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We consider the homotopy category of perfect complexes for a finite dimensional 
self-injective algebra over a field, identifying many aspects of perfect complexes 
according to their position in the Auslander-Reiten quiver. Short complexes lie close 
to the rim. We characterize the position in the quiver of complexes of lengths 1, 2 
and 3, as well as rigid complexes and truncated projective resolutions. We describe 
completely the quiver components that contain projective modules (complexes of 
length 1). We obtain relationships between the homology of complexes at different 
places in the quiver, deducing that every self-injective algebra of radical length at 
least 3 has indecomposable perfect complexes with arbitrarily large homology in 
any given degree. We show that homology stabilizes, in a certain sense, away from 
the rim of the quiver.
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1. Introduction

Let Db(Λ-proj) denote the category of perfect complexes for a finite dimensional algebra Λ over a field k. 
The objects in this category are the finite-length chain complexes of finitely generated projective Λ-modules, 
and we take homotopy classes of chain maps as the morphisms. It was shown by Wheeler in [18] that, if Λ is 
self-injective with no semisimple summands, all components of the Auslander-Reiten quiver of Db(Λ-proj)
have shape ZA∞. We exploit this structure to obtain information about the structure of perfect complexes 
in relation to their position in their quiver component.

It turns out that the various homology modules of perfect complexes in a quiver component follow a 
certain pattern. We find that the homology in any fixed degree stabilizes as we move away from the rim of 
the quiver (Theorem 3.8). It means that to each perfect complex there is associated a Λ-module we call the 
stabilization module of the complex, that is the common value to which the zero homology of the complexes 
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in the quiver component stabilizes. The composition factors of the stabilization module are the union of the 
compositions factors of all the homology modules of a complex on the rim of its component, twisted by a 
power of the Nakayama functor.

We deduce that, when Λ is a self-injective algebra of radical length at least 3, there are always indecom-
posable complexes with degree-zero homology of arbitrarily large dimension (Theorem 5.1). We take this 
statement to be a quantification of the fact that there are very many indecomposable complexes for such 
an algebra, even including algebras such as k[t]/(t3). We note that this conclusion does not mention the 
Auslander-Reiten quiver or even triangulated categories.

In more detail, we completely describe the components of the Auslander-Reiten quiver that contain a 
projective module (Theorem 3.10). For arbitrary components we give information based on the structure of 
complexes close to the rim of the component. In general, a complex of length n must lie at distance at most 
n − 1 from the rim, and the only complexes at the maximal possible distance are completely described and 
lie in a quiver component containing a projective (Corollary 4.2). We describe completely the structure of 
complexes of length 2 or 3 in terms of their distance from the rim (Corollary 4.3 and Proposition 6.4).

We find that for each Auslander-Reiten sequence of Λ modules there is a three-term perfect complex 
that has the three modules in the sequence as its homology groups (Corollary 6.3). Given three modules 
appearing in a short exact sequence it is not, in general, possible to realize them as homology of a perfect 
complex of length 3 (by [3], for example), so the fact that it can be done for Auslander-Reiten sequences 
has some interest.

In proving this result we describe a fundamental relationship between Auslander-Reiten sequences and 
Auslander-Reiten triangles of perfect complexes that holds for finite dimensional algebras in general (Propo-
sition 6.1), which is that the degree zero homology of the Auslander-Reiten triangle terminating at a 2-step 
projective presentation of a non-projective module is the Auslander-Reiten sequence terminating at that 
module.

In a final section we show that rigid complexes lie on the rim of their quiver component (Theorem 7.2).
With the exception of the application to cohomological Mackey functors in Theorem 5.2, all the results 

in this paper appeared as the second half of the preprint [16], which has been withdrawn. The first half of 
[16] has appeared in [17].

2. Preliminaries

We take Λ to be a finite dimensional algebra over a field k, and much of the time (but not always) Λ
will be self-injective. Auslander-Reiten triangles in triangulated categories were introduced by Happel in 
the 1980s, and his book [10] is a good place to read about them. Happel shows that in the bounded derived 
category Db(Λ-mod) an Auslander-Reiten triangle X → Y → Z → X[1] exists if and only if Z is isomorphic 
to an indecomposable perfect complex, which happens if and only if X is isomorphic to an indecomposable 
finite complex of finitely generated injective modules. From this it follows that if Λ is self-injective then 
Auslander-Reiten triangles exist in Db(Λ-proj) for arbitrary indecomposable perfect complexes X and for 
arbitrary indecomposable perfect complexes Z. Happel describes the construction of these triangles, and it 
is expressed in terms of the left derived functor of the Nakayama functor ν : Λ-mod → Λ-mod described 
in [1]. The left derived functor is calculated on a perfect complex by applying ν to each term and each 
morphism. The resulting functor Db(Λ-proj) → Db(Λ-inj) is also denoted ν.

The first lemma is crucial in describing the homology patterns in a quiver component. It follows from 
[17, Lemma 2.1] and [5, Lemma 2.2], where more general assertions appear. In the context of stable module 
categories of self-injective algebras very closely related results have been proved in [9, Lemma 3.2] and [8, 
Lemma 1.4]. We give the short proof.
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Lemma 2.1. Let Λ be a finite dimensional algebra and let

L → M → N → L[1]

be an Auslander-Reiten triangle in Db(Λ). Assume that N is not the shift of a projective module (a complex 
with only one nonzero term). Then the associated long exact homology sequence is the splice of short exact 
sequences

0 → Hi(L) → Hi(M) → Hi(N) → 0

with zero connecting homomorphisms.

Proof. The homology Hi is a representable functor:

Hi(N) = HomDb(Λ)(Λ[i], N).

The connecting homomorphisms in the long exact sequence of homology arising from the triangle are all 
zero, except when N is the shift a projective module, because of the lifting property of the Auslander-Reiten 
triangle, since N is never a summand of Λ[i]. �
Definition 2.2. We will call a perfect complex Q• of Λ-modules minimal if, for all complexes P• homotopic 
to Q•, we have dimQn ≤ dimPn.

Indecomposable perfect complexes are minimal, if they are not homotopic to 0. This follows from the 
next result, in which we recall some well known basic facts about minimal perfect complexes. They are 
proved (in the dual context of complexes of injectives) in [12, B2] except for the final statement, which is 
an easy exercise.

Proposition 2.3. Let Λ be a finite dimensional algebra over k, and P• a perfect complex of Λ-modules. Then 
P• is homotopy equivalent to a minimal perfect complex, which is unique up to isomorphism. The minimal 
complex is a direct summand of every complex in its homotopy class. When Λ is self-injective, the minimal 
complex has the property that its homology is non-zero in the highest and lowest degrees in which the complex 
has non-zero terms.

Definition 2.4. By the length of a perfect complex P• of Λ-modules we will mean the length of the minimal 
perfect complex Q• homotopic to P•. Explicitly, if

Q• = · · · → 0 → Qm → · · · → Qn → 0 → · · ·

then the length of P• is m − n + 1. If we also assume that P• (and Q•) are indecomposable, this is the 
number of non-zero terms in Q•, and if Λ is self-injective it is the difference between the degrees of the 
highest and lowest non-zero homology of P•, plus 1.

To establish our notation for complexes in an Auslander-Reiten quiver component we record Wheeler’s 
result on its structure for perfect complexes over a self-injective algebra. It was also proved later in [11].

Theorem 2.5 (Wheeler, [18]). Let Λ be a self-injective algebra with no semisimple summands. Every com-
ponent of the Auslander-Reiten quiver of Db(Λ-proj) has the form ZA∞. Specifically, for various perfect 
complexes C0, C1, . . ., it is:
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νC0[−1] C0 ν−1C0[1] ν−2C0[2]
↘ ↗ ↘ ↗ ↘ ↗

· · · νC1[−1] C1 ν−1C1[1] · · ·
↗ ↘ ↗ ↘ ↗ ↘

ν2C2[−2] νC2[−1] C2 ν−1C2[1]
↘ ↗ ↘ ↗ ↘ ↗

...
...

...

Fig. 1. Auslander-Reiten quiver component of perfect complexes for a self-injective algebra.

Definition 2.6. The complexes ν−nC0[n], n ∈ Z, constitute the rim of the quiver component. The complexes 
ν−nCd[n] are said to be at distance d from the rim. Given a complex ν−nCd[n] its wing consists of the 
complexes ν−iCj [i] with 0 ≤ j ≤ d and n ≤ i ≤ n + d − j. These are the complexes lying within a 
triangle with ν−nCd[n] as a vertex and a segment of the rim as the opposite edge. The wing rim associated 
to ν−nCd[n] is the part of the rim that lies in the wing. A mesh of this quiver diagram is a set of four 
vertices forming a diamond, whose corresponding complexes form the first three terms of an Auslander-
Reiten triangle (in the case of an Auslander-Reiten triangle with first and third terms on the rim, the mesh 
again consists of the first three terms of that triangle, but there are only three complexes and they are the 
vertices of a triangular shape.).

3. The homology diagram of a quiver component

Throughout this section Λ will be a finite dimensional self-injective algebra over k with no semisimple 
direct summand. Thus by Theorem 2.5 all components of the Auslander-Reiten quiver of Db(Λ-proj) have 
the form ZA∞. We will examine the degree-zero homology of the complexes in each component, showing 
that it stabilizes sufficiently far from the rim to a single module. We will describe completely the quiver 
components that contain projective modules (regarded as complexes in degree 0).

We start with some definitions.

Definition 3.1. Let Λ be a self-injective algebra. For each Λ-module M we let PM be the 2-term complex 
P1 → P0 in degrees 1 and 0 such that P1 → P0 → M is the start of a minimal projective resolution of M . 
For each simple module S with projective cover PS note that SocPS is a simple module, and νPS is the 
injective hull of S, which is again an indecomposable projective module. We define HS to be the 3-term 
complex ν−1PS → PS → νPS in degrees 1, 0 and -1, where both maps send the top of one indecomposable 
projective isomorphically to the simple socle of the next. We write HS = RadPS/ SocPS for the heart of 
PS .

Lemma 3.2. Let Λ be a self-injective algebra, M a Λ-module and S a simple Λ-module.

(1) H0(PM ) ∼= M and H1(PM ) ∼= Ω2M .
(2) PΩ−1S is the complex PS → νPS, where the map sends the simple top of PS isomorphically to the socle 

of νPS. Similarly ν−1PΩ−1S is the complex ν−1PS → PS.

(3) Hi(HS) =

⎧⎪⎪⎨
⎪⎪⎩

Ω−1S i = −1,
HS := RadPS/ SocPS i = 0,
Ω SocPS i = 1.

Proof. These calculations are immediate from the definitions. �
The complexes just described appear in the Auslander-Reiten quiver component that contains PS, as the 

next result shows. The full structure of this quiver component will be described in Theorem 3.10.
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Proposition 3.3. Let S be a simple non-projective module for a self-injective algebra Λ and let PS be the 
projective cover of S. The Auslander-Reiten quiver of perfect complexes has the following shape close to PS:

νPS [−1] PS ν−1PS [1]
↘ ↗ ↘ ↗

· · · PΩ−1S [−1] ν−1PΩ−1S · · ·
↗ ↘ ↗ ↘

HS

...
...

Proof. The construction of the Auslander-Reiten triangles comes from the description in [10]. Thus we have 
an Auslander-Reiten triangle νPS[−1] → PΩ−1S [−1] → PS → νPS where the final map sends the top of 
PS to the socle of νPS. This is because this final map of 1-term complexes is not homotopic to zero and 
lies in the socle of Hom(PS , νPS), and PΩ−1S is the mapping cone of this map. The complex PΩ−1S is 
indecomposable (or zero in case PS = S), because if it were not it would have to be the direct sum of two 
one-term complexes PS and νPS and would have projective homology. However, the homology of PΩ−1S is 
Ω(S) and Ω−1(S) in degrees 1 and 0, and is not projective.

We construct the middle term of the Auslander-Reiten triangle starting at PΩ−1S [−1] as the mapping 
cone of a map ν−1PΩ−1S [−1] → PΩ−1S [−1] which is not homotopic to zero and which lies in the socle of 
such maps under the action of the endomorphism ring of either complex. Such a map is

⎛
⎜⎝

PS

α ↑
ν−1PS

⎞
⎟⎠

ν(α)−→

0−→

⎛
⎝ νPS

ν(α) ↑
PS

⎞
⎠ ,

as is readily verified, and its mapping cone is a complex

ν−1PS

(
α

0

)
−−−→ PS ⊕ PS

(ν(α),ν(α))−−−−−−−→ νPS .

The middle term has a direct summand {(x, −x) 
∣∣ x ∈ PS} ∼= PS which is a direct complement to the 

subcomplex whose middle term is the first PS direct summand. From this we see that the mapping cone is 
the direct sum as complexes PS ⊕HS . This completes the description of this part of the Auslander-Reiten 
quiver. �
Corollary 3.4. Let Λ be a self-injective algebra. Each component of the Auslander-Reiten quiver of Db(Λ-proj)
contains at most one indecomposable projective module regarded as a complex in degree 0.

Proof. If the component consists of complexes for a semisimple summand of Λ it is the set of shifts of a 
single module, and so there is only one complex that is a module in degree 0 in the component. Otherwise, 
Wheeler [18] proved that the component has shape ZA∞. If it contains a projective module, that module 
lies on the rim by Proposition 3.3, and the other terms on the rim are its shifts with the Nakayama functor 
applied, so no other projectives are possible. �

We will obtain a lot of information from the homology of the complexes in a quiver component.

Definition 3.5. The homology diagram of an Auslander-Reiten quiver component is the diagram obtained 
by replacing each complex in the quiver component by its zero homology module, and each irreducible 
morphism by the Λ-module homomorphism it induces on zero homology.
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νH1(C0) H0(C0) ν−1H−1(C0) ν−2H−2(C0)
↘ ↗ ↘ ↗ ↘ ↗

· · · νH1(C1) H0(C1) ν−1H−1(C1) · · ·
↗ ↘ ↗ ↘ ↗ ↘

ν2H2(C2) νH1(C2) H0(C2) ν−1H−1(C2)
↘ ↗ ↘ ↗ ↘ ↗

...
...

...

Fig. 2. Homology diagram of an Auslander-Reiten quiver component of perfect complexes for a self-injective algebra.

Proposition 3.6. We continue the notation of Fig. 1. Let Λ be a self-injective algebra.

(1) Identifying terms via the isomorphism

H0(νjCi[−j]) ∼= νjHj(Ci),

the homology diagram of the quiver component in Fig. 1 is as shown in Fig. 2.
(2) Every homology module of every complex C0, C1, . . . appears in the homology diagram, up to a twist by 

the Nakayama functor.

Proof. The Nakayama functor is exact, because it is the composite of the exact functors HomΛ(−, Λ) (which 
is exact because Λ is injective), and the ordinary duality Homk(−, k). We combine this with the fact that H0
of a shifted complex is homology in a different degree and obtain H0(νjCi[−j]) ∼= νjH0(Ci[−j]) ∼= νjHj(Ci). 
The rest is apparent. �

In the next results we will examine the pattern of modules in the homology diagram. The situation is 
slightly different for quiver components containing a projective module compared to those that do not but 
the basic idea is the same in both cases. It is a little more complicated in the case of components that 
contain a projective, so we start with quiver components that do not contain a projective module.

Proposition 3.7. Let Λ be a self-injective algebra and consider the homology diagram of a quiver component 
of Db(Λ-proj) that does not contain a projective module.

(1) Every mesh in the diagram consists of modules that lie in a short exact sequence of Λ-modules.
(2) The composition factors (taken with multiplicity) of H0 of any complex are the union of the composition 

factors of the H0 of complexes lying on the associated wing rim.

In part (1), what we mean is that, for example, the modules in the mesh

νi−1Hi−1(Cn−2)
↗ ↘

νiHi(Cn−1) νi−1Hi−1(Cn−1)
↘ ↗
νiHi(Cn)

form a short exact sequence of Λ-modules

0 → νiHi(Cn−1) → νi−1Hi−1(Cn−2) ⊕ νiHi(Cn) → νi−1Hi−1(Cn−1) → 0

and similarly with triangular meshes, in which case there is only a single summand in the middle.
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Proof. Because there is no projective module in the quiver component, part (1) is an immediate application 
of Lemma 2.1.

(2) We consider a module νiHi(Cn) at distance n from the rim and proceed by induction on n. On the rim 
when n = 0 the result holds. In case n = 1 the exact sequence of homology modules of part (1) implies that 
the composition factors of the middle term are the union (with multiplicities) of the composition factors of 
the left and right terms, which is what we have to prove. When n ≥ 2 the composition factors of νiHi(Cn)
are those of the left and right terms in the mesh above it, with the composition factors of the top term 
in the mesh removed. By induction these are the composition factors from two parts of the rim (factors 
common to both parts taken twice) with a copy of the factors from the intersection of those parts of the 
rim removed. This gives exactly the desired result. �
Theorem 3.8. Let Λ be a self-injective algebra and consider the homology diagram of a quiver component of 
Db(Λ-proj) that does not contain a projective module.

(1) At any two positions in the quiver where the wing rims of the homology diagram have the same non-
zero terms, the zero homology modules at those positions are isomorphic. Morphisms in the homology 
diagram between adjacent such positions are isomorphisms.

(2) At any horizontal coordinate, sufficiently far from the rim the homology modules stabilize to a module 
Σ whose composition factors are the union of the composition factors of all terms on the rim.

(3) Adjacent to zeros on the rim of the homology diagram, this diagram has the shape shown below, with 
the maps between identically labeled terms being isomorphisms.

0 0 A0 • · · · • B0 0
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

· · · 0 A0 A1 · · · · · · B1 B0
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

0 A0 A1 · · · • · · · B1 B0
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

· · · A0 A1 · · · An−1 Bn−1 · · · B1
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

A0 A1 · · · An−1 Σ Bn−1 · · · B1
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

· · · A1 · · · An−1 Σ Σ Bn−1 · · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

A1 · · · An−1 Σ Σ Σ Bn−1 · · ·
...

...
...

...
...

...
...

Proof. (1) At two positions where the wing rims have the same non-zero terms, the modules have the same 
composition factors, by Proposition 3.7(2). Consider two adjacent such positions, such as the positions 
labeled f, g in the diagram

rim: a b · · ·
↘ ↗ ↘

c d
↘ ↗ ↘

e f

↘ ↗
g

(3.1)

In this example g is southwest of f . There is another situation where g is northwest of f , and it is handled 
similarly. Because g and f have the same non-zero terms on the wing rim, a must be zero. Now the short 
exact sequence 0 → a → c → b → 0 shows that the map c → b is an isomorphism. In the short exact 
sequence 0 → c → b ⊕ e → d → 0 the component c → b is an isomorphism, so the sequence splits and e → d
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is an isomorphism. Continuing, we deduce that g → f is an isomorphism, and we obtain a ladder of such 
isomorphisms. We have shown that the diagram has the form

rim: 0 A0 · · ·
↘ ↗ ↘

A0 A1
↘ ↗ ↘

A1 A2
↘ ↗

A2

(3.2)

for certain modules A0, A1, A2 and where each of the mappings Ai → Ai is an isomorphism. This proves 
the second statement in (1), and the first statement holds because, between any two positions where the 
wing rims have the same non-zero modules, there is a path through adjacent such positions.

(2) The entries on the rim of the homology diagram are the various homology modules of a single perfect 
complex, twisted by the Nakayama functor, so they are eventually zero to the left and to the right. At 
any given horizontal coordinate, sufficiently far from the rim the wing rim includes all non-zero homology 
modules, and so the homology modules at that distance are all isomorphic, by part (1). At this point 
all morphisms in the diagram are isomorphisms, and the homology has stabilized to a module Σ whose 
composition factors are the union of the composition factors of all terms on the rim, by Proposition 3.7(2).

(3) This follows from (1) and (2). �
Definition 3.9. For a perfect complex P• over a self-injective algebra Λ, we will say that the Λ-module Σ is the 
stabilization module of P• if, at each horizontal coordinate of the homology diagram of the Auslander-Reiten 
quiver component of P•, the modules stabilize with value Σ sufficiently far from the rim.

We now describe the homology diagram of a quiver component containing an indecomposable pro-
jective module PS and then use this to describe completely the entire quiver component. Recall that 
HS = RadPS/ SocPS is the heart of PS . We will see that HS is the stabilization module of PS .

Theorem 3.10. Let S be a simple module for a self-injective algebra Λ and let PS be the projective cover of 
S. We assume S �= PS.

(1) The homology diagram of the quiver component containing PS is as follows:

0 0 × PS × 0 0
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

· · · 0 RadPS PS/ SocPS 0 · · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

0 RadPS HS PS/ SocPS 0
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

· · · RadPS HS HS PS/ SocPS · · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

RadPS HS HS HS PS/ SocPS

...
...

...
...

Every mesh in the diagram labels the terms in a short exact sequence of zero homology modules, except 
for the two meshes labeled ×. In every case the short exact sequence is split except for the one underneath 
PS, which is an Auslander-Reiten sequence.

(2) The stabilization module of this quiver component is HS.
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(3) With the notation of Fig. 1 the complex Cn at distance n from the rim of the quiver component containing 
PS is

ν−nPS → · · · → ν−2PS → ν−1PS → PS

where each map sends the simple top of a projective module isomorphically to the socle of the next 
module. The irreducible morphisms between these complexes and their Auslander-Reiten translates are 
represented by the obvious inclusions and surjections between such complexes of adjacent lengths.

Proof. (1) The fact that all meshes correspond to short exact sequences except the ones marked × follows 
from Lemma 2.1 and the description of part of the quiver component given in Proposition 3.3, as in the 
proof of Proposition 3.7. The zero homology of the complexes shown in Proposition 3.3 has already been 
computed before that proposition, and accounts for terms on the rim and the mesh below PS. The facts 
that the remaining meshes correspond to split short exact sequence with maps between identically labeled
terms being isomorphisms, and that the homology stabilizes at HS, follow by the same argument as in 
Theorem 3.8. We may deduce that the mesh below PS corresponds to an Auslander-Reiten sequence by 
observing from our earlier calculation that the component maps to PS and H in the mesh are mono and 
epi, while the component maps in the mesh from PS and H are epi and mono. This identifies the sequence 
as a well-known Auslander-Reiten sequence [2, Sect. 4.11]. We will also see in Proposition 6.1 by a different 
argument that the short exact sequence under PS is an Auslander-Reiten sequence.

(2) follows from the picture in (1).
(3) We show that Cn can be identified as stated by induction on n. We see from Proposition 3.3 that the 

expressions for C0, C1 and C2 are correct. Now suppose that n ≥ 2, that the result is true for n and smaller 
values, and consider Cn+1. From the general structure of the quiver shown in Fig. 1 the mapping cone of 
ν−1Cn → Cn is Cn+1 ⊕ ν−1Cn−1[1]. The mapping cone has the form

ν−n−1PS → (ν−nPS)2 → · · · → (ν−2PS)2 → (ν−1PS)2 → PS

and ν−1Cn−1[1] has the form

ν−nPS → · · · → ν−2PS → ν−1PS

so that

Cn+1 ∼= ν−n−1PS → ν−nPS → · · · → ν−2PS → ν−1PS → PS .

From the homology diagram in part (1) we see that the homology modules of Cn+1 are ν−n−1 RadPS , 
ν−nHS , . . ., ν−1HS , PS/ SocPS and by a dimension count it follows that each map in Cn+1 sends the 
simple top of each projective to the socle of the next. �
4. The position of short perfect complexes in the Auslander-Reiten quiver

We deduce consequences of the patterns we have just seen. Throughout we assume that Λ is a self-injective 
algebra with no semisimple summand and we consider the Auslander-Reiten quiver of perfect complexes.

Corollary 4.1. If complexes on the rim of a quiver component have length t then complexes at distance r
from the rim have length t + r.
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Proof. This follows from Theorems 3.8 and 3.10, since the length of a complex is determined from its 
extreme non-vanishing homology modules, and so equals the length of the part of the row in the homology 
diagram where the terms are non-zero. These theorems show that this length grows by 1 with each step 
away from the rim. �

We now use this observation to restrict the distance from the rim of arbitrary perfect complexes: the 
distance of a perfect complex from the rim of its quiver component is at most one less than its length. 
This bound is best possible, and we describe the complexes which achieve it. This extends the assertion in 
Proposition 3.3 that complexes of length 1 lie on the rim.

Corollary 4.2. For each n ≥ 0, the indecomposable perfect complexes of length n + 1 all lie within distance 
n from the rim of their quiver component. The only perfect complexes of length n + 1 which are at distance 
n from the rim of their quiver component are the ones described in Theorem 3.10 which appear in the 
component of a projective module PS associated to a simple module S. These are the complexes

ν−nPS → · · · → ν−2PS → ν−1PS → PS

where every mapping sends a simple top isomorphically to the next simple socle.

Proof. By Corollary 4.1 all complexes of length n + 1 must lie at distance n or less from the rim. If such a 
complex lies at distance n then by the same corollary the complexes on the rim of the quiver component have 
length 1, and so are projective modules PS in a single degree. We saw in Theorem 3.10 that the complexes 
at distance n from the rim in such a quiver component have the form stated. �

The following is a particular case of the last result.

Corollary 4.3. Any indecomposable perfect complex with two non-zero terms, not of the form PS → νPS for 
some simple module S (where the map sends the top of PS isomorphically to the socle of νPS), lies on the 
rim of its quiver component.

Proof. If it did not lie on the rim, the complexes on the rim of its quiver component would have to have 
length 1 by Corollary 4.1, so would be shifts of a projective module PS for some simple module S. In that 
case the 2-term complexes next to the rim have the form which has been excluded, by Proposition 3.3. �
Corollary 4.4. In an indecomposable perfect complex at distance n from the rim, any non-zero homology 
module must occur as part of a string of at least n + 1 non-zero consecutive homology modules.

Proof. The result is true for quiver components containing a projective module by Theorem 3.10. For other 
components, non-zero homology comes about from non-zero homology on the rim, by Proposition 3.7. Each 
non-zero term on the rim gives rise to n + 1 non-zero consecutive homology modules at distance n. This is 
the only way we get non-zero homology at distance n from the rim and so every non-zero homology module 
must be part of a string of n + 1 non-zero homology modules. �

We show that the condition of Corollary 4.4 forces certain complexes to lie on, or close to, the rim.

Corollary 4.5. Any indecomposable perfect complex X with a sequence of homology modules of the form 
Hd+1(X) = 0, Hd(X) �= 0 and Hd−1(X) = 0 must lie on the rim of its quiver component.

Proof. If X were not on the rim, non-zero homology strings would all have to have length at least 2 by 
Corollary 4.4. Since the complex has a non-zero homology string of length 1, it must lie on the rim. �
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Proposition 4.6. Let M be an indecomposable module, and let Pn → · · · → P1 → P0 → M → 0 be the start 
of a minimal resolution of M . Then the complex Pn → · · · → P1 → P0 is indecomposable. It lies on the rim 
of its quiver component unless M = Ω−1S for some simple module S and n = 1, in which case the complex 
lies at distance 1 from the rim of its quiver component.

Proof. If the complex were to decompose as a direct sum of two complexes, one of the summands would 
have M as its zero homology. That summand would have projective terms, and would be the start of a 
smaller projective resolution of M . Since we chose a minimal projective resolution, this cannot happen.

If n > 1 then the homology of the complex has its zero homology group isolated in the sense of Corol-
lary 4.5 and so the complex lies on the rim of its quiver component. The other possibility is that n ≤ 1 so 
that the complex has one or two terms. If it has one term (n = 0) then M is projective and lies on the rim 
of the quiver by Proposition 3.3. If n = 1 then by hypothesis the complex is not isomorphic to PS → νPS

and so lies on the rim by Corollary 4.3. �
5. An application: complexes with large homology

The following result is of independent significance, in that it makes no reference to the Auslander-Reiten 
quiver.

Theorem 5.1. Let Λ be a self-injective algebra of radical length at least 3. There exist indecomposable perfect 
complexes with degree zero homology of arbitrarily large dimension.

Proof. We may construct an indecomposable perfect complex with arbitrarily many non-zero homology 
modules, and for some H �= 0 having terms 0, H, 0 somewhere in the list of homology groups. For example, 
we may take an indecomposable projective module PS of radical length at least 3, form a complex

PRadPS
→ PS → νPS → ν2PS → · · · →

where the first map is the projective cover of the radical of PS, and after that each map identifies the top 
of a module with the socle of the next. Such a complex can be made to have arbitrarily many non-zero 
homology modules, and the second homology module from the left is zero. Such a complex must lie on the 
rim of its quiver component by Corollary 4.5. Considering homology at some distance from the rim the 
stabilizing module Σ which appears in Corollary 3.8 has composition length which is the sum of the lengths 
of all homology modules of the starting complex. We conclude that this may be made arbitrarily large. �

It is perhaps surprising that even algebras as small as k[t]/(t3) (and k[t]/(tn) with n ≥ 3) have large 
indecomposable perfect complexes with H0 of arbitrarily large dimension, and it conveys the sense that there 
are very many such complexes for these algebras. By contrast, the indecomposable perfect complexes for 
k[t]/(t2) are well known to form a single quiver component: the component containing the unique projective, 
described explicitly in Theorem 3.10.

The result has consequences beyond the context of self-injective algebras and, as an example, we present 
an application to the theory of Mackey functors. For background on this theory we refer to [14] and [15], 
and we review what we need here but we will be brief on the details. Our example has a connection with 
equivariant homotopy theory, for which we refer to [7]. We consider cohomological Mackey functors for the 
cyclic group G = Cp over a field k of characteristic p. The structure of these Mackey functors is considered 
explicitly in [4, Sec. 4]. In [7] the perfect complexes of such functors are computed when p = 2, noting that 
they refer to cohomological Mackey functors as Z-modules.
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There are two simple Mackey functors for G over k, denoted S1,k and SG,k in [14], with evaluations 
S1,k(1) = k, S1,k(G) = 0 and SG,k(1) = 0, SG,k(G) = k, and they are cohomological. Let us write a = S1,k
and b = SG,k for short. Their projective covers have the structure:

Pa = FPkG =

a
a... b
a

a

and Pb = FPk = b
a

where Pa has p composition factors of type a.

Theorem 5.2. Let k be a field of characteristic p and G = Cp a cyclic group of order p. If p ≥ 3 there are 
indecomposable perfect complexes of cohomological Mackey functors with zero homology of arbitrarily large 
dimension.

Proof. Cohomological Mackey functors for G are the same as modules for the cohomological Mackey algebra
for G, defined in [14], and which we denote Λ here. We have Λ = Pa ⊕ Pb as left Λ-modules, and this 
decomposition corresponds to an expression 1 = ea + eb as a sum of orthogonal idempotents, so that 
Pa

∼= Λea and Pb
∼= Λeb. Thus eaΛea ∼= EndΛ(Pa)op ∼= k[t]/(tp). If M is a cohomological Mackey functor on 

G the specification M �→ eaM provides an exact functor from Λ-modules to k[t]/(tp)-modules.
Given a perfect complex P• of k[t]/(tp)-modules we can lift it to a perfect complex P̂• of cohomological 

Mackey functors, that maps to P• under this functor, by replacing each copy of k[t]/(tp) by Pa, and by 
lifting uniquely the homomorphisms between copies of k[t]/(tp) to homomorphisms between the Pa. We may 
check that this does give a chain complex, and it is indecomposable if P• is indecomposable. Multiplying 
the homology modules of P̂• by ea we obtain the homology modules of P•. Because we can construct 
these to have arbitrarily large dimension, the homology modules of the P̂• will also have arbitrarily large 
dimension. �
6. Short complexes and Auslander-Reiten sequences

In this section we study in detail complexes of lengths 2 and 3, showing that they are closely related to 
Auslander-Reiten sequences. We find their position in the Auslander-Reiten quiver, and show the stabiliza-
tion modules of complexes of length 2 are the middle terms in Auslander-Reiten sequences.

We start with a result that makes a connection between Auslander-Reiten sequences and Auslander-
Reiten triangles. It is closely related to a result in [6]. For this result Λ can be any finite dimensional 
algebra, not necessarily one that is self-injective. We write τ for the Auslander-Reiten translate.

Proposition 6.1. Let Λ be a finite dimensional algebra over k and M a non-projective indecomposable Λ-
module. Let PM = (P1 → P0) be the first two terms of a minimal projective resolution of M . Consider the 
Auslander-Reiten triangle νPM [−1] → EM → PM → νPM in Db(Λ-mod).

(1) The part of the long exact sequence in homology of this triangle, whose terms are H0, is the Auslander-
Reiten sequence of Λ-modules 0 → τM → EM → M → 0.

(2) The non-zero homology groups of the mapping cone complex EM are H1(EM ) = Ω2M , H0(EM ) = EM

and H−1(EM ) = νM .

Proof. (1) We know from [1, IV.2.4] that νPM [−1] has homology modules

H−1(νPM [−1]) = νM and H0(νPM [−1]) = τM.



P. Webb / Journal of Pure and Applied Algebra 228 (2024) 107599 13
By Lemma 2.1, because M is not projective, the long exact sequence in homology of the triangle breaks up 
as a splice of short exact sequences, of which the 0-homology sequence has the form

0 → τM → H0(EM ) → M → 0.

This sequence has the correct end terms to be an Auslander-Reiten sequence and, in particular, they are 
indecomposable. We show first that the sequence has the lifting property of Auslander-Reiten sequences, 
and then later that it is not split. This will establish that it is indeed an Auslander-Reiten sequence.

Suppose that we have an indecomposable module N and a morphism N → M which is not an isomor-
phism. Take the start of a minimal projective resolution Q = (Q1 → Q0) of N and lift the morphism N → M

to a morphism of complexes Q → PM . This mapping is not split epi, because on taking zero homology it 
is not split epi. It therefore lifts to a morphism Q → EM and on taking zero homology we deduce that the 
original morphism lifts to a morphism N → H0(EM ).

To show that the sequence of zero homology groups is not split, suppose to the contrary that we have a 
splitting map M → H0(EM ) = Z0(EM )/B0(EM ) with image U/B0(EM ) for some submodule U ⊆ Z0(EM ). 
By the projective property of P0 this lifts to a map P0 → U and hence also to a map P1 → (EM )1, so that 
we have a chain map PM → EM . Composing with the map EM → PM we obtain an endomorphism of PM

which lifts the identity on M . By Fitting’s Lemma some power of this endomorphism has image a summand 
of PM , which again must be the start of a resolution of M . By minimality of PM this summand must be the 
whole of PM , and so the endomorphism of PM is an isomorphism and we have split the Auslander-Reiten 
triangle – a contradiction.

(2) We have just shown that taking zero homology gives an Auslander-Reiten sequence, so this gives 
the value of H0(EM ). To identify the top and bottom homology groups of EM we use the fact again from 
Lemma 2.1 that the degree 1 and degree −1 terms in the long exact homology sequence give short exact 
sequences, and they are

0 → 0 → H1(EM ) → H1(PM ) = Ω2M → 0

and

0 → H0(νPM ) = νM → H−1(EM ) → 0 → 0.

This completes the proof. �
The construction just described has potential as a way to organize the automatic computation of 

Auslander-Reiten sequences, without explicitly computing Ext groups or extensions corresponding to Ext 
classes. Given a module M , compute the first two terms PM = (P1 → P0) in a minimal projective resolu-
tion of M , and also the effect of the Nakayama functor νPM . The next part is hard: compute a chain map 
PM → νPM that is not homotopic to zero, and which is annihilated up to homotopy by Rad(End(PM )). 
Finally compute the mapping cone EM [1] of this map and compute the zero homology sequence of the 
triangle νPM [−1] → EM → PM → νPM . This computes the Auslander-Reiten sequence ending at M .

The last result allows us to identify the stabilization module of any indecomposable perfect complex of 
length 2 over a self-injective algebra.

Corollary 6.2. Let Λ be a self-injective algebra and M a non-projective indecomposable Λ-module that is not 
of the form Ω−1(S), for some simple module S. Let PM = (P1 → P0) be the first two terms of a minimal 
projective resolution of M . Then PM lies on the rim of its quiver component, and the homology diagram of 
this component has the form
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0 τM M 0
↘ ↗ ↘ ↗ ↘ ↗

· · · τM EM M · · ·
↗ ↘ ↗ ↘ ↗ ↘

τM EM EM M

↘ ↗ ↘ ↗ ↘ ↗
...

...
...

where 0 → τM → EM → M → 0 is the Auslander-Reiten sequence terminating at M . Thus the stabilization 
module of PM is EM .

Note that we already identified the stabilization module of PΩ−1(S) as HS in Theorem 3.10, and this is 
the middle term of the Auslander-Reiten sequence terminating at Ω−1(S), with the projective summand 
removed.

Proof. We know that PM lies on the rim of the quiver by Corollary 4.2, so that the rim is as described, and 
the second row is a consequence of Proposition 6.1. We fill in the rest of the diagram using Theorem 3.8. �

When Λ is a symmetric algebra, the modules in an Auslander-Reiten sequence appear not only as the 
zero homology of complexes in a triangle, but also as the homology groups of a single complex.

Corollary 6.3. If Λ is a symmetric algebra and M is a non-projective indecomposable Λ-module, there is 
a 3-term perfect complex EM with H1(EM ) = τM , H0(EM ) = E and H−1(EM ) = M , where 0 → τM →
EM → M → 0 is the Auslander-Reiten sequence of Λ-modules terminating at M

Proof. When Λ is symmetric the Nakayama functor is the identity and τM ∼= Ω2M . The complex EM of 
Proposition 6.1 has the desired properties. �

We can now characterize the positions of complexes of length 3 in the Auslander-Reiten quiver. Given 
a non-projective indecomposable module M , we continue with the notation that EM is the complex that 
appears in the Auslander-Reiten triangle νPM [−1] → EM → PM → νPM .

Proposition 6.4. Let Λ be a self-injective algebra and M an indecomposable non-projective Λ-module.

(1) The complex EM is indecomposable unless M = Ω−1S for some simple module S, in which case EM is 
the direct sum of an indecomposable 3-term complex and PS as a complex in degree 0.

(2) An indecomposable 3-term perfect complex lies on the rim of its quiver component unless, up to shift, 
it is either of the form EM for some M �∼= Ω−1S (in which case it lies at distance 1 from the rim) or it 
is the indecomposable 3-term summand of EΩ−1S for some simple Λ-module S (in which case it lies at 
distance 2 from the rim).

Proof. (1) The complexes PM lie on the rim of the quiver by Corollary 4.3 unless M = Ω−1S for some 
simple module S. Apart from this exception, EM is the middle term of the Auslander-Reiten triangle with 
third term PM , and it is indecomposable since PM lies on the rim. When M = Ω−1S we have seen the 
decomposition of EM in Theorem 3.10.

(2) We have seen from Corollary 4.2 that indecomposable 3-term complexes lie at distance at most 2 
from the rim, and the ones at distance 2 have the form ν−1PS → PS → νPS . If a 3-term complex lies at 
distance 1 from the rim, the complexes on the rim must have length 2, and are (up to shift) of the form PM
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with M �∼= Ω−1S for any simple S, by Corollary 4.3. Apart from these cases, 3-term complexes must lie on 
the rim. �

Thus, if a 3-term perfect complex has homology modules which are not the terms in an Auslander-Reiten 
sequence of Λ-modules (to within a projective summand of the middle term) then the complex lies on the 
rim of the Auslander-Reiten quiver of perfect complexes.

7. The position of rigid complexes in the Auslander-Reiten quiver

It seems more often than not when we consider a class of objects satisfying some given properties, that 
those objects lie on the rim of the Auslander-Reiten quiver, or close to the rim. We have seen this with short 
complexes, with complexes with zero homology in certain degrees, and in [17, Theorem 6.2] an example 
is given with complexes with small endomorphism rings. We give another of these examples, showing that 
over a symmetric algebra an indecomposable perfect complex C which is rigid, i.e. Hom(C, C[1]) = 0, must 
lie on the rim of the quiver. Thus, as a particular case, summands of tilting complexes lie on the rim. This 
particular case can also be deduced from Rickard’s theory [13], given that projective modules lie in the rim 
(Proposition 3.3).

We will deduce our result from the following lemma on Auslander-Reiten triangles, whose analogue for 
Auslander-Reiten sequences is also true by the same argument.

Lemma 7.1. Let A → B → C → A[1] be an Auslander-Reiten triangle in a Krull-Schmidt triangulated 
category C and suppose that Hom(A, C) = 0 Then B is indecomposable, so that A and C lie on the rim of 
the Auslander-Reiten quiver of C.

Proof. Suppose to the contrary that B = B1⊕B2. We show that it is not possible for both of the composite 
maps A → B1 → C and A → B2 → C to be zero as follows. Let W be any object and consider the long 
exact sequence

. . . Hom(W,C[−1])

Hom(W,A) α Hom(W,B1) ⊕ Hom(W,B2)
β

Hom(W,C)

Hom(W,A[1]) · · ·

If both composites A → Bi → C were zero for i = 1, 2, then both composites Hom(W, A) → Hom(W, Bi) →
Hom(W, C) would be zero. It would follow that both projections of Kerβ = Imα onto the two summands 
Hom(W, Bi) lie in Kerβ and hence

αHom(W,A) = (Kerβ ∩ Hom(W,B1)) ⊕ (Kerβ ∩ Hom(W,B2))

is a direct sum of End(W )-modules. Take W = A. Because End(A) is local we deduce that αHom(A, A)
has a unique simple quotient as an EndA-module. From this it follows that one of the summands Kerβ ∩
Hom(A, Bi) is zero and that αHom(A, A) ⊆ Hom(A, Bj) for the other suffix j. Now α(1A) is represented 
by the two component maps A → B1 and A → B2, so one of these must be zero. However, these component 
maps are irreducible morphisms and are never zero. This contradiction shows that one of the composite 
maps A → B1 → C and A → B2 → C is non-zero (and hence both are). We complete the proof by invoking 
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the hypothesis that there is no non-zero map A → C. This further contradiction establishes that B is 
indecomposable. �

We can now deduce our application to rigid complexes.

Theorem 7.2. Let C be an indecomposable perfect complex for a symmetric algebra Λ with the property that 
Hom(C, C[1]) = 0 Then C lies on the rim of its component in the Auslander-Reiten quiver.

Proof. The Auslander-Reiten triangle starting at C has the form C → X → C[1] → C[1] since the Nakayama 
functor is the identity. Because Hom(C, C[1]) = 0 the result follows from Lemma 7.1. �
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