can associate a simplicial set NC via the nerve construc-

tion. We can also go further and take the geometric realization of NC, often denoted

by BC := |NC| and called the classifying space of C. The classifying space BC has

a CW-complex structure where n-cells are given by the non-degenerate n-simplices of

NC, which in turn are given by n-tuples of composable morphisms

x0
ϕ0 // x1

ϕ1 // · · ·
ϕn−1 // xn

in C such that none of ϕi is the identity. In other words, an n-cell of BC is a path

of length n in the underlying graph of C such that none of the constituent edges is an

identity morphism. Let us write Cn for the set of all n-cells. In particular, C0 = Obj(C),
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and C1 is the set of non-identity morphisms in C. Note that each Cn is a finite set

because C has finitely many morphisms. But BC might have infinitely many cells: this

occurs precisely when C has non-degenerate cycles. In this case the classical Euler

characteristic as an alternating sum of the number of cells is not defined. With the idea

of evaluating at −1 if possible, we form the formal power series

fC(t) :=
∑
n≥0

|Cn|tn ∈ Z[[t]] .

We have the following characterization:

Proposition 2.23 ([Lei08, Lemma 1.3, Proposition 2.11]). The following are equivalent:

(1) The series fC is actually a polynomial.

(2) There are finitely many cells in BC.

(3) The category C is skeletal and the only endomorphisms in C are identities.

Furthermore, in this case the classical Euler characteristic χ(BC) := fC(−1) ∈ Z exists

and is equal to χ(C) in the sense of Definition 2.9.

The main idea of Berger–Leinster [BL08], to pursue the alternating sum point of view

for the Euler characteristic of a category possibly outside the class characterized in

Proposition 2.23, is that even when fC ∈ Z[[t]] is not a polynomial (so the alternating

sum of |Cn|’s diverges), it might be a rational function that can be evaluated at −1,

which in general will give a number in Q rather than Z.

Definition 2.24. [BL08, Definition 2.3] The category C is said to have series Euler

characteristic if fC lies in the localization

Q[t](t+1) = Z[t](t+1) =

{
p(t)

q(t)
: p(t), q(t) ∈ Z[t] and (t+ 1) - q(t)

}
,

and it is defined by χΣ(C) := fC(−1) ∈ Q.

Remark 2.25. The ring Z[t](t+1) does not really lie inside Z[[t]], because t is invertible

in the former but not the latter. Still, whether a formal power series lies in Z[t](t+1) or

not is a well-defined notion, because both rings canonically embed in the ring of Laurent

series over Z. More concretely, the subset Z[[t]] ∩ Z[t](t+1) ⊆ Z[[t]] consists of formal
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power series f such that that there exists a polynomial q ∈ Z[t] that is not a multiple

of t+ 1 which makes fq a polynomial.

The elementary but key observation made in [BL08, Theorem 2.2], to see fC is always

a rational function, is that writing δ ∈MC(Q) for the Kronecker delta (the multiplicative

identity of MC(Q)) and ζ = ζC for the zeta function, we have

(ζ − δ)n(x, y) = |{non-degenerate n-simplices in NC that start with x and end at y}| ,

for every n ≥ 0, because of the way multiplication is defined in MC(Q). As a refinement

of fC, we consider the generating function over MC(Q):

wC(t) :=
∑
n≥0

(ζ − δ)ntn =
δ

δ − (ζ − δ)t
∈MC(Q)[[t]] ∼= MC(Q[[t]]) ,

where the equality above follows by the invertibility of geometric series. In particular,

wC(t) is not just a matrix of power series, but a matrix of rational functions over Q.

To be able to evaluate the rational functions we get at −1, they should lie in Q[t](t+1).

An arbitrary C may not satisfy this condition, yet we have the following:

Proposition 2.26. Suppose C has skeletal Möbius inversion. Acting by wC ∈MC(Q(t))

on 1 ∈ Q(t)Obj(C) from the left, the image of the function

wC1 : Obj(C)→ Q(t)

is contained in the localization Q[t](t+1), which means we can evaluate at −1 and get a

map wC1(−1) : Obj(C)→ Q. This map is a weighting on C. The analogous claims hold

for the coweighting using the right module structure.

Proof. Let us write e = eC, w = wC and δ = δC. Since ζe = eζ = ζ ∈ eMC(Q)e, using

the rational function expression of w obtained above, we get

e = δe = w(δ − (ζ − δ)t)e = w(e− (ζ − e)t) = we(e− (ζ − e)t)

in eMC(Q(t))e, hence we =
e

e− (ζ − e)t
∈ eMC(Q(t))e because e is the multiplicative

identity of eMC(Q(t))e. Now, e−(ζ−e)t is a polynomial that evaluates to ζ ∈ eMC(Q)e

when we plug in t = −1. But by assumption, ζ ∈ eMC(Q)e is invertible with inverse ν;
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thus we ∈ eMC(Q[t](t+1))e and we(−1) = ν. Finally,

(w · 1)(−1) = (we · 1)(−1) = (we)(−1) · 1 = ν · 1

is a weighting by Proposition 2.11. The coweighting claim follows dually.

Remark 2.27. By the definition of wC, we always have

wC1 : Obj(C)→ Q(t)

x 7→
∑
n≥0

|{non-degenerate n-simplices in NC that start with x}|tn ,

and

1wC : Obj(C)→ Q(t)

y 7→
∑
n≥0

|{non-degenerate n-simplices in NC that end at y}|tn .

What Proposition 2.26 says is that when C has skeletal Möbius inversion, both wC1 and

1wC can be evaluated at −1 to give a weighting and a coweighting on C, respectively.

Actually by Proposition 2.11, they give the skeletal weighting and coweighting on C.

As a result of our setup with skeletal Möbius inversion, we can prove Berger–Leinster’s

main positive result without using transfer matrix method type identities such as [BL08,

Proposition 2.5].

Corollary 2.28 ([BL08, Theorem 3.2]). If C has skeletal Möbius inversion, then C has

both Euler characteristic and series Euler characteristic, and χ(C) = χΣ(C).

Proof. By Proposition 2.26, (wC1)(−1) is a weighting on C and (1wC)(−1) is a coweight-

ing on C. Hence C has Euler characteristic

χ(C) =
∑

x∈Obj(C)

(wC1)(−1)(x) =

 ∑
x∈Obj(C)

(wC1)(x)

 (−1) = fC(−1) = χΣ(C) .

Here fC ∈ Q[t](t+1) because wC1 ∈ (Q[t](t+1))
Obj(C).
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2.5 Series Lefschetz invariant

Let G be a finite group and let D be a finite category with a G-action. It is desirable to

have a kind an Euler characteristic which, in some sense, remembers the G-action that

is present. The rational Burnside ring Ω(G) is a natural home for such an invariant

(we refer the reader to Benson [Ben98, Section 5.4] for background about the Burnside

ring). The power series

fD(t) =
∑
n≥0

Dnt
n

lies in Ω(G)[[t]], because each

Dn = {the set of non-degenerate n-simplices of ND}

= {n-tuples of composable maps in D without identity arrows}

is now a G-set. In case fD is a polynomial, Λ(D) := fD(−1) actually lies in the integral

Burnside ring ΩZ(G), and is often called the Lefschetz invariant of D (or ND), see

[Thé86, Section 1], [Web87b, Section 6]. Now we can try to play the same game used

to define the series Euler characteristic χΣ here.

First, observe that the natural Q-algebra morphism

Ω(G)⊗Q Q[[t]]→ Ω(G)[[t]]

is an isomorphism because dimQ Ω(G) < ∞. Now regarding fD ∈ Ω(G) ⊗Q Q[[t]], we

mimic Definition 2.24:

Definition 2.29. The G-category D is said to have series Lefschetz invariant if fD

lies in Ω(G) ⊗Q Q[t](t+1) and it is defined by ΛΣ(D) := fD(−1) ∈ Ω(G). If we wish to

emphasize the group G, we write Λ
(G)
Σ (D).

In virtually every equivariant situation, the construction for G has an analog for

every subgroup H ≤ G which talk to each other via restriction and conjugation (and

sometimes induction) maps. The series Lefschetz invariant is not different. With the

obvious choices for the restriction (resKH and ResKH) and conjugation (cg and cg) maps

and functors, the following is evident:
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Proposition 2.30. Whenever H ≤ K are subgroups of G and for every g ∈ G, the

diagrams

{finite K-categories} ΛΣ //

ResKH
��

Ω(K)

resKH
��

{finite H-categories} ΛΣ // Ω(H)

and {finite H-categories} ΛΣ //

cg

��

Ω(H)

cg

��
{finite gH-categories} ΛΣ // Ω(gH)

commute (in the appropriate sense for partially defined functions).

We finish this section by establishing routine properties of the series Lefschetz invariant

ΛΣ. Without the Σ subscript, they appear in Thévenaz’s work [Thé86].

Writing S(G) for the set of all subgroups of G, and εH ∈ Ω(G) for the primitive

idempotent in Ω(G) corresponding to the subgroup H (see [Ben98, page 179], where it

is denoted eH), we have:

Proposition 2.31. The G-category D has series Lefschetz invariant if and only if for

every H ≤ G the subcategory DH has series Euler characteristic. Moreover, in this case

we have

ΛΣ(D) =
∑

H∈[G\S(G)]

χΣ(DH)εH .

Proof. Fix H ≤ G and consider the ring homomorphism mH : Ω(G)→ Q given by X 7→
XH . NowmH extends to a ring homomorphismmH : Ω(G)⊗QQ[[t]] ∼= Ω(G)[[t]]→ Q[[t]]

given by X ⊗ g(t) 7→ |XH |g(t). We may restrict to

mH : Ω(G)⊗Q Q[t](t+1) → Q[t](t+1)

so that the evaluating at -1 yields a commutative diagram

Ω(G)⊗Q Q[t](t+1)
mH //

id⊗ev−1

��

Q[t](t+1)

ev−1

��
Ω(G)

mH // Q .

Thus if D has series Lefschetz invariant, chasing fD in the above commutative diagram

yields that DH has series Euler characteristic and that mH(ΛΣ(D)) = χΣ(DH).
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Conversely, if DH has series Euler characteristic for every H ≤ G, we have

fD =
∑

H∈[G\S(G)]

mH(fD) · εH =
∑

H∈[G\S(G)]

fDH εH ∈ Ω(G)⊗Q Q[t](t+1) .

Thus D has series Lefschetz invariant, with the desired equality coming from evaluating

at −1 above.

Similar with χ, there are reduced versions of χΣ and ΛΣ. We write χ̃Σ(C) := χΣ(C)−1

for a finite category C with series Euler characteristic, and Λ̃Σ(D) := ΛΣ(D)− [G/G] ∈
Ω(G) if D has series Lefschetz invariant.

Corollary 2.32. If the G-category D has series Lefschetz invariant, its reduced series

Lefschetz invariant is given by

Λ̃Σ(D) =
∑

H∈[G\S(G)]

χ̃Σ(DH)εH .

Proof. Immediate from Proposition 2.31.

2.6 Grothendieck construction (equivariant)

We wish to compute the series Lefschetz invariants of a class of G-categories introduced

by Dwyer [Dwy98, 3.1]. Write G-Set for the category of finite G-sets. Let C be a

finite category, and let F : C→ G-Set be any functor. Then, regarding sets as discrete

categories, we can form the Grothendieck construction
∫
CF (Definition 2.14).

Remark 2.33. Our assumption here that F takes values in sets rather than categories

simplifies the structure of
∫
CF somewhat. In this case,

∫
CF has objects (x, a) where

x ∈ Obj(C) and a ∈ Obj(F (x)), and morphisms (ϕ, a) : (x, a)→ (y, b) where ϕ : x→ y

in C and F (ϕ)(a) = b. Furthermore, G acts on objects of
∫
CF via g · (x, a) = (x, ga)

and on morphisms via g · (ϕ, a) = (ϕ, ga), making
∫
CF a G-category.

We will first collect some basic properties of
∫
CF , constructed as above. Given a G-

category D, let us write IsoG(D) for the set of stabilizer subgroups of simplices of ND.
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That is,

IsoG(D) =
⋃
n≥0

{Gσ : σ ∈ Dn} .

Note that IsoG(D) is a set of subgroups closed under conjugation, for gGσ = Ggσ.

Proposition 2.34. Let F : C → G-Set be any functor. Considering the poset C :=

IsoG(
∫
CF ) of subgroups as a G-category, the assignment

Θ:

∫
C
F → C

(x, a) 7→ Ga

defines a G-equivariant functor, which for every subgroup H ≤ G restricts to a NG(H)-

equivariant functor ΘH : (
∫
CF )H → C≥H such that

(1) ΘH is surjective on objects.

(2) If for each x ∈ Obj(C) the G-set F (x) is transitive, then
∫
CF is a preorder and

ΘH is faithful.

(3) If, in addition to (2), F is full, then ΘH is a (non-equivariant) equivalence of

categories.

Proof. To see Θ does define a functor, we only need to check Ga ⊆ Gb whenever (ϕ, a) :

(x, a)→ (y, b) is a morphism in
∫
CF . But this is immediate because F (ϕ) : F (x)→ F (y)

is a G-map with ϕ(a) = b; so any g ∈ G fixing a will fix b. Furthermore, if H fixes (x, a),

by definition we get Ga ≥ H. This verifies that Θ does restrict to ΘH as specified.

For (1), first note that by the definition of the G-action on
∫
CF , a simplex

σ : (x0, a0)
(ϕ0,a0) // (x1, a1)

(ϕ1,a1) // · · ·
(ϕn−1,an−1)// (xn, an)

in (
∫
CF )n is fixed by g ∈ G if and only if g fixes every ai. Thus

Gσ =

n⋂
i=0

Gai = Ga0 = Θ(x0, a0) .

Next, we observe the NG(H)-equivariance of ΘH , from which the G-equivariance of

Θ follows by taking H = 1: take n ∈ NG(H), then for (x, a) ∈ (
∫
CF )H we have
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n · (x, a) = (x, na) ∈ ECH and Gna = nGa ≥ nH = H.

If F (x) is transitive, there can be at most one morphism from (x, a) to (y, b) in
∫
CF ;

hence the assumption (2) forces the entire category
∫
CF , and hence the subcategory

(
∫
CF )H to be a preorder. Any functor out of a preorder is faithful. Finally, suppose

furthermore that F is full. With (1) and (2) in place, we only need to show that

ΘH is full. To that end, let K ≤ L in C≥H . We want to show that this inclusion

K ≤ L is the image of a morphism in
∫
CF . By (1), there exists (x, a), (y, b) ∈ Obj(

∫
CF )

such that K = Ga and L = Gb. In particular, since Ga and Gb contain H we have

(x, a), (y, b) ∈ (
∫
CF )H . Next, as F (x) is assumed to be transitive and Ga ⊆ Gb,

λ : F (x)→ F (y)

ga 7→ gb

is a well-defined G-map. As F is full, there exists ϕ : x → y such that λ = F (ϕ),

and (ϕ, a) : (x, a) → (y, b) is a morphism in (
∫
CF )H that is sent to Ga ⊆ Gb via Θ as

desired.

Remark 2.35. Taking H = 1 in Proposition 2.34(1), we see that Θ is surjective on

objects. This means that IsoG(
∫
CF ) consists of the stabilizer subgroups that occur in

the various G-sets F (x), varying x ∈ Obj(C).

The following theorem is the backbone for all the formulae in this paper. It is an

equivariant version of Proposition 2.15.

Theorem 2.36. Assume C is a finite category with skeletal Möbius inversion and F :

C → G-Set is a functor. Then writing [F (x)] ∈ Ω(G) for the equivalence class of the

G-set F (x), the G-category
∫
CF has series Lefschetz invariant given by

ΛΣ

(∫
C
F

)
=

∑
x∈Obj(C)

kC(x)[F (x)] ∈ Ω(G) ,

where kC is the skeletal weighting on C.
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Proof. Write D :=
∫
CF . And for each x ∈ Obj(C), let

Dn(x) := {σ ∈ Dn : σ starts with (x, a) for some a ∈ F (x)}

Cn(x) := {τ ∈ Cn : τ starts with x} .

The natural projection functor p : D → C induces a map p : Dn(x) → Cn(x), because

p(f) is non-identity if f is non-identity. We also observe that Dn(x) is a G-set equipped

with a G-map s : Dn(x) → F (x) which sends σ to the a ∈ F (x) that appears at the

start of the chain σ. Now we see that the G-map

Φ: Dn(x)→ Cn(x)× F (x)

σ 7→ (p(σ), s(σ))

where Cn(x) is considered with the trivial G-action, is an isomorphism of G-sets. In

other words, a chain in Dn(x) is uniquely determined by its image in Cn(x) and the

a ∈ F (x) that occurs in the beginning. Therefore, as an element of the Burnside ring,

we have

Dn =
∑

x∈Obj(C)

Dn(x) =
∑

x∈Obj(C)

|Cn(x)|[F (x)] ∈ Ω(G) ,

and hence

fD =
∑
n≥0

∑
x∈Obj(C)

|Cn(x)|[F (x)]tn =
∑

x∈Obj(C)

wC1(x)[F (x)] ,

using Remark 2.27 and the notation within. By the same Remark, wC1(x) is a rational

function in Q[t](t+1) that evaluates to kC(x) when we plug in t = −1. Thus fD ∈
Ω(G) ⊗ Q[t](t+1), that is, D has a series Lefschetz invariant ΛΣ(D) = fD(−1) and it is

equal to the desired sum.

2.7 Subgroup and centralizer decomposition categories

We again assume C is a set of subgroups of G closed under conjugation. There are two

settings in which we consider functors of the form F : C→ G-Set:
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(1) Take C to be the orbit category OC as in Section 2.3. Because morphisms in

OC are already G-maps, we can take the inclusion functor ι : OC ↪→ G-Set that

sends K ∈ C to the G-set G/K and is constant on the morphisms. We write

EOC :=
∫
OC

ι for the Grothendieck construction.

(2) Consider the fusion category FC as in Section 2.3 Take v : Fop
C → G-Set as the

functor that sends K ∈ C to G/CG(K), and a morphism equal to conjugation by

g ∈ G in FC (L,K) is sent to the G-map specified by

G/CG(K)→ G/CG(L)

CG(K) 7→ gCG(L) .

This G-map is well-defined, because if gxg−1 = hxh−1 for all x ∈ L, then

gCG(L) = hCG(L). We write EAC :=
∫
Fop

C
v for the Grothendieck construction.

As a remark, Dwyer actually defines [Dwy97, 1.3, 3.1] the centralizer decomposi-

tion as a Grothendieck construction over a different category AC (from which the

notation EAC seems to come from). But Dwyer’s AC is actually equivalent to

the fusion category FC : see Notbohm [Not01, page 6] for a proof.

Remark 2.37 ([GS06, (†)], [Dwy97, Proposition 2.14]). First of all, using Remark 2.35

and the definition of the functors OC → G-Set and AC → G-Set used to construct EOC

and EAC , we see that

IsoG(EOC ) = C and IsoG(EAC ) = CG(C ) := {CG(H) : H ∈ C } .

For the subgroup decomposition case, Proposition 2.34 yields EOHC ∼= C≥H . For the

centralizer decomposition, the same proposition gives that there is a faithful functor

q : EAHC → (CG(C )≥H)op, but q is in general not full. Because there might be K,L ∈ C

for which CG(K) ≥ CG(L) without K ≤ L. However, q factors as

EAHC
q

''
p

��
C≤CG(H) CG

// (CG(C )≥H)op

where p is defined by p(K, aCG(K)) = aK and CG is the order reversing map that sends
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a subgroup to its centralizer. As EAC is a preorder, p is automatically faithful. p is

also evidently surjective on objects, and (unlike q) p is also full. As a result, we have

an equivalence EAHC ∼= C≤CG(H) of categories.

Using Theorem 2.36 and Remark 2.37, we can now (usefully) expand the Lefschetz

invariants of EOC and EAC in both of the distinguished bases of the Burnside ring,

proving Theorem A and Theorem B from the introduction. Recall that S(G) denotes

the set of all subgroups of G, and [G\S(G)] is a set of representatives for the conjugacy

classes of subgroups.

Theorem 2.38. Let C be a set of subgroups of G closed under conjugation. In the

Burnside ring Ω(G), the expansion of the reduced series Lefschetz invariants of EOC

and EAC in the transitive G-sets are

Λ̃Σ(EOC ) =
∑
H∈C

−χ̃(C>H)

|G : H|
[G/H]− [G/G] ,

Λ̃Σ(EAC ) =
∑
H∈C

−χ̃(C<H)

|G : CG(H)|
[G/CG(H)]− [G/G] .

And their expansions in the primitive idempotents of Ω(G) are

Λ̃Σ(EOC ) =
∑

K∈[G\S(G)]
K/∈C

χ̃(C>K)εK , Λ̃Σ(EAC ) =
∑

K∈[G\S(G)]
CG(K)/∈C

χ̃(C<CG(K))εK .

Proof. For the first set of equalities, we use Theorem 2.36. The necessary skeletal

weights were computed in Theorem 2.19 and Theorem 2.22, noting that a weighting on

Fop
C is the same as a coweighting on FC .

Let us also prove the idempotent expansion for EOC , and leave the EAC case out as

it is similar. First of all, Corollary 2.32 yields

Λ̃Σ(EOC ) =
∑

K∈[G\S(G)]

χ̃Σ(EOKC )εK .

At this point we would like to deduce χ̃Σ(EOKC ) = χ̃(C≥K) for any subgroup K. Al-

though the categories EOKC and C≥K are equivalent by Remark 2.37, the equality
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we want does not immediiately follow. This is because the series Euler characteris-

tic is not invariant under equivalences of categories, see [BL08, Example 4.6]. But

the category EOKC is EI; thus it has skeletal Möbius inversion (Example 2.7). There-

fore χ̃Σ(EOKC ) = χ̃(EOKC ) by Corollary 2.28. Now Leinster’s Euler characteristic χ̃ is

invariant under equivalences of categories [Lei08, Proposition 2.4], so we are good.

Finally, note that if K ∈ C , the poset C≥K has K as a unique minimal element and

so χ̃(C≥K) = 0. And if K /∈ C , we have C≥K = C>K .



Chapter 3

Explicit induction formulae for

Green functors

Throughout this section, A denotes a fixed Q-Green functor. By this, we mean that

(1) A assigns to every subgroup H an associative Q-algebra A(H) with identity 1H ∈
A(H), and

(2) whenever H ≤ K are subgroups of G, there are Q-linear maps resKH : A(K) →
A(H), indKH : A(H) → A(K) and cg : A(H) → A(gH) for every g ∈ G, satisfying

axioms 1.1-1.9 in Thévenaz [Thé88].

In Thévenaz’s notation, rKH is our resKH , tKH is our indKH , and g(−) is our cg .

The Burnside functor, that assigns each subgroup H ≤ G to the Burnside ring Ω(H)

is an example of a rational Green functor, which is initial among rational Green functors

just like Z is initial among rings:

Proposition 3.1 ([Thé88, Proposition 6.1]). There is a unique collection of Q-algebra

homomorphisms out of the Burnside rings {fH : Ω(H) → A(H) | H ≤ G}, which

commute with restriction, induction and conjugation maps.

34
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In particular, chasing the identity element [H/H] ∈ Ω(H) in the commutative diagram

Ω(H)
indG

H //

fH
��

Ω(G)

fG
��

A(H)
indG

H // A(G)

yields fG([G/H]) = indGH(1H) ∈ A(G).

Definition 3.2. We write P(A) for the set of subgroups H ≤ G for which the Q-linear

map ⊕
K<H

indHK :
⊕
K<H

A(K)→ A(H)

is not surjective. The set P(A) is called the primordial set of A, and if H ∈ P(A), it

is called a primordial subgroup of A.

Note that P(A) is closed under conjugation. There is an important vanishing property

for subgroups outside P(A):

Proposition 3.3 ([Bol95, Proposition 6.4]). If K is not a primordial subgroup of A,

then the canonical map fG : Ω(G)→ A(G) of Proposition 3.1 sends the primitive idem-

potent εK ∈ Ω(G) to 0 ∈ A(G).

Now we apply fG to the series Lefschetz invariants computed in Section 2.7. This

results in an induction formula, which in this generality was first obtained by Thévenaz:

Theorem 3.4 ([Thé88, Corollary 7.4]). Let A be a Q-Green functor. Suppose C is

a set of subgroups of G closed under conjugation, such that C contains the primordial

subgroups of A. Then

1G =
∑
H∈C

−χ̃(C>H)

|G : H|
indGH(1H)

in A(G).

Proof. Applying the ring homomorphism fG : Ω(G) → A(G) to the G-set expansion of
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ΛΣ(EOC ) = Λ̃Σ(EOC ) + [G/G] in Theorem 2.38, we get

fG(Λ̃Σ(EOC )) + 1G =
∑
H∈C

−χ̃(C>H)

|G : H|
indGH(1H) ∈ A(G) .

The idempotent expansion of the reduced invariant Λ̃Σ(EOC ) in Theorem 2.38 contains

only εK ’s with K outside C , hence outside P(A). Thus by Proposition 3.3 it is mapped

to zero under fG.

The novelty of our proof of Theorem 3.4 is that it shows the explicit induction formula

“comes from” the subgroup decomposition category EOC in some sense. The same

argument the centralizer decomposition category EAC yields a new induction formula.

Theorem 3.5. Let A be a Q-Green functor. Suppose C is a set of subgroups of G closed

under conjugation, such that C contains the centralizer of every primordial subgroup

of A. Then

1G =
∑
H∈C

−χ̃(C<H)

|G : CG(H)|
indGCG(H)(1CG(H))

in A(G).

Proof. The proof is analogous to Theorem 3.4. Use Theorem 2.38 and observe that if

C contains the centralizers of subgroups in P(A), then the idempotent expansion of the

reduced series Lefschetz invariant Λ̃Σ(EAC ) contains only εK ’s with CG(K) /∈ C , and

hence with K /∈ P(A). Now use Proposition 3.3.

Observe that taking take C to be exactly the set of centralizers of subgroups in

P(A), the subgroups we are inducing up are the centralizers of those in C , hence the

double centralizers of subgroups in P(A). See Example 3.10 for a worked out example.

Because of this double centralizer phenomenon, the induction formula in Theorem 3.5

is not as optimal as the one in Theorem 3.4 in the sense that we might be inducing from

bigger subgroups than what is sufficient for A. On the other hand, this may result in

smaller indices in the denominators and hence a more integral formula. A second issue

is that while Theorem 3.4 yields a non-trivial induction formula as long as G /∈ P(A),
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the formula in Theorem 3.5 becomes void if P(A) contains a subgroup with trivial

centralizer.

3.1 Applications to representations, cohomology, and topol-

ogy

Let R be a unital commutative ring, G a finite group, and aR(G) be the representation

ring of finitely generated RG-modules. More precisely, the set of isomorphism classes

of finitely generated RG-modules forms a commutative monoid under direct sum, for

which aR(G) is the group completion. The assignment H 7→ aR(H) defines a Z-Green

functor, and hence AR := Q⊗Z aR is a Q-Green functor. The primordial subgroups for

a general R was worked out by Dress:

Theorem 3.6 ([Dre69, Theorem 1′, Theorem 2]). A subgroup H ≤ G is a primordial

subgroup of AR if and only if one of the following holds:

(1) H is cyclic.

(2) There exists a prime p with pR 6= R such that H/Op(H) is cyclic.

It is now a matter of bringing the threads together to prove the promised Theorem C.

Proof of Theorem C. Noting that the multiplicative identity in AR(H) is the trivial

representation R, apply Theorem 3.5 to the Green functor AR, using Theorem 3.6.

Proof of Theorem C′. The assignment L 7→ ExtkRG(L,M) defines a linear mapAR(G)→
AR(1). Apply this map to the equality in Theorem C, using a form of Shapiro’s lemma

that gives

ExtkRG(indGH(R),M) ∼= ExtkRH(R, resGH(M)) = Hk(H;M)

for any subgroup H ≤ G. We can use Tor to get a similar formula in group homology,

and use Tate Ext groups for Tate cohomology.

Question 3.7. Is it possible to avoid using Dress’s result to prove Theorem 1.3 and

Theorem C by working directly with the chain complexes of RG-modules associated
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to EOC and EAC ? What we are lacking here is a chain-level reason for the divergent

alternating sum of modules in an unbounded (from one side) chain complex to vanish.

On the other hand, there is an obvious condition for bounded chain complexes: a chain

homotopy equivalence with the zero complex (see [Bro82, Proposition 0.3]). This is not

enough for the infinite case, as can be seen from

· · · → R→ R→ R→ R→ 0

where the maps alternate between the identity and zero maps. The divergent alternating

sum would yield 1
2R here, not zero.

Proof of Theorem C′′. With R = Z∧p , the equality in the statement of Theorem C

(after clearing the denominators etc.) can be written as an isomorphism Z∧pS ∼= Z∧pT
of permutation Z∧pG-modules for certain G-sets S, T , noting indGK(Z∧p ) = Z∧p [G/K]. We

then also get FpS ∼= FpT by mod-p reduction. Minami shows [Min99, Lemma 6.8] that

then for any free G-space X we have an equivalence

(Σ∞X ×G S)∧p ' (Σ∞X ×G T )∧p

of spectra. This can be turned back into a fractional expression, namely

(Σ∞X/G)∧p '
∨
H∈C

−µC−(−∞, H)

|G : CG(H)|
(Σ∞X/CG(H))∧p ,

noting that X ×G G/K ' X/K. Taking X = EG yields the desired result.

3.2 Canonicity and non-canonicity of induction formulae

A natural question with an explicit induction formula is whether it is compatible with

the restriction maps. Let us expand on what this means: using an explicit induction

formula for A, we get an expression of the form

1G =
∑
H≤G

λH indGH(1H) ∈ A(G) .
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Given a subgroup K ≤ G, if we apply resGK : A(G)→ A(K) to both sides, we get

1K =
∑
H≤G

λH resGK(indGH(1H)) =
∑
H≤G

λH ·
∑

g∈[K/G\H]

indKK∩gH(1K∩gH)

by the Mackey axiom [Thé88, 1.5]. Collecting like terms, we would get an expression

1K =
∑
L≤K

γL indKL (1L) ∈ A(K) .

On the other hand, A restricted to the subgroups of K is a perfectly valid Green functor

for the group K. Let us write A|K for this Green functor. Now we could apply the

induction formula at hand directly to A|K and get another expression for 1K like above.

The question is, would the coefficients that appear here agree with the γL’s above?

Boltje carried out a detailed analysis of such restriction-respecting formulae (which we

shall call canonical, following him) in great generality; see [Bol95] and [Bol98]. A

consequence of his analysis for a Green functor A as defined in the beginning of Section

3 is the following: not only the induction formula in Theorem 3.4 with C = P(A) is

canonical, but also it is minimal in a precise sense among all other canonical induction

formulae for A; see [Bol95, Example 2.8].

We point out an elementary way of seeing the canonicity when C in Theorem 3.4 is

closed under taking subgroups.

Proposition 3.8. Let C be a set of subgroups of G that is closed under conjugation

and taking subgroups. For every subgroup K ≤ G, write C (K) := {H ≤ K : H ∈ C },
so we have elements ΛΣ(EOC (K)) ∈ Ω(K). Let T be an indeterminate. The evaluation

maps {sK : K ≤ G} out of the polynomial algebra Q[T ] defined by

sK : Q[T ] 7→ Ω(K)

T 7→ ΛΣ(EOC (K))

are compatible with restriction and conjugation maps on the Burnside ring. That is,

resKH ◦sK = sH whenever H ≤ K and cg ◦ sH = sgHg−1 for every g ∈ G.
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Proof. By Proposition 2.30 it is enough to show

ΛΣ(EOC (K)) = ΛΣ(ResGK(EOC )) ∈ Ω(K)

for every subgroup K. And to see the K-categories EOC (K) and ResGK(EOC ) have

the same series Lefschetz invariants in Ω(K), by Proposition 2.31 it is enough to show

χΣ(EOHC (K)) = χΣ(EOHC ) for every H ≤ K. By Remark 2.37, this amounts to checking

χ(C (K)≥H) = χ(C≥H). Now if H ∈ C , both C (K)≥H and C≥H have a unique minimal

element, namely H. And if H /∈ C , we have C (K)≥H = C≥H = ∅ because C is assumed

to be closed under taking subgroups.

The canonicity of Theorem 3.4 with taking C to be the subgroup-closure of P(A),

which is the so-called defect base ofA, follows immediately because P(A|K) = P(A)(K)

by [Thé88, Proposition 2.3]. In several applications P(A) is already subgroup-closed.

Remark 3.9. In the proof of Proposition 3.8, we see that when C is closed under taking

subgroups, EOHC is

(1) contractible if H ∈ C , and

(2) empty if H /∈ C .

These conditions imply that EOC is a model for the classifying space for C [Lüc05,

Definition 1.8, Theorem 1.9]. Its series Lefschetz invariant reflects this with its multi-

plicative property, for

ΛΣ(EOC ) =
∑

H∈[G\C ]

εH =: εC

(use Proposition 2.31) is exactly the idempotent associated to C in the Burnside ring

Ω(G).

We also see that for any subgroup K ≤ G, not only resGK(EOC ) and EOC (K) have the

same series Lefschetz invariant in B(K) as shown in Proposition 3.8, but also the same

K-homotopy type.

Unlike the subgroup decomposition category, the formula coming from the centralizer

decomposition category EAC in Theorem 3.5 is not canonical, at least when C is
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minimally chosen as the set of centralizers of the primordial subgroups. We illustrate

this in an example:

Example 3.10. Let G = S4 and consider the Green functor

AC : H 7→ Q⊗Z {ring of complex H-characters} .

Then P(AC) is the set of cyclic subgroups of G: the forward inclusion here is Artin’s

induction theorem. To exhaust P(AC) up to G-conjugacy, set C ′2 := 〈(12)〉, C ′′2 :=

〈(12)(34)〉, C3 := 〈(123)〉, C4 := 〈(1234)〉, and 1 to be the trivial subgroup. Here C3

and C4 are self-centralizing, whereas V ′4 := CG(C ′2) = 〈(12), (34)〉 and D8 := CG(C ′′2 ) =

〈(12), (1324)〉 and of course G = CG(1). Now Theorem 3.5 applies to the union of the

G-conjugacy classes C := [C3] ∪ [C4] ∪ [V ′4 ] ∪ [D8] ∪ [G]. In other words, C is the set of

centralizers of cyclic subgroups of G. Below is a picture of the poset C− = C t {−∞} :

G

3×D8

3×V ′4
3×C4

4×C3

−∞

1

1

1

1

+6

+1

−1 −1 −1

+1

Here, the notation 3×D8 means thatD8 has 3 conjugates inG. The edge connectingD8 to

V ′4 having two 1’s means that each conjugate of V ′4 is contained in exactly 1 conjugate of

D8 in G, etc. The numbers in circles record the Möbius function values µC−(−∞, H) =

χ̃(C<H) for H ∈ C . The second round of centralizers go CG(G) = 1, CG(D8) = C ′′2 , and

V ′4 , C3,C4 are self-centralizing. Writing C[G/H] = indGH(1H) ∈ AC(G) for the complex

permutation representation of the G-set G/H, Theorem 3.5 yields

C[G/G] =
−6

24
C[G/1] + 3 · −1

12
C[G/C ′′2 ] + 3 · 1

6
C[G/V ′4 ] + 3 · 1

6
C[G/C4] + 4 · 1

8
C[G/C3] ,

which may also be verified by checking the character values. Now, restricting to the
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alternating group A4 and applying the Mackey double coset formula several times, the

above formula for C[G/G] restricts to

C[A4/A4] =
−1

2
C[A4/1] +

1

2
C[A4/C

′′
2 ] + C[A4/C3] ∈ AC(A4) .

To compare, let us apply Theorem 3.5 directly to A4 and centralizers of the cyclic

subgroups of A4. Up to A4-conjugacy, 1,C3 and C ′′2 are the only cyclic subgroups in A4.

C3 is self centralizing in A4, whereas V ′′4 := CA4(C ′′2 ) = {(), (12)(34), (13)(24), (14)(23)}
and of course CA4(1) = A4. Taking C ′ to be the A4-conjugates of C3 and V ′′4 , the poset

C ′− = C ′ t {−∞} looks like:

A4

1×V ′′4
4×C3

−∞

+4

−1 −1

+1

Noting that both V ′′4 and C3 are self-centralizing in A4 and CA4(A4) = 1, Theorem 3.5

applied to A4 and C ′ yields

C[A4/A4] =
−4

12
C[A4/1] +

1

3
C[A4/V

′′
4 ] + 4 · 1

4
C[A4/C3] ,

a different formula than what we obtained above by restricting the formula for G = S4.
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