
THE STRUCTURE OF MACKEY FUNCTORS
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Abstract. Mackey functors are a framework having the common properties of many

natural constructions for finite groups, such as group cohomology, representation
rings, the Burnside ring, the topological K-theory of classifying spaces, the algebraic

K-theory of group rings, the Witt rings of Galois extensions, etc. In this work we
first show that the Mackey functors for a group may be identified with the modules

for a certain algebra, called the Mackey algebra. The study of Mackey functors is

thus the same thing as the study of the representation theory of this algebra. We
develop the properties of Mackey functors in the spirit of representation theory, and

it emerges that there are great similarities with the representation theory of finite

groups.
In previous work we had classified the simple Mackey functors and demonstrated

semisimplicity in characteristic zero. Here we consider the projective Mackey functors

(in arbitrary characteristic), describing many of their features. We show, for example,
that the Cartan matrix of the Mackey algebra may be computed from a decomposition

matrix in the same way as for group representations. We determine the vertices,

sources and Green correspondents of the projective and simple Mackey functors, as
well as providing a way to compute the Ext groups for the simple Mackey functors.

We parametrize the blocks of Mackey functors and determine the groups for which

the Mackey algebra has finite representation type. It turns out that these Mackey
algebras are direct sums of simple algebras and Brauer tree algebras.

Throughout this theory there is a close connection between the properties of the
Mackey functors, and the representations of the group on which they are defined,

and of its subgroups. The relationships between these representations are exactly

the information encoded by Mackey functors. This observation suggests the use of
Mackey functors in a new way, as tools in group representation theory.

Index of Notation

↓GH restriction of Mackey functors, G-sets, modules
↑GH induction of Mackey functors, G-sets, modules
M+ left adjoint of inflation
M− right adjoint of inflation
M(H) M(H)/

∑
J<H I

H
J M(J)

NG(H) NG(H)/H
〈E〉 subfunctor generated by E
M∗ dual Mackey functor
µR(G) Mackey algebra
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ψ map between Grothendieck groups
Ψ matrix of ψ
ω(G) intermediate category of definition for Mackey functors
ΩR(G) category of definition for Mackey functors
B(G) Burnside ring
BG Burnside ring Mackey functor
BrP Brauer morphism
cg conjugation
ComackR(G) category of cohomological Mackey functors
dST decomposition map
eH Burnside ring idempotents
fJ Burnside ring idempotents
FPV fixed point Mackey functor
FQV fixed quotient Mackey functor
HG Hecke category
MackR(G) category of Mackey functors over R
MackR(G, J) category of Mackey functors for which fJM = M
IHK covariant Mackey functor operation
InfGQ inflation of Mackey functors
PH,V indecomposable projective Mackey functor
R commutative ground ring
RHK contravariant Mackey functor operation
SH,V simple Mackey functor
T (H,K) carrier of H into K
TMack Brauer tree of Mackey functors
TMod Brauer tree of modules
vx(M) vertex of M

1. Introduction

We study the structure of Mackey functors for a finite group G over a commuta-
tive ring R. We approach this in the spirit of representation theory of algebras and
groups and our study here centres mainly around the projective Mackey functors.
These are defined to be the projective objects in the category MackR(G) of Mackey
functors over R. In a certain sense they encapsulate all information about Mackey
functors since arbitrary Mackey functors may be constructed from them. In consid-
ering their properties we introduce the Mackey algebra µR(G). This is an algebra
of finite rank over R with the property that MackR(G) is equivalent to the category
of µR(G)-modules, so that in case R is a field, Mackey functors are the same thing
as representations of a certain finite dimensional algebra. This immediately gives
us the existence of projective covers, and allows us to talk about idempotents and
so forth.

In [20] we classified the simple Mackey functors, showing that they are parame-
terised by pairs (H,V ) where H is a subgroup of G taken up to conjugacy and V
is an irreducible R[NG(H)/H]-module. The simple Mackey functor corresponding
to this pair is denoted SH,V . We immediately obtain a parameterisation of the
indecomposable projective Mackey functors in case R is a field, since they biject
with the simples, and we write PH,V for the projective cover of SH,V . Ideally our
goal would be a description of the subfunctor lattices of the PH,V . Usually this
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degree of information is too much to ask for, in just the same way as it is only
possible in small cases for projective modules over a group algebra. The structure
of the Mackey functors is in fact more complicated than with group algebras and
the expectation of giving the subfunctor lattices becomes limited by the possibility
of describing them in any reasonable way. We sidestep this complication by de-
scribing more general properties. There is a decomposition theory similar to that
for group representations which shows that the Cartan matrix for Mackey functors
is symmetric and non-singular. There are certain fundamental Mackey functors
BK ↑GK which are induced from the Burnside functor of a subgroup K. These are
projective, although usually not indecomposable, but we can say exactly when PH,V
is a summand of one of these, and with what multiplicity. Arising from this there
is a connection with permutation representations and Hecke algebras for G, since
it emerges that BK ↑GK has an endomorphism ring which has as a homomorphic
image the Hecke algebra EndRG(R↑GK), and the kernel is nilpotent.

Mackey functors fall into blocks. As usual the word ‘block’ has multiple meaning,
and we take it to mean either a two-sided direct summand of the Mackey algebra,
or the representations of that summand. We describe the division of the simple
Mackey functors SH,V into blocks, using some general results giving information
about the existence of non-trivial extensions of simple Mackey functors. The result
is that the blocks of Mackey functors biject with the ordinary blocks of G together
with the blocks of certain sections of G. It may seem that Mackey functors, being
defined on all subgroups, are rather ill-equipped to deal with blocks, but our result
shows that this is not the case.

We consider the question of when the Mackey algebra has finite representation
type (that is there are only finitely many isomorphism classes of indecomposable
Mackey functors), or when the Mackey algebra is self-injective (that is projective
and injective objects coincide). The result is the same for both questions: when R
is a field of characteristic p, we have finite representation type or self-injectivity if
and only if G has a Sylow p-subgroup of order (at most) p. In this situation, we
show that the blocks of the Mackey algebra are either matrix algebras or Brauer
tree algebras, and that the Brauer trees are closely related to the ones occuring in
the representation theory of the group algebra.

Much of this work was done when we were visiting the ETH Zürich in summer
1989 and we wish to thank the Forschungsinstitut für Mathematik for its hospitality.
We also wish to thank Dave Benson for helpful suggestions concerning Brauer trees
and Markus Linckelmann for providing a positive answer to a question about higher
decomposition numbers.

2. Preliminaries

We recall the various equivalent definitions of a Mackey functor which we will
find useful. We work with Mackey functors over a commutative ring R. The most
elementary definition which is due to Green [11] is that a Mackey functor over R is
a mapping

M : {subgroups of G} → R-mod
with morphisms

IHK : M(K)→M(H)

RHK : M(H)→M(K)

cg : M(H)→M(gH)
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whenever K ≤ H and g ∈ G, such that

(0) IHH , R
H
H , ch : M(H)→M(H) are the identity morphisms for all subgroups H

and h ∈ H,
(1) RKJ R

H
K = RHJ

(2) IHK I
K
J = IHJ

}
for all subgroups J ≤ K ≤ H,

(3) cgch = cgh for all g, h ∈ G,

(4) R
gH
gKcg = cgR

H
K

(5) I
gH
gK cg = cgI

H
K

}
for all subgroups K ≤ H and g ∈ G,

(6) RHJ I
H
K =

∑
x∈[J\H/K] I

J
J∩xK cx R

K
Jx∩K for all subgroups J,K ≤ H.

The morphism RHK is called restriction, cg is called conjugation, while IHK is called
induction or sometimes also transfer. Axiom (6) is called the Mackey axiom and
explains the terminology.

The definition given by Dress [9] is equivalent to this, provided we restrict to
having the category of finite G-sets as the domain of definition. We denote by G-set
the category whose objects are the finite G-sets, and where the morphisms are the
G-equivariant maps. We may define a Mackey functor to be a bifunctor

M = (M∗,M
∗) : G-set→ R-mod

satisfying two conditions. Here a bifunctor means a pair consisting of a covariant
functor M∗ and a contravariant functor M∗ which agree on objects; thus M∗(X) =
M∗(X) for every G-set X. We write M(X) for this common value. The two
conditions M must satisfy are

(1) for every pullback diagram

X1
α−→ X2yβ yγ

X3
δ−→ X4

in G-set we have M∗(δ)M∗(γ) = M∗(β)M∗(α).
(2) The two mappings X → X ∪ Y ← Y into the disjoint union define an

isomorphism M(X ∪ Y ) ∼= M(X)⊕M(Y ) via M∗ (or equivalently M∗).
The connection between this and the previous definition is that we now write
M(G/H) to denote the R-module associated to the subgroup H, and if πKH :
G/H → G/K denotes the quotient map of coset spaces where H ≤ K we have
M∗(πKH ) = IKH and M∗(πKH ) = RKH . The first axiom on pull-backs corresponds to
the Mackey axiom in the first definition.

Important examples of Mackey functors are naturally defined on subgroups as
in the first definition (e.g. fixed point functors, Burnside functors, etc.). For this
reason we shall often use the point of view of the first definition. However many
conceptual developments (in particular induction and restriction) are best expressed
in the language of the second definition. Thus we shall also use freely this second
approach. For completeness we mention also a third version of the definition of a
Mackey functor which is due to Lindner [15] (see also [25]) and which is probably
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the most elegant one. Finally a module-theoretic approach will be developped in
the next section.

The third definition is based on the following construction. Let ω(G) be the
category whose objects are finite G-sets and where the morphisms from X to Y are
the equivalence classes of diagrams of G-sets X ← V → Y . We say that two such
diagrams are equivalent if there is a commutative diagram

V

↙ ↘

X
yσ Y

↖ ↗

V ′

where σ is an isomorphism of G-sets. To define the composition of morphisms we
consider a morphism from X to Y represented by a diagram X ← V → Y and
a morphism from Y to Z represented by a diagram Y ← W → Z. We form the
pullback

U

↙ ↘

V W

↙ ↘ ↙ ↘

X Y Z

which defines a diagram X ← U → Z, hence a morphism from X to Z. The set
of morphisms Homω(G)(X,Y ) has a structure of monoid using the disjoint union of
the intermediate G-sets as follows

(X α← V
β→ Y ) + (X α′← V ′ β

′

→ Y ) = (X α∪α′←− V ∪ V ′ β∪β
′

−→ Y ).

It is clear that the empty set gives rise to a zero element. Moreover it is not diffi-
cult to prove that the disjoint union of G-sets is both a product and a coproduct
in ω(G), so that ω(G) is nearly an additive category. In fact, to make it additive, it
suffices to turn the monoids Homω(G)(X,Y ) into abelian groups Z Homω(G)(X,Y )
by the usual universal construction. The situation is particularly easy here because
by Proposition 2.2 below, the monoids are free abelian, so that the correspond-
ing abelian groups are free on the same basis. Since we are working over a base
ring R, we extend scalars to R and define the category ΩR(G) whose objects are
finite G-sets and where the set of morphisms from X to Y is the (free) R-module
HomΩR(G)(X,Y ) = RHomω(G)(X,Y ). Thus ΩR(G) is an R-additive category.

Having defined ΩR(G), we can give the third definition of a Mackey functor over
R: a Mackey functor is simply an R-additive functor

M : ΩR(G)→ R-mod.
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To recover the second definition of a Mackey functor from this, we note that M∗
(respectively M∗) is obtained by applying our additive functor to a morphism of
the form X

id← X → Y (respectively Y ← X
id→ X). The requirement in the

second definition that a Mackey functor preserves coproducts is replaced here by
the condition that the functor is additive. The axiom on pull-backs in the second
definition (that is the Mackey axiom in the first one) is incorporated here in the
definition of the composition of morphisms in ω(G) . The direct connection with
the first definition of a Mackey functor is that again we write M(G/H) to denote

the R-module associated to the subgroup H, and if H ≤ K then M(G/K
πK

H←

G/H
1→G/H) = IKH and M(G/H 1←G/H πK

H→ G/K) = RKH .
We now turn to the proof that Homω(G)(X,Y ) is a free abelian monoid. Since

the disjoint union is a product and coproduct in ω(G), we can decompose both X
and Y and it suffices to prove the claim when X and Y are transitive G-sets. So we
consider morphisms from G/K to G/H. Such a morphism will be called basic if it
is represented by a diagram of the form G/K ← V → G/H, where V is a transitive
G-set (hence V ∼= G/L for some L).

(2.1) Lemma. Every basic morphism from G/K to G/H in ω(G) is represented
by a diagram

G/K
πK

gLcg←− G/L
πH

L−→G/H

where L ≤ H ∩Kg and g ∈ G. Such a diagram is equivalent to

G/K
πK

g1L1
cg1←− G/L1

πH
L1−→G/H

if and only if KgH = Kg1H and L1 = xL for some x ∈ H ∩ g−1
1 Kg.

Proof. The commutative squares

G/K
πK

xLcx←− G/L
πH

yLcy−→ G/H

‖
ycy ‖

G/K
πK

xLcxy−1
←− G/yL

πH
yL−→ G/H

show that the arbitrary diagram at the top is equivalent to one in standard form.
Two standard forms are equivalent if and only if we have commutative squares

G/K
πK

gLcg←− G/L
πH

L−→ G/H

‖
ycx ‖

G/K
πK

g1L1
cg1←− G/L1

πH
L1−→ G/H

which immediately entails πKgLcg = πKg1L1
cg1x and πHL = πHL1

cx which we re-write
as cgπK

g

L = cg1xπ
Kg1x

Lx
1

and πHL = cxπ
Hx

Lx
1

. We use the property that caπBA = cuπ
V
U if

and only if A = U , aB = uV and ua−1 ∈ aB. Thus our conditions are g1xg−1 = k
for some elements k ∈ K and x ∈ H with L1 = xL. Thus g1 = kgx−1 for some
k ∈ K and x ∈ H, i.e. KgH = Kg1H, and also x = g−1

1 kg is any element of
H ∩ g−1

1 Kg, which completes the proof. �
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(2.2) Proposition. The set of morphisms Homω(G)(G/K,G/H) is a free abelian
monoid, with basis represented by the diagrams

G/K
πK

gLcg←− G/L
πH

L−→G/H

where g ∈ [K\G/H] and L is a subgroup of H ∩Kg taken up to H ∩Kg-conjugacy.

Proof. Since any finite G-set decomposes uniquely as a disjoint union of transitive
G-sets (each being isomorphic to some G/L), any morphism from G/K to G/H is
clearly a sum in a unique way of basic morphisms. So the monoid is free. Now for
the description of the basis it suffices to settle the question of the equivalence of
diagrams representing the same basic morphism. This is clear by the lemma. �

To establish our notation we summarise some of the basic constructions on
Mackey functors which are used, for example, in [20]. The category of Mackey
functors (over R) for G is denoted MackR(G). We denote by

↑GH : MackR(H)→ MackR(G)

↓GH : MackR(G)→ MackR(H)

the induction and restriction of Mackey functors. Regarding Mackey functors as
defined on G-sets, these operations are defined as M ↑GH (X) = M(X ↓GH) and
N ↓GH (Y ) = N(Y ↑GH), thus making use of the corresponding notions for G-sets.
Induction of Mackey functors is both the left and the right adjoint of restriction,
a fact which is a little surprising since the same is not true for G-sets. Conjugate
Mackey functors are defined in a similar fashion: if M is a Mackey functor for a
subgroup H of G and g ∈ G, then we have a Mackey functor gM for gH defined
by gM(X) = M(g

−1
X).

Whenever we have a normal subgroup N / G and a Mackey functor L for Q =
G/N we can form the inflation InfGQ L which is a Mackey functor defined by

InfGQ L(K) =
{

0 if K 6⊇ N
L(K/N) if K ⊇ N

with zero restriction and induction morphisms RKH , I
K
H unlessN ≤ H ≤ K, in which

case they are the mappings RK/NH/N , I
K/N
H/N for L, and similarly with conjugations.

Inflation has a right adjoint and a left adjoint which we describe as follows. Starting
with a Mackey functor M for G we obtain Mackey functors M+ and M− on Q by

M+(K/N) = M(K)
/ ∑

J≤K
J 6≥N

IKJ M(J)

M−(K/N) =
⋂

J≤K
J 6≥N

KerRKJ

with induction, restriction and conjugation morphisms inherited from M . Then +

is the left adjoint of InfGQ and − is the right adjoint [20, 5.1].
If M is a Mackey functor for G we will write

M(H) = M(H)/
∑
J<H

IHJ M(J).
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Note that M(H) is an RNG(H) module, where we write NG(H) = NG(H)/H. In
particular if N / G, then M+(N) = M(N).

Starting with a module V forG we have the fixed point and fixed quotient functors
FPV and FQV , for which FPV (H) = V H and FQV (H) = VH . These satisfy an
adjointness property. There is the functor MackR(G) → RG-mod which sends a
Mackey functor M to the RG-module M(1). Now FQ is left adjoint to this and
FP is right adjoint [20, 6.1].

A useful property of fixed point functors is the following.

(2.3) Proposition. The map EndMackR(G)(FPV ) → EndRG(V ) given by evalua-
tion at 1 is a ring isomorphism. Thus direct sum decompositions of FPV correspond
to direct sum decompositions of V . Moreover if FPV = M1⊕M2 then Mi = FPWi

where V = W1 ⊕W2 .

Proof. The adjunction isomorphism gives

HomMackR(G)(FPV , FPV ) ∼= HomRG(FPV (1), V ) = EndRG(V ).

If FPV = M1 ⊕M2 then V = W1 ⊕W2 as an RG-module, where Wi = Mi(1).
Since all restriction maps in a fixed point functor are inclusions, we have Mi(H) ⊆
V H ∩Wi = WH

i and it follows that Mi is a subfunctor of FPWi
. But we have

FPW1 ⊕ FPW2 = FPV = M1 ⊕M2 and this forces the equality FPWi
= Mi . �

Using the above tools we construct the simple Mackey functors SH,V , which are
parametrized by pairs consisting of a subgroupH determined up to conjugacy, and a
simpleRNG(H)-module V taken up to isomorphism. First we describe the situation
when H = 1 and V is a simple RG-module. It was shown in [20, 7.1] that FPV
has a unique minimal subfunctor, which is necessarily simple, and this constructs
S1,V . This subfunctor S1,V is described explicitly by S1,V (K) = IK1 (V ) ⊆ V K ,
which may also be written as S1,V (K) = (

∑
g∈K g) · V . Note in particular that

S1,V (1) = FPV (1) = V . We occasionally write SGH,V instead of SH,V to emphasize
that this is a Mackey functor for G. Now if H is any subgroup of G and V is a
simple RNG(H)-module we define SH,V = (InfN(H)

N(H)
S
N(H)
1,V ) ↑GN(H), and this is in

fact a simple Mackey functor. The SH,V so constructed constitute a complete set
of representatives for the isomorphism classes of simple Mackey functors [20, 8.3].
Another important property of the simple Mackey functors SH,V which we will use
repeatedly is that SH,V (K) = 0 unless K ≥G H, and SH,V (H) = V . This is an
easy consequence of the description of SH,V given above.

Occasionally we will refer to the Mackey functor generated by a set of elements.
This will mean that we have a Mackey functor M and for each subgroup H ≤ G
there is specified a set of elements E(H) ⊆M(H). We put

〈E〉 =
⋂
{N

∣∣ N is a subfunctor of M , E(H) ⊆ N(H) for all subgroups H},

and this is the subfunctor generated by E. If we do not explicitly specify E(H) for
some subgroup H then we take E(H) = 0. We now quote Proposition 2.1 of [20],
which gives an explicit description of this construction in an important special case.

(2.4) Proposition. Let M be a Mackey functor for G. Let X be a family of
subgroups of G, closed under conjugation and taking subgroups, and for each X ∈ X ,
let E(X) be an R-submodule of M(X) such that

IXY (E(Y )) ⊆ E(X) , RXY (E(X)) ⊆ E(Y ) , cg(E(X)) = E(gX) ,
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for all Y ≤ X ∈ X and g ∈ G (so that E is a “Mackey functor defined on X”).
Then for each subgroup H of G

〈E〉(H) =
∑
X∈X
X≤H

IHX (E(X)) .

Moreover if H ∈ X then 〈E〉(H) = E(H).

3. The Mackey algebra

The category of Mackey functors for G over R is equivalent to the category of
modules for an R-algebra µR(G) of finite rank which we call the Mackey algebra.
We define µR(G) in this section and develop its elementary properties. It can be
convenient to think of Mackey functors in these terms because one may be more
familiar with modules than with functors. For example one may be concerned about
the existence of projective covers, or of blocks of Mackey functors. The quickest way
to deal with these questions is to put them into the standard setting of modules.

We define the Mackey algebra in two ways, the first being intuitively appealing
and the second useful in computation. For the first definition we consider the quiver
whose vertices are the subgroups of G and where we have edges

H • IK
H−−−→ •K H • RK

H←−−− •K

for each pair of subgroups H ≤ K, and also an edge

H • cg,H−−−→ • gH

for each pair (g,H) with g ∈ G, H ≤ G. Because the notation gets very cumbersome
otherwise, we write cg instead of cg,H when there is no confusion. We define the
Mackey algebra µR(G) to be Λ/J where Λ is the path algebra over R of this quiver
and J is the 2-sided ideal of Λ generated by the relations (1) – (6) in the definition
of a Mackey functor, together with

(0′) For all H ≤ G and h ∈ H, IHH = RHH = ch,H is the path of length zero at H.

It is apparent that a Mackey functor in the sense of the first definition is precisely
a representation over R of the above quiver with relations, since it consists of the
specification of an R-module for each vertex of the quiver, with morphisms between
these modules for each arrow of the quiver. These morphisms must satisfy exactly
the relations we put on the quiver. We thus see that Mackey functors over R may be
identified as µR(G)-modules, the correspondence being that from a Mackey functor
M we may construct the µR(G)-module

⊕
H≤GM(H), and conversely given a

µR(G)-module A we recover the Mackey functor M by setting M(H) = IHH ·A.
It is clear that µR(G) is finitely generated as an R-module. We shall see below

that it is actually a free R-module, a fact which is not obvious from the definition.
In case R is a field, µR(G) is a finite dimensional R-algebra and so we automatically
have the existence of projective covers, the Krull–Schmidt theorem and so forth for
these Mackey functors.
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It is convenient to give another definition of the Mackey algebra using the cat-
egory ΩR(G) which was introduced in the third definition of Mackey functors. We
define an algebra

µ′R(G) =
⊕

H,K≤G

HomΩR(G)(G/H,G/K)

which we will show in 3.3 is isomorphic to µR(G). The multiplication in µ′R(G)
is defined on components in the direct sum by composition of morphisms in the
category ΩR(G), or zero if two morphisms cannot be composed. After 3.3 we will
identify µ′R(G) with µR(G), but for the moment we retain the separate notations.

(3.1) Proposition. The category of Mackey functors (i.e. additive functors ΩR(G)→
R-mod) is isomorphic to µ′R(G)-mod.

Proof. The correspondence is the same as the one between representations of a
quiver and modules for its path algebra. Given an additive functor M we may
construct the µ′R(G)-module

⊕
H≤GM(G/H); conversely given a µ′R(G)-module V

we recover the additive functor M by setting M(G/H) = idG/H · V and extending
the definition of M to an arbitrary G-set X ∼=

⋃
iG/Hi by means of a direct sum

formula M(X) =
⊕

iM(G/H). �

It is immediate from Proposition 2.2 that µ′R(G) is free as an R-module and is
of finite rank, with an explicit basis given by 2.2:

(3.2) Proposition. The algebra µ′R(G) is free as an R-module with basis repre-

sented by the elements G/K
πK

gLcg←− G/L
πH

L−→G/H where H,K are arbitrary subgroups
of G, g represents a double coset in K\G/H and L ≤ H ∩ Kg is taken up to
H ∩Kg-conjugacy.

This last result provides a mechanical, if tedious, way to compute the rank
of µ′R(G).

(3.3) Proposition. The two algebras µR(G) and µ′R(G) are isomorphic.

Proof. Recall that µR(G) = Λ/J where Λ is the path algebra of a quiver and J is
an ideal of relations. We define an algebra homomorphism g : Λ/J → µ′R(G) by
defining a homomorphism ĝ : Λ → µ′R(G) which is zero on J . The typical basis
element of Λ can be written as a product of elements I, c and R of the form

I
Hn+1
gnLn

cgn
RHn

Ln
· · · IH2

g1L1
cg1R

H1
L1

provided we allow the possibility to put symbols RL1
L1

, IL1
L1

etc. which represent the
identity path at L1. Apart from such extra identity paths, the definition of the
path algebra says that this expression is unique. We define ĝ : Λ→ µ′R(G) on these
basis elements by putting

ĝ(IHn+1
gnLn

cgn
RHn

Ln
· · · IH2

g1L1
cg1R

H1
L1

) = (G/Hn+1

π
Hn+1
gnLn

cgn←− G/Ln
πHn

Ln−→G/Hn)

· · · (G/H2

π
H2
g1L1

cg1
←− G/L1

π
H1
L1−→G/H1).
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The set of paths in the quiver (together with 0) is closed under multiplication
and the above assignment preserves this structure, so it extends by linearity to an
algebra homomorphism ĝ defined on all of Λ. This vanishes on J since the category
ΩR(G) is constructed precisely so that the Mackey functor relations are satisfied
there.

We construct now an R-linear homomorphism f : µ′R(G) → Λ/J by defining it
on the basis of µ′R(G). We define

f(G/K
πK

gLcg←− G/L
πH

L−→G/H) = IKgLcgR
H
L + J.

This definition is independent of the choice of representative of the basis element
of this form, since if

G/K
πK

g1L1
cg1←− G/L1

πH
L1−→G/H

is in the same equivalence class, then, using the notation in Lemma 2.1, its image
under f is

IKg1L1
cg1R

H
L1

+ J = IKg1xLcg1R
H
xL + J

= ck−1IKkgLcg1R
H
xLcx + J

= IKgLck−1cg1cxR
H
L + J

= IKgLcgR
H
L + J

where x = g−1
1 kg and L1 = xL, since these transformations are all obtained by

applying the Mackey functor relations. It is immediate that f and g are mutually
inverse. �

We shall from now on identify the two algebras µR(G) and µ′R(G). Although
it was useful to introduce µ′R(G) to make it clear that the Mackey algebra is free
as an R-module, it is usually more convenient to write elements of µR(G) as sums
of products of symbols IHK , RHK , cg,H using the quiver definition of the algebra,
rather than as sums of diagrams as in the second definition. With this notation
the statement of 3.2 becomes that µR(G) is a free R-module with a basis over R
consisting of the elements

{IKgLcgRHL
∣∣ H,K ≤ G, g ∈ [K\G/H], L ≤ H ∩Kg up to H ∩Kg-conjugacy}.

The fact that µR(G) is a free R-module is fundamental in our discussion of decom-
position theory in Section 7.

(3.4) Proposition. For each subgroup H ≤ G, the elements cg,H with g ranging
over a set of representatives for NG(H) span a subalgebra of µR(G) isomorphic to
the group algebra RNG(H).

Proof. These elements certainly multiply together in the manner of the elements
of NG(H). In particular their span is a subalgebra of µR(G) and the only question
is whether these elements are linearly independent. This is guaranteed by the
description of the basis of µR(G), of which they form part. �

In view of this result we immediately obtain certain idempotents in µR(G),
namely the group ring idempotents in RNG(H) for each subgroup H of G. We
will see in later sections that primitive idempotents in RNG(H) do not remain
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primitive in µR(G), and in fact (by an extension of Theorem 8.6) we can give
the exact decomposition into primitive idempotents of µR(G). For the moment
we can at least say when R is a field that since conjugacy classes of idempotents
biject with simple modules there is for each simple µR(G)-module SH,V a primitive
idempotent eH,V determined up to conjugacy by the fact that eH,V · SH,V 6= 0.
Then PH,V = µR(G) · eH,V is the projective cover of SH,V .

We have various reasons for introducing the Mackey algebra. One of them is
that it allows us to borrow standard constructions and results from module theory
without formality, such as the existence of projective covers, tensor products and the
fact that the Krull-Schmidt theorem holds. Another is that it provides us with our
first example of a projective Mackey functor, namely the regular representation. In
fact this might be termed a free Mackey functor, and it satisfies a universal property
associated with this usage.

We now interpret a known result in terms of the Mackey algebra.

(3.5) Theorem. Let k be a field in which |G| is invertible. Then µk(G) is a
semisimple k-algebra.

Proof. In this situation every Mackey functor is a direct sum of simple Mackey
functors, by one of the main results of [20]. �

A new proof of this theorem will be given in Section 14.

(3.6) Theorem. Let k be a field. Then k is a splitting field for µk(G) if and only
if k is a splitting field for the representations of NG(H) for every subgroup H ≤ G.

Proof. We apply Theorem 3.1 of [20] which characterizes simple Mackey functors
S by the property that if H is a minimum subgroup of S (that is, S(H) 6= 0 and
S(K) = 0 if K < H) then

(1)
⋂

g∈G
gH≤K

KerRKgH = 0 for all subgroups K ≤ G,

(2)
∑

g∈G
gH≤K

Im IKgH = S(K) for all subgroups K ≤ G,

(3) S(H) is a simple kNG(H)-module.
Conditions (1) and (2) remain intact on extension of scalars, and if k is a splitting
field for NG(H) then so does (3), so S remains simple. Thus if k is a splitting field
for every group NG(H), it is a splitting field for µk(G).

On the other hand, if k is not a splitting field for some NG(H) then there is
a simple kNG(H)-module V and a field extension k′ ⊇ k so that k′ ⊗k V is not
simple. If SH,V is the corresponding simple Mackey functor then k′ ⊗k SH,V fails
condition (3) of the characterization, so is not simple, and so k is not a splitting
field for µk(G). �

4. Duality for Mackey functors

For simplicity in this section we will work throughout with a field k as our base
ring. We define the dual of a Mackey functor M to be the Mackey functor M∗,
where M∗(H) is the k-module dual DM(H) = Homk(M(H), k) for each subgroup
H, and with

IKH = D(RKH )

RKH = D(IKH )

cg = D(cg−1)
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where on the right hand side we have the mappings induced on the dual spaces by
the restriction, induction and conjugation for M . Thus as far as the conjugations
are concerned, M∗(H) is the contragredient representation of the group NG(H).

It is convenient to interpret duality in terms of the Mackey algebra. Mackey
functors may naturally be regarded as left µk(G)-modules. One readily sees that
right µk(G)-modules may be regarded in the same way as what one might call
‘contravariant Mackey functors’. In terms of the third Mackey functor definition
we mean by this a contravariant additive functor Ωk(G) → k-mod. There are two
ways in which starting with a left µk(G)-module we can obtain a right µk(G)-module
and vice versa. The first is by taking k-module duals. If M is a left µk(G)-module
then

DM = Homk(M,k)

acquires the structure of a right µk(G)-module in the usual way via

(fx)(m) = f(xm) f ∈ DM, x ∈ µk(G), m ∈M.

The second comes from the observation that µk(G) has an antiautomorphism spec-
ified by

IKgLcgR
H
L 7→ IHL cg−1RKgL.

Thus R’s and I’s are interchanged, cg is replaced by cg−1 and the order of multi-
plication is reversed. The fact that this gives an antiautomorphism follows either
from the fact that Ωk(G) has a similar antiautomorphism, or else by verifying that
the ideal of relations in the path algebra is preserved. In particular, the Mackey
decomposition formula is left unchanged. Let us denote this antiautomorphism by
x 7→ x, x ∈ µk(G). If M is a left µk(G)-module we denote by Mop the right
µk(G)-module with the same elements as M and

mx = xm x ∈ µk(G), m ∈M.

In a similar way if M is a right µk(G)-module we obtain left modules DM and Mop.
It is apparent that op gives an isomorphism of categories between left and right
µk(G)-modules, and D provides a contravariant duality between these categories.
Thus, for example, op preserves the classes of projectives and injectives and D
interchanges them.

In these terms we can now define define M∗ = DMop, and this coincides with
the previous definition. It is apparent that it does not matter in which order
we apply D and op, so we do not need parentheses. Now ∗ is a duality on Mackey
functors whose square is the identity. It preserves exact sequences and interchanges
projectives and injectives. This proves parts (i) and (ii) of the next proposition.

(4.1) Proposition. Let k be a field. Then

(i) the Mackey functor P is projective if and only if P ∗ is injective,
(ii) the composition factors of a dual Mackey functor M∗ are the duals of the

composition factors of M ,
(iii) for every kG-module V , (FPV )∗ ∼= FQV ∗ , and
(iv) for every subgroup H and kNG(H)-module V , S∗H,V ∼= SH,V ∗ .
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Proof. (iii) The functor V 7→ (FPV ∗)∗ is left adjoint to evaluation at the identity,
as is seen from the following sequence of natural bijections:

Hom((FPV ∗)∗,M)↔ Hom(M∗, FPV ∗)

↔ Hom(M∗(1), V ∗)

↔ Hom(M(1)∗, V ∗)

↔ Hom(V,M(1)).

Since we already know that FQV is the left adjoint, we obtain the desired isomor-
phism of functors.

(iv) For H = 1 this follows from the construction of S1,V as the unique simple
Mackey functor appearing in an exact sequence 0→ S1,V → FPV . Applying ∗ gives
an exact sequence FQV ∗ → S∗1,V → 0, but the unique simple quotient of FQV ∗
is S1,V ∗ , so we have the desired isomorphism. For an arbitrary H, remember that

SH,V = (InfN(H)

N(H)
S
N(H)
1,V )↑GN(H). It is easy to check that taking the dual commutes

with both inflation and induction. This reduces to the case of a simple functor S1,V

which we have just seen. �

(4.2) Lemma. Let eH,V ∈ µk(G) be a primitive idempotent for which
eH,V SH,V 6= 0. Then eH,V is a primitive idempotent for which eH,V SH,V ∗ 6= 0.

Proof. Evidently eH,V is a primitive idempotent if and only if eH,V is a primitive
idempotent. On the assumption that eH,V SH,V 6= 0 we have

eH,V SH,V ∗ = eH,V S
∗
H,V

= eH,VD(SH,V )op

= (DSH,V )eH,V
= D(eH,V SH,V )

6= 0.

In the last equality, one has to interpret a linear form on SH,V lying in
(DSH,V )eH,V as a linear form on SH,V vanishing on (1− eH,V )SH,V . �

We step ahead of ourselves for a moment to deduce a corollary which would
also find a fitting place when we come to consider the Cartan matrix in Section 7.
We use the notation PH,V to denote the projective cover of SH,V . Since we are
working over a field k and Mackey functors are modules for the finite dimensional
k-algebra µk(G), these projective covers always exist. In fact PH,V corresponds to
the µk(G)-module µk(G) · eH,V .

(4.3) Corollary. The multiplicity of SH,V as a composition factor of PK,W equals
the multiplicity of SK,W∗ as a composition factor of PH,V ∗ .

Proof. The antiautomorphism induces an isomorphism of vector spaces

eH,V µ(G)eK,W ∼= eK,Wµ(G)eH,V

which we can write as eK,W∗ µ(G) eH,V ∗ . These vector spaces thus have the same
dimension, which is what we need. �
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5. Relations with subgroups and quotients

There are certain properties of induction and restriction of Mackey functors and
also of the fixed point and fixed quotient functors which follow immediately from
their adjointness properties. Thus a functor which has both a left and a right
adjoint is exact [13, II.7.7], the left adjoint sends projectives to projectives and the
right adjoint sends injectives to injectives [13, II.10.2]. We know that if H ≤ G
then the induction functor ↑GH is both the left and right adjoint of the restriction
functor ↓GH . Also the functor (1) : MackR(G) → RG-mod which sends a Mackey
functor M to the evaluation M(1) has left adjoint FQ and right adjoint FP . We
summarise the consequences of this situation in the next result, which can also be
proved in a direct fashion.

(5.1) Proposition. Let H ≤ G. Then
(i) induction ↑GH : MackR(H) → MackR(G) and restriction ↓GH are both exact

functors,
(ii) both functors ↑GH and ↓GH send projectives to projectives and injectives to

injectives.
(iii) if V is a projective RG-module then FQV is a projective Mackey functor;

if V is an injective RG-module then FPV is an injective Mackey functor.

Induction and restriction of Mackey functors are related to induction and re-
striction of RG-modules in the following way. We use the notation ↑GH and ↓GH for
induction and restriction of modules, as well as of Mackey functors.

(5.2) Proposition. Let H ≤ G. Let M be a Mackey functor for G and N a
Mackey functor for H. Let V be an RG-module and W an RH-module. Then

(i) N ↑GH (1) ∼= N(1)↑GH and M ↓GH (1) ∼= M(1)↓GH .
(ii) FPW ↑GH∼= FPW↑G

H
and FPV ↓GH∼= FPV↓G

H
.

(iii) FQW ↑GH∼= FQW↑G
H

and FQV ↓GH∼= FQV↓G
H
.

Proof. (i) Using G-set notation we have

N ↑GH (G/1) = N((G/1)↓GH) = N(
⋃

g∈[G/H]

H/1) =
⊕

g∈[G/H]

N(H/1) .

One sees that the group G permutes the summands transitively and that the action
of H on the first summand comes from the Mackey functor structure of N . Thus
we obtain the induced module N(1)↑GH . The second claim is trivial.

(ii) We have a series of adjunctions

HomMackR(G)(M,FPW ↑GH) ∼= HomMackR(H)(M ↓GH , FPW )
∼= HomRH(M ↓GH (1),W )

= HomRH(M(1)↓GH ,W )
∼= HomRG(M(1),W ↑GH)
∼= HomMackR(G)(M,FPW↑G

H
)

and the first result follows. The second is proved in a similar fashion.
(iii) The proof is analogous to the proof of (ii), using this time the fact that FQ

is left adjoint of the evaluation at 1. �

Another useful result is that the Mackey decomposition formula holds for induc-
tion and restriction of Mackey functors.
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(5.3) Proposition. Let H,K ≤ G and let M be a Mackey functor for H. Then

M ↑GH↓GK∼=
⊕

g∈[K\G/H]

(gM)↓
gH
K∩gH↑KK∩gH .

Proof. This is an easy consequence of the corresponding result for G-sets. For a
K-set X, we have

M ↑GH↓GK (X) = M(X ↑GK↓GH) ∼= M
( ⋃
g∈[K\G/H]

(g
−1
X)↓

g−1
K

g−1K∩H↑
H
g−1K∩H

)
=

⊕
g∈[K\G/H]

M((g
−1
X)↓

g−1
K

g−1K∩H↑
H
g−1K∩H)

=
⊕

g∈[K\G/H]

g(M ↓Hg−1K∩H↑
g−1

K
g−1K∩H)(X)

=
⊕

g∈[K\G/H]

(gM)↓
gH
K∩gH↑KK∩gH (X) .

Details are left to the reader. �

It is interesting to express the above operations on Mackey functors in terms of
the Mackey algebra. In the situation where we have a morphism of rings

f : A→ B,

which we do not require to map 1A to 1B , we use the notation

f ! : B-mod→ A-mod

for the functor given by restricting the action along f . We do here require that
modules be unital modules and so if M is a B-module then f !(M) = f(1A) ·M by
definition, with the A-action given via f . We use f! : A-mod → B-mod to denote
the functor f!(M) = B ⊗AM , which is left adjoint to f !.

If H is a subgroup of G, induction of H-sets gives a functor

↑GH : ΩR(H)→ ΩR(G).

We therefore have an R-algebra homomorphism

α : µR(H)→ µR(G),

which in terms of symbols is α(IJK) = IJK , α(RJK) = RJK and α(ch,K) = ch,K .
This morphism is generally not injective as can be seen from the description of the
basis elements of µR(G), since basis elements in µR(H) may become identified by
conjugation within G.

Similarly, if N is a normal subgroup of G with quotient Q = G/N then there
is a functor ΩR(Q) → ΩR(G) by which we regard a Q-set as a G-set using the
epimorphism G→ Q. Thus there is an R-algebra homomorphism

β : µR(Q)→ µR(G)

given by β(IJ/NK/N ) = IJK , β(RJ/NK/N ) = RJK and β(chN,K/N ) = ch,K . Since K should
contain N here, the latter conjugation is well-defined independently of the choice
of h within the coset hN .

The third ring homomorphism we will consider is

γ : RG→ µR(G)

given by γ(g) = cg,1.
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(5.4) Lemma. When we identify Mackey functors with µR(G)-modules we have

(i) α!(M) = M ↓GH and α!(L) = L↑GH ,
(ii) β!(M) is the Mackey functor for which β!(M)(H/N) = M(H) with induc-

tion, restriction and conjugation morphisms inherited from those for M ,
and

(iii) γ!(M) = M(1) and γ!(V ) = FQV .

Proof. We readily identify the restrictions α!, β! and γ! as being the stated opera-
tions. Now it follows that α! and γ! are as stated because these are known to be
the left adjoints of α! and γ!. �

From the known adjointness properties of induction, restriction and fixed point
functors, we deduce the following corollary.

(5.5) Corollary. (i) α! is both right and left adjoint to α!.
(ii) γ! has a right adjoint, namely V 7→ FPV .

The left adjoint β! of β! is less easy to describe in terms of values on subgroups.
Note simply that β! is exact and so β! sends projectives to projectives. Finally we
also have:

(5.6) Proposition. Assume that R = k is a field and consider the duality of
Section 4. Then β! has a right adjoint, namely L 7→ (β!(L∗))∗.

Proof. There is a chain of natural bijections

Hom(M, (β!(L∗))∗)↔ Hom(β!(L∗),M∗)

↔ Hom(L∗, β!(M∗))

↔ Hom(L∗, β!(M)∗)

↔ Hom(β!(M), L).

The result follows. �

We emphasize that β! and its adjoints are not equal to the other functors relating
MackR(G) and MackR(Q), namely InfGQ and its adjoints + and −.

6. Determining the composition factors of a Mackey functor

In this section we consider Mackey functors over a field k, so that the Grothen-
dieck group G0(Mackk(G)) has as a basis the isomorphism types of simple Mackey
functors over k. We may define a map

ψ : G0(Mackk(G))→
⊕
H≤G

up to conjugacy

G0(kNG(H))

by M 7→ (M(H))H . Here we use the symbol M to denote also the element
of G0(Mackk(G)) determined by M , and likewise M(H) denotes the element of
G0(kNG(H)) which this kNG(H)-module determines.
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(6.1) Proposition. ψ is an isomorphism.

Proof. On the left we have the SH,V as a basis, and on the right we have a ba-
sis σH,V , where σH,V = V ∈ G0(kNG(H)) is allowed to range over the isomor-
phism classes of irreducible kNG(H)-modules. Order both bases in the same
way so that the subgroups H appear in non-decreasing order. Then the ma-
trix of ψ is triangular with 1’s down the diagonal. Indeed the construction of
SH,V = (InfNG(H)

NG(H)
S1,V ) ↑GNG(H) implies that SH,V (K) = 0 if K 6≥G H, and

SH,V (H) = V . �

The above elementary result gives rise to an algorithm for finding the composition
factors of some given Mackey functor M , which really amounts to computing the
inverse of ψ. We suppose we know the modulesM(H), and hence the value of ψ(M).
Choose a minimal subgroup H for which the component ψ(M)H is non-zero, say

ψ(M)H =
∑

irreducibleV

λV V.

Then
∑

irreducibleV λV SH,V occurs in the list of composition factors of M , and
ψ(M −

∑
irreducibleV λV SH,V ) has zero component at H. We repeat this process

with M replaced by M −
∑

irreducibleV λV SH,V , gradually working upwards in the
poset of subgroups of G. This procedure will be demonstrated in Section 15, where
we work with some particular examples.

If we do not need a complete list of composition factors of M we may identify
certain composition factors with less work. We recall from Section 2 the notation
M(H) = M(H)/

∑
K<H I

H
KM(K).

(6.2) Proposition. Let H ≤ G and let V be an irreducible NG(H)-module. Then
SH,V occurs as a composition factor of M at least as many times as the multiplicity
of V as a composition factor of M(H).

Proof. Let M1 be the subfunctor of M generated by the modules M(K) for all
K < H. Then for J ≤ H, we have M1(J) =

∑
K<H,K≤J I

J
K(M(K)) by 2.4 so that

the functor M2 = M/M1 has M2(H) = M(H) and M2(K) = 0 if K <G H. The
only composition factors SK,W which are non-zero on H have K ≤G H, but these
cannot occur as composition factors of M2 unless K =G H, since they are non-zero
at K. In order to account for all the module composition factors of M2(H) we must
have a composition factor SH,V every time V is a composition factor of M2(H).
These composition factors of M2 are also composition factors of M . �

Closely related to the last result is the following proposition, which will frequently
be used.

(6.3) Proposition. V is a composition factor of M(1) with multiplicity m if and
only if S1,V is a composition factor of M with multiplicity m.

Proof. Since SH,W (1) = 0 if H 6= 1, only the composition factors indexed by the
trivial subgroup can contribute to the evaluation at 1. But since S1,V (1) = V ,
such a simple Mackey functor must occur in M exactly as many times as V occurs
in M(1). �

In this work we are mainly interested in developing techniques which apply
when there may be non-split extensions of Mackey functors, and the methods just
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presented work in this general situation. To conclude this section we wish to point
out that if we happen to be dealing with Mackey functors which are completely
reducible (i.e. direct sums of simple Mackey functors) then the bar construction
gives complete information. The basis for this is the next lemma.

(6.4) Lemma. Let SH,V be a simple Mackey functor. Then

SH,V (K) ∼=
{
V if H and K are conjugate
0 otherwise.

Proof. SH,V (K) = 0 unless K ≥G H, and if K >G H, then since SH,V is generated
by SH,V (H) (by Proposition 2.3 of [20]), we have

SH,V (K) =
∑
J<K

IKJ SH,V (J),

using 2.4. It follows that SH,V (K) = 0. Finally SH,V (H) = SH,V (H) = V since
SH,V vanishes on proper subgroups of H. �

The first part in the next corollary works for any completely reducible Mackey
functor M .

(6.5) Corollary. Suppose M is a Mackey functor over a field k in which |G| is
invertible. Then

(i) M ∼=
⊕

(H,V )

nH,V SH,V where nH,V denotes the multiplicity of V as a compo-

sition factor of M(H) when regarded as a kNG(H)-module.

(ii) M ∼=
⊕

H up to conjugacy

(InfN(H)

N(H)
FPM(H))↑GN(H) .

Proof. (i) Certainly there is some isomorphism of the type claimed, since M is
completely reducible by 3.5, and it remains to determine the multiplicities nH,V .
Taking the bar of both sides of the isomorphism at H, all terms on the right
disappear except for the simples associated to H, and for each of those we obtain a
contribution V . Thus M(H) ∼=

⊕
V nH,V V for each subgroup H, and hence nH,V

is the multiplicity as claimed.
(ii) We group together all the terms of the direct sum in (i) which correspond to

a fixed subgroup H. When |G| is invertible each simple has the form

SH,V = (InfN(H)

N(H)
FPV )↑GN(H)

by [20], and when we take the direct sum of these over the simple summands of
M(H) we obtain the desired result. �

There is no mention of any map which will achieve the isomorphism in the last
result, and we now go some way to set this right, recovering a result of the first
author [19]. For any Mackey functor M and subgroup H of G the Brauer morphism
βH is defined to be the composite

βH : M(G)
RG

H−→M(H)→M(H)

where the last morphism is the natural quotient map.
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(6.6) Theorem (Thévenaz [19]). Let M be a Mackey functor over a field in
which |G| is invertible. Then

⊕βH : M(G)→
⊕
H≤G

up to conjugacy

M(H)NG(H)

is an isomorphism.

Proof. Notice first that since all conjugations act as the identity on M(G), the
image of each βH is indeed contained in the fixed points under NG(H).

We replace M by its decomposition M ∼=
⊕
nH,V SH,V . Since each βH is com-

patible with this direct sum decomposition, it suffices to prove the result when
M = SH,V . Now SH,V is non-zero only on the subgroup H, so it suffices to show
that βH : SH,V (G) → SH,V (H)NG(H) is an isomorphism. We defined βH as the
composite

βH : SH,V (G)
RG

H−→SH,V (H)→ SH,V (H)

but in this case the final quotient map is an isomorphism, so we are reduced to
showing that

RGH : SH,V (G)→ SH,V (H)NG(H)

is an isomorphism. In G-set notation this map is

SGH,V (G/G)→ SGH,V (G/H)

and since SH,V is induced from NG(H) this is the same as

S
NG(H)
H,V (G/G ↓GNG(H))→ S

NG(H)
H,V (G/H ↓GNG(H)).

Using the decomposition of the final term above, this is⊕
x∈[NG(H)\G/H]

R
NG(H)
NG(H)∩xH : SNG(H)

H,V (NG(H))

−→
⊕

x∈[NG(H)\G/H]

S
NG(H)
H,V (NG(H) ∩ xH).

There is only one non-zero term on the right, namely S
NG(H)
H,V (H). We identify

S
NG(H)
H,V as InfNG(H)

NG(H)
FPV , and now the restriction map becomes

R
NG(H)
H : InfNG(H)

NG(H)
FPV (NG(H))→ InfNG(H)

NG(H)
FPV (H),

which is the inclusion of fixed points. This establishes the desired isomorphism for
the simple functor SH,V , thus completing the proof. �

As an example of how the theory we have developed may be applied, we give the
Mackey functor decomposition of the character ring of G, thus extending the result
due to Puig which is presented in [19]. We let R(G) denote the ring of complex
characters of G, taken with rational coefficients. For each cyclic subgroup H ≤ G
we let ζ|H| denote a primitive complex |H| root of unity. By identifying the cyclic
group 〈ζ|H|〉 with the group of characters of H, we obtain an action of NG(H) on
Q(ζ|H|), so that Q(ζ|H|) becomes a QNG(H)-module.
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(6.7) Example. (i) As a Mackey functor we have the decompositions

R ∼=
⊕
(H,V )

H cyclic

nH,V SH,V ∼=
⊕

cyclic H≤G
up to conjugacy

(InfN(H)

N(H)
FPQ(ζ|H|))↑

G
N(H)

where nH,V is the multiplicity of V in Q(ζ|H|) as a QNG(H)-module.
(ii) (Puig) The Brauer morphisms give an isomorphism

⊕βH : R(G)→
⊕

cyclic H≤G
up to conjugacy

Q(ζ|H|)NG(H).

Proof. As explained in [19], R(H) = 0 if H is not cyclic, by Artin’s induction
theorem, and if H is cyclic then R(H) ∼= Q(ζ|H|) (a result of Puig). The result
follows from 6.5 and 6.6. �

It is interesting to note in the above example that if we are only interested in
the group structure of R(G) then the trivial summands of Q(ζ|H|) give sufficient
information, whereas the structure of R as a Mackey functor requires information
about all the summands.

7. Decomposition theory

Let O be a complete discrete valuation ring with quotient field K of character-
istic 0 and residue field k of characteristic p. In this situation the Mackey algebra
µO(G) is an O-order in the finite dimensional semisimple K-algebra µK(G), be-
cause it is free as an O-module by 3.2. There is a decomposition theory exactly
analogous to the one for group representations which relates the decomposition
map to the Cartan matrix of µk(G). We summarise the ingredients in this theory,
for which a possible reference is [8, sect. 48]. Although we are really dealing with
Mackey functors, to make it clear how the results here are instances of the existing
theory we will refer to the Mackey functors as µK(G)-modules, µO(G)-modules,
etc.

Every µK(G)-module M contains a µO(G)-lattice M` whose K-span is M . It is
a theorem of Brauer that the set of composition factors of k ⊗O M` (taken with
multiplicities) is independent of the choice of lattice M`, and so we may define for
each simple µK(G)-module S the numbers

dST = the multiplicity of the simple µk(G)-module T as
a composition factor in k ⊗O S`.

These numbers are the entries in the decomposition matrix D = (dST ). For each
simple µk(G)-module T let PT denote the projective cover of T . The Cartan matrix
of µk(G) is the square matrix C = (cTU ) with entries indexed by simple µk(G)-
modules T,U , where

cTU = the multiplicity of T as a composition factor in PU .

We denote by P̂T the projective cover as a µO(G)-module of the simple module T ,
so the reduction of P̂T modulo Rad(O) is PT . We now quote the following result
of Brauer.
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(7.1) Theorem. Suppose that K is a splitting field for µK(G) and k is a splitting
field for µk(G). Then

(i) C = DTD, where DT denotes the transpose of D,
(ii) K⊗O P̂T is a direct sum of simple µK(G)-modules in which S appears with

multiplicity dST .

(7.2) Corollary. The Cartan matrix of Mackey functors over k is symmetric.

We now show how to compute the Mackey functor decomposition matrix in a
practical way by relating it to the decomposition theory for group representations
using the work of the last section. In the process we show that the decomposition
map for Mackey functors is surjective, and hence that the Cartan matrix is non-
singular. The method depends on the observation that the mapping ψ which we
introduced in Section 6 is compatible with decomposition in the following sense.
We regard the decomposition for Mackey functors as a homomorphism

d : G0(MackK(G))→ G0(Mackk(G)).

We also have for each subgroup H ≤ G the group-theoretic decomposition

d : G0(KNG(H))→ G0(kNG(H)).

(7.3) Proposition. The square

G0(MackK(G))
ψ−→

⊕
H up to conjugacy

G0(KNG(H))yd yd
G0(Mackk(G))

ψ−→
⊕

H up to conjugacy

G0(kNG(H))

commutes.

Proof. On applying the composite around either side of the square to an element
in G0(MackK(G)) represented by a Mackey functor M , we obtain as component at
the subgroup H the term k ⊗O M(H)`. �

To compute the decomposition map in particular cases using this approach one
first determines the two mappings ψ, for Mackey functors over K and over k.
Now to compute the decomposition of a Mackey functor M over K one finds the
decomposition of the module M(H) for each subgroup H ≤ G. This gives a set
of simple kNG(H)-modules as composition factors, and now by inverting ψ for
Mackey functors over k we obtain a set of simple Mackey functors whose direct
sum evaluated at H also has these simple kNG(H)-modules as composition factors.
These simple Mackey functors are the composition factors of the decomposition
of M . The tables we give of decomposition matrices were all computed in this way.

Before deducing a corollary we remind the reader of the following elementary
fact from linear algebra.

(7.4) Lemma. For any matrix D we have rankDTD = rankD.

Proof. We show that the bilinear form associated to DTD has rank equal to the
rank of D. This form is defined on column vectors by 〈x, y〉 = xTDTDy. Evidently
its rank can be no greater than that of D. On the other hand the restriction of the
bilinear form to any complement of the kernel of D is non-singular, which proves
the result. �
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(7.5) Corollary. The decomposition map for Mackey functors is surjective; hence
the Cartan matrix is non-singular.

Proof. Surjectivity follows from the proposition because ψ is an isomorphism and
the decomposition maps for the group rings are known to be surjective [6, (21.16)].
Non-singularity of the Cartan matrix now follows, using the last lemma and Theo-
rem 7.1. �

Contrary to the case of group algebras, it should be noted that the determinant
of the Cartan matrix is usually not a power of p.

8. Burnside Mackey functors

In µR(G) we have an obvious expression

1 =
∑
H≤G

up to conjugacy

IHH

which gives the identity as a sum of mutually orthogonal idempotents. We thus
have a decomposition

µR(G) =
⊕
H≤G

up to conjugacy

µR(G) · IHH

where the µR(G) · IHH are projective µR(G)-modules. In this section we identify the
projective Mackey functors to which they correspond in terms of the Burnside ring.

We denote by B(G) the Burnside ring (over R) of G. Recall that this is the free
R-module with basis the G-sets G/H where H is taken up to conjugacy. By means
of induction, restriction and conjugationof G-sets this gives rise to a Mackey functor
denoted BG, which we call the Burnside Mackey functor for G (or just Burnside
functor). Its definition is that BG(H) = B(H), and it should not be confused with
the Burnside ring, since it is a Mackey functor. In fact, BG has more than just the
structure of a Mackey functor, it is a Green functor, meaning that each BG(H) is
a ring satisfying certain axioms [9].

In the next result we will use the fact that BG is generated as a Mackey functor
by the single element G/G ∈ BG(G), since any H/K ∈ BG(H) may be written
H/K = IHKR

G
K(G/G).

(8.1) Proposition. The µR(G)-module which corresponds to BG is isomorphic to
µR(G) · IGG . This has as an R-basis the symbols IHKR

G
K where K is a subgroup of H

determined up to H-conjugacy, and H ranges over subgroups of G. In particular,
BG is a projective Mackey functor.

Proof. We first verify that µR(G) · IGG has the stated basis. For a typical basis
element IHK cgR

J
Kg of µR(G) the product with IGG on the right is zero unless J = G

and then IHK cgR
G
KgIGG = IHKR

G
Kcg = IHKR

G
K since cg acts trivially at the level

of G. Thus µR(G) · IGG is the R-span of the stated elements, and they are linearly
independent because they form part of the basis of µR(G).

By abuse of notation we will use the same symbolBG to denote both the Burnside
Mackey functor, and also the µR(G)-module which corresponds to it. There is a
unique map of µR(G)-modules µR(G) → BG which sends IGG 7→ G/G, IHH 7→ 0
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if H 6= G. This is surjective since G/G generates BG. A basis element IHKR
G
K is

mapped to IHKR
G
K(G/G) = H/K, and since these images are linearly independent

the map is an isomorphism on restriction to µR(G) · IGG . �

We can interpet this identification of BG with µR(G) · IGG in terms of an adjoint-
ness property. Consider the composite functor

MackR(G)→ R-mod→ Set

where we first evaluate a Mackey functor M at G, and then forget the R-module
structure to obtain a set. We have also a functor in the opposite direction: for any
one-point set ∗, we may speak of the Burnside Mackey functor generated by ∗, this
being a copy of BG with ∗ corresponding to G/G ∈ BG(G).

(8.2) Corollary. (i) Let M be a Mackey functor and m ∈ M(G). Then there
exists a unique morphism of Mackey functors BG →M whose evaluation at G maps
G/G to m. Thus the functor Set→ MackR(G) which sends a set to the direct sum
of the BG generated by its elements is left adjoint to the functor MackR(G)→ Set
which sends M 7→M(G).

(ii) EndMackR(G)(BG) ∼= B(G).

Proof. (i) In terms of the µR(G)-module µR(G) · IGG the morphism is the one which
extends the assignment IGG 7→ m.

(ii) For each X ∈ B(G) let X̂ : BG → BG be the unique endomorphism of BG

which sends G/G to X. For any G-set G/H we may write G/H = IGHR
G
H(G/G) so

that

X̂(G/H) = X̂(IGHR
G
H(G/G)) = IGHR

G
HX̂(G/G) = IGHR

G
H(X) = X ·G/H,

this last product being the multiplication in B(G). By extending this to com-
binations of the basis elements in B(G) we see that for any Y ∈ B(G) we have
X̂(Y ) = X ·Y . Now

X̂Ŷ (G/G) = X̂(Y ) = X ·Y = X̂ ·Y (G/G)

so that X̂Ŷ = X̂ ·Y . Thus ˆ : B(G)→ EndMackR(G)(BG) is a ring homomorphism.
It has a 2-sided inverse given by the assignment

EndMackR(G)(BG)→ B(G)

φ 7→ φ(G)(G/G)

which we may see by using the fact that an endomorphism φ is completely deter-
mined by the value of φ(G)(G/G). �

We now come to the general description of the projective Mackey functors
given by the idempotents IHH . First we note that regarding Mackey functors as
additive functors ΩR(G) → R-mod we may consider the representable functors
HomΩR(G)(G/H, ), which are projective by Yoneda’s lemma.
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(8.3) Theorem. The projective Mackey functors given (in different notations) by
BH ↑GH , µR(G) · IHH and HomΩR(G)(G/H, ) are isomorphic.

Proof. One first sees that µR(G)·IHH and HomΩR(G)(G/H, ) give the same Mackey
functor because their evaluation at a subgroup K is

IKK · µR(G) · IHH = the R-span of {IKgLcgRHL
∣∣ g ∈ G,L ≤ H ∩Kg}

for µR(G) · IHH , and for HomΩR(G)(G/H, ) it is the R-span of all diagrams

G/K
πK

gLcg←− G/L
πH

L−→G/H.

These R-modules are seen to be isomorphic using the isomorphisms introduced
in 3.3. Furthermore these isomorphisms are natural, that is they commute with the
operations of induction, restriction and conjugation, so we have an isomorphism of
Mackey functors.

We show that BH ↑GH and HomΩR(G)(G/H, ) give the same Mackey functor by
first observing that HomΩR(G)(G/H, ) is induced from H. In fact, for a G-set X
we have

HomΩR(G)(G/H,X) ∼= HomΩR(H)(H/H,X ↓GH)

which is the same as (HomΩR(H)(H/H, )) ↑GH evaluated at X. Thus it suffices
to show that BH ∼= HomΩR(H)(H/H, ). But we already know from 8.1 that BH

gives the same Mackey functor as µR(H) · IHH , and we just showed that this is the
same as HomΩR(H)(H/H, ). �

(8.4) Corollary. (i) There is an isomorphism of Mackey functors

µR(G) ∼=
⊕

H up to conjugacy

BH ↑GH .

(ii) Any Mackey functor is isomorphic to a quotient of a direct sum of induced
Burnside functors.

(8.5) Corollary. dimBH ↑GH (K) = dimBK ↑GK (H).

Proof. The left hand side is the dimension of IKK · µR(G) · IHH , which has a basis

{IKgLcgRHL
∣∣ g ∈ [K\G/H], L ≤ H ∩Kg up to H ∩Kg-conjugacy}.

Evidently IHH · µ(G) · IKK has a similar basis with H and K reversed. There is a
bijection between these two bases. �

For the rest of this section we specialize to the case where the coefficient ring R
is a field k. The Burnside functors are in general not themselves indecomposable
projectives. To recall our notation, we denote by PH,V the projective cover of the
simple Mackey functor SH,V . There is then a primitive idempotent eH,V ∈ µk(G)
for which PH,V ∼= µk(G)eH,V . We now give the exact decomposition of BH ↑GH into
indecomposable projectives.
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(8.6) Theorem. Let k be a field which is a splitting field for µk(G). Then the
multiplicity of PH,V as a summand of BK ↑GK is dimSH,V (K); that is

BK ↑GK ∼=
⊕

(H,V )

dimSH,V (K) · PH,V .

Proof. We may write IKK as a sum of orthogonal idempotents IKK =
∑
EH,V where

each EH,V is an orthogonal sum of primitive idempotents all conjugate to eH,V .
Since BK ↑GK∼= µk(G)IKK , we have to show for each pair (H,V ) that the number of
idempotents in this decomposition of EH,V is dimSH,V (K). We use the fact that
dim eH,V SH,V = 1, while dim eJ,WSH,V = 0 if (J,W ) 6= (H,V ). This number of
idempotents is dimEH,V SH,V = dim IKKSH,V = dimSH,V (K), as required. �

Remark. By lifting idempotents, or by lifting projective modules, the theorem also
holds over a coefficient ring which is a complete local ring.

(8.7) Corollary. Let k be a field which is a splitting field for µk(G). Then
(i) PH,V cannot be a summand of BK ↑GK unless H is conjugate to a subgroup

of K, and
(ii) for every simple kNG(K)-module V , PK,V is a summand of BK ↑GK with

multiplicity dimV .

Proof. (i) SH,V (K) = 0 unless H is conjugate to a subgroup of K.
(ii) SK,V (K) = V . �

The numbers dimSH,V (K) in Theorem 8.6 may be computed quite explicitly in
terms of the simple module V and the fusion within G. We now show how this may
be done and draw some corollaries. We use the notion of the carrier of H into K,
which is the set T (H,K) = {g ∈ G

∣∣ gH ⊆ K}.
(8.8) Proposition. SH,V (K) =

⊕
g∈[K\T (H,K)/NG(H)]

trNKg (H)/H
1 (V ).

The indexing set in the sum bijects with the set of G-conjugates gH contained
in K, taken up to K-conjugacy. If we are only interested in dimSH,V (K), then we
may express dim trNKg (H)/H

1 (V ) as the rank of
∑
h∈[NKg (H)/H] h acting on V , and

this equals the multiplicity of Pk as a summand of V , where Pk is the projective
cover of k as a k[NKg (H)/H]-module.

Proof. From [20] we have SH,V = SGH,V = S
NG(H)
H,V ↑GNG(H) and so

SH,V (K) =
⊕

g∈[K\G/NG(H)]

S
NG(H)
H,V (Kg ∩NG(H)).

Now the terms in the sum are zero unless H ⊆ Kg, so g ∈ T (H,K), and

S
NG(H)
H,V (Kg ∩NG(H)) = S

NG(H)
1,V (NKg (H)/H)

is the image of the trace from the identity as stated. �
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(8.9) Corollary. Let k be a field which is a splitting field for µk(G).
(i) If char k = 0 then

BG ∼=
⊕

H≤G, up to conjugacy

PH,k.

(ii) If char k = p then

BG ∼=
⊕

H up to conjugacy
p6 | |NG(H):H|

PH,k.

In particular BG is indecomposable if and only if G is a p-group, in which
case BG is the projective cover of SG,1.

Proof. We first prove (ii). In this case the multiplicity of PH,V is

dim trNG(H)
1 (V ), which is the number of times Pk as a NG(H)-module is a sum-

mand of the simple module V . If this number is non-zero then Pk must itself be
simple and equal to V , so V = k and this is a projective module. This means that
NG(H) is a p′-group and the multiplicity is 1.

(i) The argument is the same as with (ii), except that now k is always a projective
module and so every subgroup H occurs. �

Combining 8.9 with 8.2(ii) this turns out to give a proof of part of a well-known
result, which we quote later as 9.3. In characteristic 0 this is due to Burnside and
Solomon, and to Dress in the case of characteristic p.

(8.10) Corollary. If char k = 0 the primitive idempotents in B(G) biject with the
conjugacy classes of all subgroups of G. If char k = p the primitive idempotents
in B(G) biject with the conjugacy classes of subgroups H for which NG(H) is a
p′-group.

9. Decompositions induced by the Burnside ring

It is well-known that the Burnside ring B(G) acts as a ring of endomorphisms of
every Mackey functor for G. Explicitly, if M is a Mackey functor and Z is a G-set,
then the action of Z is defined as the natural transformation

M(X)
M∗(pr2)−→ M(Z ×X)

M∗(pr2)−→ M(X) ,

where X is an arbitrary G-set and pr2 : Z×X → X is the second projection. Using
the axiom on pull-backs in the second definition of Mackey functors, it easy to see
that the action of B(G) on M is indeed as a ring of Mackey functor endomorphisms.

In the special case where Z = G/H, we have an isomorphism

G/H ×X ∼= G×H X = X ↓GH↑GH

mapping (gH, x) to (g, g−1x). Moreover the map pr2 corresponds to the natural
map

α : G×H X → X , α(g, x) = gx .
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Thus if we set θH = M∗(α) and θH = M∗(α), then in the action of the Burnside
ring on M , the transitive G-set G/H acts as θHθH .

We may describe this action of the Burnside ring in yet another way which uses
the induction and restriction maps. On evaluation at the subgroup K (i.e. at the
G-set G/K), the map

θH(K) :
⊕

g∈[K\G/H]

M(K ∩ gH)→M(K)

is equal to the sum of the inductions IKK∩gH , and similarly θH is the sum of the
restrictions RKK∩gH . Therefore the action of G/H on x ∈M(K) is

G/H · x =
∑

g∈[K\G/H]

IKK∩gHR
K
K∩gH(x)

and this assignment at the level of the subgroup K gives a natural transformation of
Mackey functors M →M . One may describe this by saying that if x ∈M(G) then
G/H acts as IGHR

G
H , and if x ∈ M(K) then G/H acts as the K-set G/H ↓GK . This

action is closely related to the structure of M as a Green module over the Green
functor BG, although the two should not be confused since the Burnside ring re-
garded as BG(G) acts only on M(G) in the Green module structure, whereas in the
action we are now describing B(G) acts on every R-module M(K). The connection
between these two structures is that the Green module structure provides us with
actions of B(K) on M(K) for every K ≤ G. Now composing with the restriction
B(G)→ B(K), which is a ring homomorphism, gives the action of B(G) on M(K).

As a consequence of the action of the Burnside ring we have the following well-
known result.

(9.1) Proposition. Every expression in B(G) of the identity as a sum of orthog-
onal idempotents

1 =
∑
i

ei

gives rise to a decomposition M =
⊕
ei ·M of every Mackey functor M .

Here we write ei ·M for the image of M under the endomorphism ei.
It is an immediate interpretation of the above decomposition that it provides a

partial separation of Mackey functors into different blocks. To make it transparent
that the notion of block we have in mind is the same as the usual one in the
representation theory of algebras, we interpret the action of the Burnside ring in
terms of the Mackey algebra. To do this we observe that B(G) acts via elements
of the Mackey algebra, and since the action commutes with all the Mackey functor
operations these elements must be central. This is the basis of the proof of the
following result.

(9.2) Proposition. There is a central subring of µR(G) isomorphic to the Burn-
side ring B(G) and which contains the identity. Specifically, this subring has a basis
consisting of elements

bH =
∑
K≤G

∑
x∈[K\G/H]

IKK∩xHR
K
K∩xH .
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Proof. In the action of the Burnside ring on a Mackey functor M the G-set G/H
acts precisely as bH . Indeed since M(J) = IJJ ·M , the only term in the first sum
which does not act by zero on M(J) is the one corresponding to K = J , and we
have seen in our preliminary remarks that the action is as stated. In particular this
holds for the action on the regular representation µR(G) and so the assignment

B(G)→ µR(G), G/H 7→ bH

does extend by linearity to a ring homomorphism. It is injective since the bH are
linearly independent, which follows from the fact that the action of the span of
these elements on B(G) = BG(G) ∼= (µR(G)IGG )(G) = IGGµR(G)IGG is the regular
representation of the Burnside ring on itself, namely bH acts as G/H. In this
action the bH are independent. Finally the bH are central since in the regular
representation of µR(G) they act as Mackey functor endomorphisms of µR(G), and
so commute in their action with all of µR(G). Since the regular representation is
faithful, the bH must themselves be central. �

In view of this result every idempotent of B(G) gives a central idempotent of
µR(G), and hence a decomposition of the Mackey algebra into ring direct sum-
mands. We will see later that we do not in general obtain primitive central idem-
potents of µR(G) in this way, so that we have a decomposition into unions of blocks,
rather than blocks themselves. For the moment we can at least say that if some
Burnside idempotent is non-zero on one indecomposable Mackey functor and zero
on another then the two Mackey functors lie in different blocks. Later on in Section
17 we will give the exact decomposition into blocks. It will follow also that the
centre of µR(G) is bigger than B(G) because primitive idempotents of the Burn-
side ring decompose further as orthogonal sums of central primitive idempotents
in µR(G).

We now examine more closely the particular structure of the Burnside ring idem-
potents and quote the following result. We say that a group J is p-perfect if there
is no proper normal subgroup N of J with J/N a p-group, that is, Op(J) = J .
It is evident that for any group H, the only normal p-perfect subgroup of H with
p-power index is Op(H), and given a p-perfect subgroup J of a group G, the sub-
groups H ≤ G with Op(H) = J are precisely the subgroups H ≤ NG(J) with
J ≤ H and H/J a p-group.

(9.3) Theorem.
(i) (Burnside, Solomon) Let Z[1/|G|] be the subring of Q in which only the

prime divisors of |G| are inverted. Then in the Burnside algebra B(G)
over Z[1/[G]] we have

1 =
∑

H≤G up to conjugacy

eH

where the eH are orthogonal primitive idempotents and each eH is a linear
combination of elements G/K with K ≤ H. If L contains no conjugate of
H then eH ·G/L = 0 and eH ↓GL= 0.

(ii) (Dress) Let R denote the subring of Q in which all the prime divisors of |G|
are inverted except p. Then in the Burnside algebra B(G) over R we have

1 =
∑

J≤G up to conjugacy
J p-perfect

fJ
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where the fJ are primitive orthogonal idempotents in bijection with the con-
jugacy classes of p-perfect subgroups of G. For each p-perfect subgroup J let
P ≤ G be such that J /P and P/J is a Sylow p-subgroup of NG(J)/J . Then
fJ is a linear combination of elements G/K with K ≤ P . If L contains no
conjugate of J then fJ ·G/L = 0, and fJ ↓GL= 0. In the Burnside ring over
Z[1/|G|] we have

fJ =
∑

J≤K≤P
K up to conjugacy

eK .

We refer to [23, Lemma 3.4] for details. In fact the idempotents eH remain
primitive in the Burnside algebra over a ring R in which every prime divisor of |G|
is invertible, e.g. a field of characteristic 0. Similarly the idempotents fJ remain
primitive in the Burnside algebra over a ring R in which every prime divisor of |G|
is invertible except p, e.g. a field of characteristic p or a local ring with residue field
of characteristic p.

In studying the unions of blocks given by these Burnside idempotents, for each
p-perfect subgroup J of G we introduce the notation MackR(G, J) to denote the
full subcategory of MackR(G) whose objects are the Mackey functors M for which
fJ ·M = M . This definition works in situations where, for example, R is a field of
characteristic 0 or p, or a discrete valuation ring, because the fJ are defined and so
they act on Mackey functors over all of these coefficient rings. Our principal aim
in the remainder of this section is to give various characterisations of the Mackey
functors in MackR(G, J), in 9.5, 9.6, 9.7 and 9.14. We should mention that a theory
closely related to 9.7 and 9.13 is developed by Oliver [16, Ch.11] in the special case
of subgroups J which are cyclic of order prime to p.

Remark. All this analysis holds more generally for a set π of prime divisors of
|G| rather than a single prime p. One has to consider a π-perfect subgroup J
and the corresponding idempotent fJ of the Burnside algebra over a ring R in
which all prime divisors of |G| are invertible except those in π. As we are mainly
concerned with fields of characteristic 0 or p (and their relationship appearing in the
decomposition theory), we only develop the case of a single prime. The interested
reader can easily modify the arguments.

(9.4) Lemma. Let M be a Mackey functor and L a subgroup of G such that
M(H) = 0 for all subgroups H of L. Then G/L ·M = 0.

Proof. (G/L ·M)(K) =
∑
x∈[K\G/L] I

K
K∩xLR

K
K∩xLM(K). But these terms are im-

ages of M(K ∩ xL) = 0. �

(9.5) Theorem.

(a) Let R be a ring in which |G| is invertible. Let K be a subgroup of G and
let M be an indecomposable Mackey functor over R. The following are
equivalent:

(i) eK ·M = M ,
(ii) all subgroups H minimal such that M(H) 6= 0 are conjugate to K,
(iii) K is a minimal subgroup on which M is non-zero.

(b) Let R be a ring in which every prime divisor of |G| is invertible, except for
p which is not invertible. Let J be a p-perfect subgroup of G and let M be
an indecomposable Mackey functor over R. The following are equivalent:
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(i) M ∈ MackR(G, J),
(ii) for all subgroups H minimal such that M(H) 6= 0, Op(H) ∼G J ,
(iii) there exists a subgroup H minimal such that M(H) 6= 0, for which

Op(H) ∼G J .
In particular it follows that for every Mackey functor M ∈ MackR(G, J),
M(H) = 0 unless H ≥G J .

Proof. We prove only (b), the proof of (a) being obtained similarly by omitting
references to Op.

We show first that (i)⇒ (ii), so suppose that M = fJ ·M and that H is minimal
such that M(H) 6= 0. We have M(H) = fJ ↓GH ·M(H). But fJ ↓GH= 0 unless
H ≥G J , so Op(H) ≥G J since J is p-perfect. On the other hand fJ is a linear
combination of terms G/K with K ≤ P in the notation of 9.3, and so fJ ↓GH is
a linear combination of terms H/K1 with K1 ≤G P . If Op(H) >G J then all
these subgroups K1 would be proper subgroups of H, and by minimality of H we
would deduce fJ ↓GH ·M(H) = 0 by 9.4. From this contradiction we deduce that
Op(H) ∼G J .

It is clear that (ii) ⇒ (iii), and so it remains to prove that (iii) ⇒ (i). But this
follows also from the argument we have just given. In order to see this, suppose
that H is minimal such that M(H) 6= 0. Since M is indecomposable, M does lie in
Mack(G, J1) for some p-perfect subgroup J1, and we have to show that J1 ∼G H.
But this was exactly the implication (i) ⇒ (ii). �

For the rest of this section, we specialize to a coefficient ring which is either a
field k or a complete discrete valuation ring O. In 9.6 and 9.7 we give two further
descriptions of the functors in MackR(G, J).

(9.6) Proposition. Let SK,W be a simple Mackey functor over a field k.
(i) If |G| is invertible in k then eH ·SK,W = 0 unless H and K are conjugate, in

which case eK · SK,W = SK,W . Thus the simple Mackey functors belonging
to the blocks of Mackey functors determined by eH are precisely the SH,W .

(ii) If k is a field of characteristic p then fJ · SK,W = 0 unless J and Op(K)
are conjugate, in which case fJ · SK,W = SK,W . Thus the simple Mackey
functors in Mackk(G, J) are precisely the SK,W with J = Op(K). An ar-
bitrary Mackey functor lies in Mackk(G, J) precisely if all its composition
factors do.

Proof. This is immediate from 9.5 since K is (up to conjugacy) the unique subgroup
H of G minimal such that SK,W (H) 6= 0. �

As an application of this (with J = 1), the Mackey functors in Mackk(G, 1) are
precisely those which have all their compositions factors indexed by p-subgroups.
Also if we have an indecomposable Mackey functor which has a composition factor
SH,V where H is a p-group, then all of its composition factors are SK,W where K
is a p-group. Thus, for example, if H is a p-group then all composition factors of
PH,V and of (InfN(H)

N(H)
FPV )↑GN(H) have minimum subgroups which are p-groups.

We now give a different characterisation of the Mackey functors lying in MackR(G, J)
in terms of their vertices. Working over either a field or a complete discrete valua-
tion ring, we recall from [17] that every indecomposable Mackey functor M has up
to conjugacy a unique minimal subgroup relative to which it is projective. This is
called a vertex of M , denoted vx(M).
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(9.7) Theorem. Assume that either R = k is a field of characteristic p or R = O
is a complete discrete valuation ring with residue field of characteristic p, and let J
be a p-perfect subgroup of G. The indecomposable Mackey functors M in MackR(G, J)
are precisely those for which Op(vxM) = J .

The proof is based on the following lemma which will be also used in the next
section.

(9.8) Lemma. Let H be a subgroup of G and b ∈ B(H). Let M be a Mackey
functor for G. Let m(b) ∈ EndMackR(H)(M ↓GH) denote the multiplication by b,
and similarly let m(b ↑GH) ∈ EndMackR(G)(M) denote the multiplication by the ele-
ment b↑GH of B(G). Then

m(b↑GH) = θH m(b)↑GH θH ,

where θH : M →M ↓GH↑GH and θH : M ↓GH↑GH→M are the canonical morphisms.

Proof. We can assume that b is equal to a transitiveH-setH/K. For every G-setX,
the action of H/K on M ↓GH (X ↓GH) is equal to

M ↓GH (X ↓GH)
(M↓G

H)∗(β)−→ M ↓GH (H ×K X ↓GH)
(M↓G

H)∗(β)−→ M ↓GH (X ↓GH),

where β : H ×K X → X is the canonical map. Let also α : G ×H X → X be the
analogous canonical map. Inducing to G the composite above and composing with
θH and θH , we obtain

M(X)
M∗(α)−→ M(G×H X)

M∗(1×β)−→ M(G×H (H ×K X))
M∗(1×β)−→ M(G×H X)

M∗(α)−→ M(X) .

Identifying G×H (H ×K X) with G×K X via the isomorphism

G×H (H ×K X)→ G×K X (g, (h, x)) 7→ (gh, x),

the composite α ◦ (1× β) : G×H (H ×K X)→ X is just equal to the natural map
G ×K X → X and so we have M∗(1 × β)M∗(α) = θK at X. Similarly we have
M∗(α)M∗(1 × β) = θK at X and this proves that the whole composite is equal to
θK θ

K , which is the action of G/K = (H/K)↑GH . This proves the result. �

Proof of Theorem 9.7. Let P be a subgroup such that J ≤ P ≤ NG(J) and P/J is
a Sylow p-subgroup of NG(J)/J . We will show that M is projective relative to P .
This will be sufficient to prove the result, since by 9.5 it will follow that there is
a vertex of M with J ≤ vxM ≤ P . The deduction we make from this is that not
only do the Mackey functors in MackR(G, J) have the prescribed form, but if M
is any indecomposable Mackey functor, then the category MackR(G, J) in which it
lies is determined by vxM since J = Op(vxM).

To prove that M is projective relative to P we use Sasaki’s criterion [17] that
the identity endomorphism 1M has an expression as a composite

M
θP

−→M ↓GP↑GP
x↑G

P−→M ↓GP↑GP
θP−→M
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for some endomorphism x ∈ EndMackR(P )(M ↓GP ). Indeed this composite is equal
to IGP (x) in the Green functor End(M) described by Sasaki (i.e. whose value at H
is End(M)(H) = EndMackR(H)(M ↓GH)).

Since fJ ·M = M , fJ acts as the identity on M , and by 9.3 fJ lies in the span
of G-sets G/K with K ≤ P . Thus we can write fJ =

∑
λKG/K ∈ B(G) for such

K and coefficients λK . If we set x =
∑
λKP/K ∈ B(P ), then x↑GP= fJ and so by

Lemma 9.8,
id = m(fJ) = θP m(x)↑GP θP ∈ EndMackR(G)(M) .

This completes the proof of the theorem. �

The following fact becomes easy in the light of 9.6 and 9.7.

(9.9) Corollary. Let M be an indecomposable Mackey functor over a field k of
characteristic p, and let SH,V be any composition factor of M . Then Op(H) =
Op(vxM).

For example, if M is indecomposable and M(H) 6= 0 for some p-subgroup H,
then vxM is a p-group.

We now apply Proposition 9.6 to the computation of the decomposition matrix.
The effect of this division into a union of blocks is that in Proposition 7.3 we need
only consider at one time the SH,V where Op(H) is a fixed subgroup. To formalize
this, suppose that R = O is a complete discrete valuation ring with field of fractions
K of characteristic 0 and residue field k of characteristic p.

(9.10) Corollary. Let J be a p-perfect subgroup of G. Then the square in Propo-
sition 7.3 gives rise to a commutative square

G0(MackK(G, J))
ψ−→

⊕
H up to conjugacy

Op(H)=J

G0(KNG(H))yd yd
G0(Mackk(G, J))

ψ−→
⊕

H up to conjugacy
Op(H)=J

G0(kNG(H))

where ψ denotes ψ followed by projection onto those summands which have Op(H) =
J . The maps ψ are isomorphisms and the maps d are surjections.

Proof. The argument is the same as was used in 6.1 and 7.3. The new aspects are
that decomposition of Mackey functors does indeed send MackK(G, J) to Mackk(G, J),
since these are the unions of blocks in characteristic 0 and p determined by the
idempotent fJ , and also that the new maps ψ are isomorphisms. This is because
the domain and codomain of ψ have bases indexed by pairs (H,V ) subject to the
restriction that Op(H) = J and the matrix of ψ is just the square submatrix of ψ
consisting of the entries which correspond to these new basis elements. Since the
matrix of ψ was triangular with 1’s down the diagonal, the matrix of ψ has this
property also. �

We present two more corollaries of Proposition 9.6. It will help to notice that
in any finite group G there is a bijection between conjugacy classes of p-perfect
subgroups J and conjugacy classes of subgroups H such that p 6

∣∣ |NG(H) : H|,
given by J = Op(H) and H/J ∈ Sylp(NG(J)/J).
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(9.11) Corollary.
(i) If k is a field in which |G| is invertible we have SH,k = eH · BG for every

subgroup H.
(ii) If k is a field of characteristic p we have PH,k = fJ ·BG for each subgroup

H with p 6
∣∣ |NG(H) : H|, where J = Op(H).

Proof. (i) The indecomposable Mackey functor summands of BG are precisely the
functors eK ·BG by 8.2(ii) and 9.3, and also by 8.9 they have the form PH,k, which
equals SH,k in this case. The idempotent which gives SH,k must be eH since by 9.6
this is the only one which acts in a non-zero fashion on SH,k.

(ii) The proof is similar to (i) but now the indecomposable summands of BG are
the fJ ·BG by 8.2 and 9.3, and also they have the form PH,k with p 6

∣∣ |NG(H) : H|
by 8.9. The idempotent which gives PH,k must be fJ since by 9.6 this is the only
one which acts in a non-zero fashion on the top composition factor SH,k of PH,k. �

(9.12) Corollary. Let H be a subgroup of G for which p 6
∣∣ |NG(H) : H| and let

O be a complete discrete valuation ring with residue field k of characteristic p and
quotient field K of characteristic 0. Then the decomposition number dSL,V ,SH,k

satisfies

dSL,V ,SH,k
=

{
1 if Op(L) ∼G Op(H) and V = K,
0 otherwise.

Proof. By 9.11 PH,k = fJ · BG where J = Op(H), and the lifting of this to O is
P̂H,k = fJ · BG where now the Burnside functor is taken over O. By 7.1(ii) the
decomposition number is the multiplicity of SL,V in K ⊗R P̂H,k which is⊕

J≤X≤H
X up to conjugacy

eX ·BG ∼=
⊕

J≤X≤H
X up to conjugacy

SX,K

using 9.3(ii) and 9.11 again. Thus SL,V occurs just once if we have V = K and
Op(L) ∼G J , and does not occur otherwise. �

Given some naturally occuring Mackey functor it is useful to know how one may
break it apart into the summands given by Burnside idempotents. We conclude by
showing how our approach here leads to a concrete identification of these summands.
Let M be a Mackey functor and let J be a p-perfect subgroup of G. We define as
a subfunctor of M

MJ = 〈M(X)
∣∣ Op(X) ≤G J〉.

Recall that by Proposition 2.4, we have

MJ(H) =
∑

Op(X)≤GJ
X≤H

IHX (M(X)) .

(9.13) Theorem. Assume that either R = k is a field of characteristic p or R = O
is a complete discrete valuation ring with residue field of characteristic p, let J be a
p-perfect subgroup of G and let M be a Mackey functor over R. For every p-perfect
subgroup J of G, MJ is a direct summand of M . Furthermore,

fJ ·M ∼= MJ
/ ∑
p-perfectL<J

ML.
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Proof. Let us write

N =
⊕

p-perfect L≤J
L up to conjugacy

fL ·M ,

as a subfunctor of M . We show that MJ = N from which the result is immediate.
Firstly we observe that N is projective relative to the subgroups X with Op(X) ≤G
J , by 9.7. It is well-known [9] that this implies that

N(H) =
∑

Op(X)≤GJ
X≤H

IHX (N(X)) .

This follows for instance from the fact that IHX is surjective for all H ≥ X in a
functor induced from X, so that the same holds for any direct summand of such a
functor. Thus N = 〈N(X)

∣∣ Op(X) ≤G J〉 ⊆MJ . On the other hand

M =
⊕

p-perfect L
L up to conjugacy

fL ·M ,

and if Op(X) ≤G J but L 6≤G J then (fL ·M)(X) = 0 by 9.5 applied to fL ·M .
Thus M(X) ⊆ N(X) and so MJ ⊆ N . We conclude that N = MJ . �

Remark. In case M is a Mackey functor over a field in which |G| is invertible there
is a similar description of eH ·M as

〈M(X)
∣∣ X ≤G H〉

/
〈M(X)

∣∣ X <G H〉.

We leave it to the reader to make the necessary changes and simplifications.

(9.14) Corollary. With the assumptions of 9.13, M lies in MackR(G, J) if and
only if

(i) M(H) = 0 unless H ≥G J , and
(ii) M = 〈M(X)

∣∣ Op(X) ∼G J〉.

10. An equivalence of categories: the reduction to p-subgroups

In this section, we prove a result which reduces questions about arbitrary Mackey
functors to ones associated with p-groups. Explicitly let J be a p-perfect subgroup
of G and let N = NG(J), N = N/J . We work over a base ring R in which every
prime divisor of |G| different from p is invertible. Thus the primitive idempotent
fJ of the Burnside algebra B(G) over R is defined (see Theorem 9.3). In order
to emphasize the dependence on G, we write fGJ = fJ . Recall that MackR(G, J)
denotes the full subcategory of MackR(G) whose objects are the Mackey functorsM
such that fGJ ·M = M . Similarly we consider MackR(N, J) and MackR(N, 1). We
are going to see that inflation InfN

N
maps MackR(N, 1) into MackR(N, J) and that

induction↑GN maps MackR(N, J) into MackR(G, J). Our main result is the following
theorem. A related result is Theorem C of Yoshida’s paper [25].
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(10.1) Theorem. The categories MackR(N, 1) and MackR(G, J) are equivalent.
More precisely:

(i) The functor InfN
N

: MackR(N, 1) → MackR(N, J) is an isomorphism of
categories.

(ii) The functor ↑GN : MackR(N, J) → MackR(G, J) is an equivalence of cate-
gories, whose inverse is the restriction functor followed by multiplication by
the idempotent fNJ .

(10.2) Remark. The theorem also holds for an arbitrary set of primes π rather than
a single prime p. One has to work over a ring R in which every prime divisor of |G|
outside π is invertible. One takes a π-perfect subgroup J and the corresponding
primitive idempotent fGJ of B(G), as explained in [23]. The proof below applies
without change.

Proof of Theorem 10.1. The proof of the theorem is based on a detailed analysis of
the idempotents fGJ and fNJ , and of their action on Mackey functors. We proceed
in a series of lemmas. The first two deal with part (i).

(10.3) Lemma. Let φ : B(N) → B(N) be the ring homomorphism which maps
an N -set X to the N -set XJ of J-fixed points in X.

(i) If S ≤ N , then φ(N/S) = N/S if J ≤ S and φ(N/S) = 0 if J 6≤ S.

(ii) φ(fNJ ) = fN1 .

Proof. (i) This is straightforward.
(ii) Since the Burnside algebra over a localization of Z embeds into the Burnside

algebra over Q, we can work over Q. If J ≤ S ≤ N , consider the ring homomor-
phism φS : B(N)→ Q which maps anN -setX to the number |XS | of S-fixed points
in X. Clearly φS factorizes as φS = φS φ. The primitive idempotent eNK of B(N)
satisfies by definition φS(eNK) = 1 if K is N -conjugate to S and φS(eNK) = 0 if K
is not N -conjugate to S. Thus fNJ is characterized by the property φS(fNJ ) = 1
if and only if Op(S) = J . It follows that φ(fNJ ) is characterized by the property
φS(φ(fNJ )) = 1 if and only if Op(S) = 1, and this means that φ(fNJ ) = fN1 . �

(10.4) Lemma.
(i) Let L be a Mackey functor in MackR(N, 1). Then the Mackey functor L =

InfN
N

(L) lies in MackR(N, J).
(ii) Let L be a Mackey functor in MackR(N, J). Then L = InfN

N
(L) for some

(unique) Mackey functor L, and L lies in MackR(N, 1).

Proof. Write fNJ = f ′+f ′′ where f ′ lies in the R-linear span of the transitive N -sets
N/S with S ≥ J and f ′′ lies in the R-linear span of the transitive N -sets N/S with
S 6≥ J . Then by Lemma 10.3, we have φ(f ′′) = 0 and φ(f ′) = fN1 .

(i) The action of N/S on L(K) is equal to
∑
g∈[K\N/S] I

K
K∩gS R

K
K∩gS . Since L is

inflated, it vanishes on subgroups not containing J and the action of N/S is zero if
S 6≥ J . If both K and S contain J , then all subgroups involved contain J , so that
the action of N/S is obtained from the action of N/S on L. It follows that f ′′ acts
by zero and that the action of f ′ is obtained from that of φ(f ′) = fN1 which is the
identity by assumption. Therefore fNJ acts as the identity on L, as required.

(ii) By Theorem 9.5, L vanishes on subgroups not containing J (because J is a
normal subgroup of N). Therefore L is obtained by inflation from a unique Mackey
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functor L for N . Since L vanishes on subgroups not containing J , the argument
above shows that f ′′ acts by zero and so the action of f ′ is equal to the action
of fNJ which is the identity. But since the action of f ′ on L corresponds to that of
fN1 = φ(f ′) on L, we see that fN1 acts as the identity on L. �

It is clear that Lemma 10.4 immediately implies part (i) of the theorem. The
rest of this section is devoted to the proof of part (ii).

(10.5) Lemma.

(i) Let K1 and K2 be subgroups such that J ≤ Ki ≤ N and Ki/J is a p-group.
If K2 = gK1 for some g ∈ G, then g ∈ N .

(ii) In B(G), we have fNJ ↑GN= fGJ .
(iii) In B(N), we have

fGJ ↓GN=
∑

g∈[N\TG(J,N)/N ]

fNgJ ,

where
TG(J,N) = {g ∈ G | gJ ≤ N}.

(iv) In B(N ∩ gN), we have

fNJ ↓NN∩gN=
{
fN∩

gN
J if J ≤ gN (i.e. g−1 ∈ TG(J,N)),

0 otherwise.

Proof. (i) We have J = Op(K2) and J = Op(K1), so that gJ = Op(gK1). Thus
J = gJ , that is, g ∈ N .

(ii) Since the Burnside algebra over a localization of Z embeds into the Burnside
algebra over Q, we can work over Q. By Theorem 9.3, we know that

fNJ =
∑

J ≤K ≤P
K up to N-conjugacy

eNK ,

where P/J is a Sylow p-subgroup of N/J and eNK denotes the primitive idempotent
of B(N) corresponding to the subgroup K. Moreover it is well-known (see [23, 3.5])
that one has

eNK ↑GN= |NG(K) : NN (K)| · eGK .

But NG(K) ≤ NG(Op(K)) = NG(J) = N so that NN (K) = NG(K). Therefore

fNJ ↑GN=
∑

J≤K≤P
K up to N-conjugacy

eGK .

By the first part of this lemma, we know that N -conjugacy of such subgroups K
coincides with G-conjugacy. Therefore we obtain the expression of fGJ given by
Theorem 9.3, as required.

(iii) We use again the expression of fGJ as a sum of primitive idempotents eGK in
the Burnside algebra over Q. We have eGK ↓GN=

∑
i e
N
Ki

where the subgroups Ki are
representatives of the N -conjugacy classes of subgroups of N which are conjugate
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to K in G. (Note that we are not in the situation of (i), because Ki need not
even contain J .) Now grouping together all subgroups with the same Op (which is
necessarily a G-conjugate of J contained in N), we obtain

fGJ ↓GN =
∑

g∈[N\G/N]
gJ≤N

∑
gJ≤K≤N, Op(K)=gJ
K up to N-conjugacy

eNK

=
∑

g∈[N\TG(J,N)/N ]

fNgJ .

Note that the sum is over (N,N)-double cosets because we are considering the set
of G-conjugates of J (in bijection with G/N) and taking only representatives of
N -conjugacy classes.

(iv) Once again, we work in the Burnside algebra over Q. If J 6≤ gN and J ≤
K ≤ N , we have K 6≤ N ∩ gN and so eNK ↓NN∩gN= 0. It follows that fNJ ↓NN∩gN= 0.
Assume now that J ≤ gN . Then since J is a normal subgroup of N ∩ gN , we have

fNJ ↓NN∩gN =
∑

J≤K≤N, Op(K)=J
K up to N-conjugacy

eNK ↓NN∩gN =
∑

J≤K≤N∩gN, Op(K)=J
K up to N-conjugacy

∑
i

eN∩
gN

Ki

=
∑

J≤L≤N∩gN, Op(L)=J

L up to (N∩gN)-conjugacy

eN∩
gN

L = fN∩
gN

J ,

where the inner sum runs over representatives Ki of the (N ∩ gN)-conjugacy classes
of subgroups which are conjugate to K in N . �

(10.6) Lemma. Let H be a subgroup of G and g ∈ G. Let b ∈ B(G).
(i) Let L be a Mackey functor for H. Under the identification L↑GH (X) = L(X ↓GH),

the action of b on L ↑GH (X) is equal to the action of b ↓GH on L(X ↓GH). In
particular if b↓GH acts as the identity on L, then b acts as the identity on L↑GH .

(ii) Let M be a Mackey functor for G. Under the identification M ↓GH (Y ) = M(Y ↑GH
), the action of b ↓GH on M ↓GH (Y ) is equal to the action of b on M(Y ↑GH). In
particular if b acts as the identity on M , then b↓GH acts as the identity on M ↓GH .

(iii) Let L be a Mackey functor for H and a ∈ B(H). Under the identification
gL(Y ) = L(g

−1
Y ), the action of ga on gL(Y ) is equal to the action of a on

L(g
−1
Y ). In particular if a acts as the identity on L, then ga acts as the identity

on gL.

Proof. (i) By linearity, we can assume that b is equal to some G-set Z. The action
of Z on L↑GH (X) is the composite

L↑GH (X)
(L↑G

H)∗(pr2)−→ L↑GH (Z ×X)
(L↑G

H)∗(pr2)−→ L↑GH (X) ,

which, by definition of induction, is equal to

L(X ↓GH)
L∗(pr2↓

G
H)−→ L((Z ×X)↓GH)

L∗(pr2↓
G
H)−→ L(X ↓GH) .

This is the action of Z ↓GH , as required.
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(ii) Again we can assume that b is equal to a G-set Z. The action of Z ↓GH on
M ↓GH (Y ) is the composite

M ↓GH (Y )
(M↓G

H)∗(pr2)−→ M ↓GH (Z ↓GH ×Y )
(M↓G

H)∗(pr2)−→ M ↓GH (Y ) ,

which, by definition of restriction, is equal to

M(Y ↑GH)
M∗(pr2↑

G
H)−→ M((Z ↓GH ×Y )↑GH)

M∗(pr2↑
G
H)−→ M(Y ↑GH) .

Now there is a canonical isomorphism of G-sets (Z ↓GH ×Y ) ↑GH∼= Z × Y ↑GH , and
the map pr2 ↑GH corresponds simply to the second projection pr2. Therefore the
composite above is equal to

M(Y ↑GH)
M∗(pr2)−→ M(Z × Y ↑GH)

M∗(pr2)−→ M(Y ↑GH) ,

which is the action of Z, as required.
(iii) The proof is straightforward. �

Combining Lemma 10.6 with Lemma 10.5, we obtain the following result.

(10.7) Lemma.

(i) Let L be a Mackey functor lying in MackR(N, J). Then L ↑GN lies in
MackR(G, J).

(ii) Let M be a Mackey functor lying in MackR(G, J). Then M ↓GN can be
decomposed as a direct sum M ↓GN= ⊕g∈[N\TG(J,N)/N ]Mg where Mg is a
Mackey functor in MackR(N, gJ).

(iii) Let L be a Mackey functor lying in MackR(N, J). Then gL lies in MackR(gN, gJ).
(iv) Let L be a Mackey functor lying in MackR(N, J). If g−1 /∈ TG(J,N), then

L↓NN∩gN= 0, while L↓NN∩gN lies in MackR(N ∩ gN, J) if g−1 ∈ TG(J,N).

Proof. (i) Since fNJ acts on L as the identity, fGJ ↓GN=
∑
g∈[N\TG(J,N)/N ] f

N
gJ also

acts on L as the identity (because for g /∈ N , the idempotent fNgJ is orthogonal
to fNJ , hence acts by zero). By Lemma 10.6 (i), this implies that fGJ acts as the
identity on L↑GN .

(ii) Since fGJ acts on M as the identity, fGJ ↓GN=
∑
g∈[N\TG(J,N)/N ] f

N
gJ acts as

the identity on M ↓GN , by Lemma 10.6 (ii). The result follows by setting Mg =
fNgJ ·M ↓GN .

(iii) This is straightforward by Lemma 10.6 (iii).
(iv) This is immediate by Lemma 10.6 (ii) and Lemma 10.5 (iv). �

(10.8) Remark. Part (i) holds more generally for an arbitrary subgroup H of G
containing J : if L lies in MackR(H,J), then L↑GH lies in MackR(G, J). The proof is
similar and is based on the observation that fHJ appears necessarily as an orthogonal
summand of the idempotent fGJ ↓GH .

We know now that the induction functor maps MackR(N, J) into MackR(G, J)
and we have to show that this is an equivalence. Let us denote this induction
functor by

I : MackR(N, J)→ MackR(G, J) .
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Now consider the functor

R : MackR(G, J)→ MackR(N, J) ,

defined as the composite of the restriction functor and the multiplication by the
idempotent fNJ . In the notation of Lemma 10.7 (ii), we have R(M) = M1. As
the induction and restriction functors are adjoint on both sides, we also have that
R is both the left and the right adjoint of I. Indeed, for L in MackR(N, J),
any morphism L → M ↓GN factorizes necessarily through fNJ ·M ↓GN= R(M), and
similarly for a morphism M ↓GN→ L (because any morphism commutes with the
action of the central idempotent fNJ ). We shall prove the desired equivalence by
showing that the units and counits of the adjunctions are isomorphisms. Thus we
need to describe them explicitly.

For a G-set X, let

pX : X ↓GN↑GN→ X , (g, x) 7→ gx

be the canonical map. (Via the identification X ↓GN↑GN∼= G/N ×X, the map pX is
just the second projection.) For an N -set Y , let

iY : Y → Y ↑GN↓GN , y 7→ (1, y)

be the canonical map. Let M be a Mackey functor for G and L a Mackey functor
for N . From Proposition 4.2 in [20], we know that the units and counits for the
adjunctions between induction and restriction are the following morphisms:

M∗(pX) : M ↓GN↑GN (X) = M(X ↓GN↑GN ) −→ M(X),

L∗(iY ) : L(Y ) −→ L↑GN↓GN (Y ) = L(Y ↑GN↓GN ),

L∗(iY ) : L↑GN↓GN (Y ) = L(Y ↑GN↓GN ) −→ L(Y ),

M∗(pX) : M(X) −→ M ↓GN↑GN (X) = M(X ↓GN↑GN ).

The units and counits of the adjunctions between R and I are obtained from the
units and counits above by composing them either with one of the inclusions

j(M ↓GN ) : R(M)→M ↓GN , j(L↑GN↓GN ) : R(L↑GN )→ L↑GN↓GN ,

or with one of the projections

m(fNJ ) : M ↓GN→ R(M) , m(fNJ ) : L↑GN↓GN→ R(L↑GN ) ,

where m(fNJ ) denotes the multiplication by fNJ . Therefore we obtain the following
four morphisms:

εM : IR(M)
j(M↓G

N )↑G
N−→ M ↓GN↑GN

M∗(p)−→ M,

σL : L
L∗(i)−→ L↑GN↓GN

m(fN
J )−→ RI(L),

πL : RI(L)
j(L↑G

N↓
G
N )−→ L↑GN↓GN

L∗(i)−→ L,

ηM : M
M∗(p)−→ M ↓GN↑GN

m(fN
J )↑G

N−→ IR(M).

Of course M∗(p) denotes the morphism which, on evaluation on a G-set X, is equal
to the map M∗(pX) described above (and similarly with M∗(p), L∗(i) and L∗(i)).

The following lemma summarizes our discussion.
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(10.9) Lemma. The functor

R : MackR(G, J)→ MackR(N, J)

is both the right and the left adjoint of the induction functor

I : MackR(N, J)→ MackR(G, J).

The units and counits of the adjunctions are given by the four morphisms εM , σL,
πL and ηM .

Our aim is to prove that the unit of each adjunction is the inverse of the counit
of the other adjunction. This will establish that R and I are inverse equivalences.

(10.10) Lemma. πL σL = idL.

Proof. We have L∗(i) = j(L ↑GN↓GN )σL because L∗(i) : L → L ↑GN↓GN factorizes
through the inclusion j(L↑GN↓GN ) : RI(L)→ L↑GN↓GN . Therefore

L∗(i)L∗(i) = L∗(i) j(L↑GN↓GN )σL = πL σL ,

and it suffices to show that L∗(i)L∗(i) = idL. This is a general property of Mackey
functors. By the Mackey decomposition formula 5.3, we have

Y ↑GN↓GN=
⋃

g∈[N\G/N ]

gY ↓
gN
gN∩N↑NgN∩N= Y ∪ Y ′ ,

where Y ′ is the direct sum running over all non-trivial double cosets. Moreover the
map iY : Y → Y ↑GN↓GN is just the inclusion into the first summand. By applying
L∗ , we see that

L∗(iY ) : L(Y )→ L(Y ⊕ Y ′) = L(Y )⊕ L(Y ′)

is the inclusion into the first summand. Similarly,

L∗(iY ) : L(Y ⊕ Y ′) = L(Y )⊕ L(Y ′)→ L(Y )

is the first projection. Therefore L∗(iY )L∗(iY ) = idL(Y ) as required. �

(10.11) Lemma. σL πL = idRI(L) .

Proof. By Lemma 10.7, we know that L↑GN lies in MackR(G, J) and that

L↑GN↓GN=
⊕

g∈[N\TG(J,N)/N ]

Lg

where Lg is a Mackey functor in MackR(N, gJ). Moreover L1 = RI(L). On the
other hand, by the Mackey decomposition formula, we have

L↑GN↓GN=
⊕

g∈[N\G/N ]

gL↓
gN
gN∩N↑NgN∩N .
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Moreover the first term in this sum is isomorphic to L. Finally the inclusion of L
into L ↑GN↓GN followed by the projection onto L1 = RI(L) is precisely the natural
morphism σL : L→ L1, which is a split injection by Lemma 10.10.

We claim that the two decompositions of L ↑GN↓GN above coincide, in the sense
that

gL↓
gN
gN∩N↑NgN∩N=

{
Lg if g ∈ TG(J,N),
0 otherwise.

This implies in particular that the split injection σL : L → L1 is an isomorphism,
which establishes the lemma.

To prove the claim, we note that by Lemma 10.7 (iv), L↓NN∩g−1N= 0 whenever
g /∈ TG(J,N), while L ↓NN∩g−1N lies in MackR(N ∩ g−1N, J) if g ∈ TG(J,N).
Conjugating by g and using Lemma 10.7 (iii), we obtain that gL ↓gN

gN∩N= 0 if
g /∈ TG(J,N) and that gL↓gN

gN∩N lies in MackR(gN ∩N, gJ) if g ∈ TG(J,N). Now
gN∩N is the normalizer inN of the p-perfect subgroup gJ , so by Lemma 10.7 (i), we
obtain that gL↓gN

gN∩N↑NgN∩N lies in MackR(N, gJ). This proves that every summand
in the second decompositon of L ↑GN↓GN above either is zero (when g /∈ TG(J,N))
or is exactly the summand belonging to MackR(N, gJ) (when g ∈ TG(J,N)). This
completes the proof of the claim. �

(10.12) Lemma. εM ηM = idM .

Proof. We have to show that

M
M∗(p)−→ M ↑GN↓GN

m(fN
J )↑G

N−→ M ↑GN↓GN
M∗(p)−→ M

is the identity. By Lemma 9.8, we know that this is equal to the action of the
element fNJ ↑GN of B(G). Now Lemma 10.5 (ii) asserts that fNJ ↑GN= fGJ , which by
assumption acts as the identity on M . �

There remains to show that ηM εM = idIR(M). But this is a consequence of the
following general lemma, because we already know that εM ηM = idM and that πL
is an isomorphism.

(10.13) Lemma. Let A and B be two categories. Let R : A → B and I : B → A
be two functors such that R is the left adjoint of I. Let η : idA → IR and
π : RI → idB be the unit and counit of the adjunction. Suppose that:

(i) εM ηM = idM for each M ∈ A, where εM : IR(M)→M is some morphism
in A.

(ii) πL is an isomorphism for each L ∈ B.
Then ηM is an isomorphism for each M ∈ A (and so the categories A and B are
equivalent).

Proof. One of the consequences of the existence of an adjunction is that for each
M ∈ A, the composite

R(M)
R(ηM )−→ RIR(M)

πR(M)−→ R(M)

is the identity. Since πR(M) is an isomorphism by assumption (ii), we also have that
R(ηM )πR(M) is the identity (of RIR(M)). Since εM ηM = idM by assumption (i),
we have R(εM )R(ηM ) = idR(M) and therefore

(10.14) R(εM ) = R(εM )R(ηM )πR(M) = πR(M) .
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The morphism ηM εM : IR(M)→ IR(M) corresponds by adjunction to the com-
posite

πR(M)R(ηM εM ) : RIR(M)→ R(M) ,

which by 10.14 is equal to

πR(M)R(ηM )R(εM ) = R(εM ) = πR(M) = πR(M)R(idIR(M)) .

But this is the correspondent of idIR(M) by the adjunction, and it follows that
ηM εM and idIR(M) are equal, since they correspond to the same morphism by
adjunction. This shows that εM is the inverse of ηM . �

The proof of part (ii) of Theorem 10.1 is now complete.

11. Vertices, sources and Green correspondents
of projective and simple Mackey functors

In this section we will assume that the coefficient ring is a field k (or more
generally a complete discrete valuation ring). Recall from Sasaki [17] that in this
situation every indecomposable Mackey functor M has a vertex vx(M), namely
a unique minimal subgroup (up to conjugacy) relative to which it is projective.
Sasaki also proved that Green correspondence works in this situation, so that if
H = vx(M) and K is a subgroup containing NG(H) then M ↓GK has a unique
summand f(M) with vertex H, and if L is a Mackey functor for K with vertex H
then L↑GK has a unique summand g(L) with vertex H, the correspondences f and
g being mutually inverse.

We will identify completely the vertices, sources and Green correspondents men-
tioned in the title. Coming from the background of group representation theory
one would be inclined to think that the projective Mackey functors are the same
as the Mackey functors which are projective relative to the identity subgroup, but
this is not so. If M is 1-projective (over a field), then it is indeed the case that M
is projective, but the converse does not hold. In fact for every subgroup H of G
there is a projective Mackey functor whose vertex is H, as our first result shows.

Throughout this section, we shall often use superscripts to indicate for which
group a Mackey functor is considered. Thus for instance SKH,V is the simple Mackey
functor for K corresponding to the pair (H,V ).

(11.1) Proposition. Let H ≤ G and let V be a simple kNG(H)-module.
(i) The indecomposable projective PH,V has vertex H.
(ii) Let J = Op(H) and let fJ be the idempotent of the Burnside algebra B(H)

corresponding to J (as in Theorem 9.3). Then PHH,k = fJ · BH is a source
of PH,V . In particular, if H is a p-group, then BH is a source of PH,V .

Proof. (i) Since PH,V is a summand of BH ↑GH by 8.7(ii), the subgroup H contains
a vertex of PH,V . Suppose that PH,V is a summand of M ↑GK for some Mackey
functor M , where K < H. Then there exists a non-zero morphism M ↑GK→ SH,V
and hence a non-zero morphism M → SH,V ↓GK by adjointness of induction and
restriction. But from the description of the simple Mackey functors, SH,V ↓GK is the
zero Mackey functor, a contradiction.

(ii) Since PH,V is a summand of BH ↑GH , the source of PH,V has the form f ·BH
for some idempotent f of B(H), by 9.3. By the argument of (i), there is a non-
zero morphism f · BH → SH,V ↓GH . But SH,V ↓GH vanishes below H, hence is a
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direct sum of copies of SHH,k . Therefore the projective Mackey functor f ·BH must
be the projective cover of SHH,k and this means that f = fJ by 9.11. Finally, in
case H is a p-group, then f1 is already primitive in B(H), by 9.3 (or 8.10), and
f1 ·BH = BH . �

Now we consider Green correspondents of projective Mackey functors.

(11.2) Proposition. Let K be a subgroup of G which contains NG(H). The Green
correspondent of PGH,V is PKH,V .

Proof. We may write PKH,V ↑GK∼= g(PKH,V )⊕M where M is a Mackey functor all of
whose summands have smaller vertex thanH. Since induction preserves projectives,
by the last proposition these summands have the form PL,W with L < H. Applying
induction to the epimorphism PKH,V → SKH,V gives an epimorphism g(PKH,V )⊕M ∼=
PKH,V ↑GK→ SGH,V , using the fact that SGH,V is an induced functor. The only way we
can have such an epimorphism to a simple Mackey functor is if PGH,V is a summand,
and since this has vertex H we must have g(PKH,V ) = PGH,V . �

We turn now to the vertices and sources of simple Mackey functors. We will
need to quote Proposition 3.4.2 of [21], whose statement we now include.

(11.3) Lemma. Suppose that M is a Mackey functor which is projective relative
to a set of subgroups X , and let Y be a set of subgroups of G which is closed under
taking subgroups and conjugation. Consider the Mackey functor N whose value
at a subgroup H is defined to be N(H) =

∑
J≤H,J∈Y I

H
J M(J). Then N is also

projective relative to X .

We also need to extend the notation SH,V to non-simple modules V . If V is

an arbitrary kN(H)-module, define SN(H)
1,V (K) = trK1 (V ) ⊆ V K = FPV (K). Thus

S1,V is a subfunctor of FPV . Then define

SH,V = SGH,V = (InfN(H)

N(H)
S
N(H)
1,V )↑GN(H) .

It is not difficult to see that SH,V is generated by SH,V (H) = V . This follows
exactly as in the proof of part (i) of Lemma 8.1 in [20]. A consequence of this
fact is that SH,V is indecomposable if and only if V is an indecomposable kN(H)-
module, using also Proposition 3.2 of [20].

(11.4) Proposition.
(i) For any indecomposable kG-module W , the vertices of FPW , FQW and W

are the same.
(ii) Let SGH,V be a simple Mackey functor, and let K be a subgroup of G with

H ≤ K ≤ NG(H) such that K/H is a vertex of V . Then K is a vertex of
SGH,V .

(iii) Let moreover U be a source of V . Then the indecomposable Mackey functor
SKH,U is a source of SGH,V .

Proof. (i) We rely on the fact that induction of Mackey functors commutes with
all of FP , FQ and evaluation at 1. Let K be a vertex of W . Then since W is
a summand of W ↑GK we have that FPW is a summand of FPW↑G

K

∼= FPW ↑GK .
Hence K contains a vertex L of FPW . On the other hand, the split epimorphism
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FPW ↑GL→ FPW on evaluation at the identity subgroup is a split epimorphism
W ↑GL→W , and hence L must be K. The proof for FQW is similar.

(ii) Since SGH,V = (InfN(H)

N(H)
S
N(H)
1,V ) ↑GN(H) is an induced functor, it follows that

a vertex of InfN(H)

N(H)
S
N(H)
1,V as a Mackey functor for N(H) is also a vertex of SGH,V .

Evidently this will be the preimage in N(H) of a vertex of SN(H)
1,V . By this means

we reduce to the case that H = 1, so we consider a simple Mackey functor S1,V .
A vertex L of S1,V must always contain a vertex K of V since the split epimor-

phism S1,V ↓GL↑GL→ S1,V on evaluation at 1 gives a split epimorphism V ↓GL↑GL→ V .
On the other hand FPV is projective relative to K by part (i) and S1,V is con-
structed as in 11.3 on taking M = FPV , Y = {1} so it follows by 11.3 that S1,V is
also projective relative to K. Thus L = K.

(iii) By the same reduction argument as in (ii), we are left with the case H = 1.
Since V is a summand of U ↑GK , FPGV is a summand of FPG

U↑G
K

∼= FPKU ↑GK . Now by

the definition of SG1,V , it is clear that SG1,V is a summand of SG
1,U↑G

K
= SK1,U ↑GK . The

detailed proof of the latter equality is left to the reader. Since we already know
that K is a vertex of SG1,V , the argument suffices to guarantee that SK1,U is a source
of SG1,V . �

Finally we show that the Green correspondents of simple Mackey functors are
determined by the Green correspondents of the corresponding modules. We first
need a lemma.

(11.5) Lemma. Let K be a normal subgroup of G and let K ≤ J ≤ G. Let M be
an indecomposable Mackey functor for J with vertex K. Then every indecomposable
summand of M ↑GJ has vertex K.

Proof. Let N be a source of M . Since M is a summand of N ↑JK , the functor M ↓JK
is a summand of

N ↑JK↓JK=
⊕

h∈[J/K]

hN .

Thus M ↓JK is a direct sum of conjugates of N .
Now let L be an indecomposable summand of M ↑GJ . Then L↓GK is a summand

of
M ↑GJ↓GK=

⊕
g∈[K\G/J]

gM ↓
gJ
K=

⊕
g∈[G/J]

g(M ↓JK)

and so every summand of L ↓GK is a conjugate of N . After conjugation, it follows
that N is a summand of L ↓GK . Since we also have that L is a summand of N ↑GK
and since N is its own source, N must be a source of L. In particular K is a vertex
of L. �

(11.6) Proposition. Let SGH,V be a simple Mackey functor for G and let K/H be a
vertex of V . Let W be the Green correspondent of V , a module for NN(H)/H(K/H) =
N(H,K)/H, where N(H,K) = N(H)∩N(K). Then the Mackey functor for N(K)
which is the Green correspondent of SGH,V is equal to SN(H,K)

H,W ↑N(K)
N(H,K) .

Proof. The functor V 7→ S1,V from modules to Mackey functors is additive and the
proof of 11.4 shows that it preserves vertices. It follows easily that SN(H,K)/H

1,W is
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the Green correspondent of SN(H)/H
1,V . Applying inflation from N(H)/H to N(H),

one obtains that SN(H,K)
H,W is the Green correspondent of SN(H)

H,V . Therefore

S
N(H,K)
H,W ↑N(H)

N(H,K)
∼= S

N(H)
H,V ⊕ T

where each summand of T has vertex smaller than K.
Let M = S

N(H,K)
H,W ↑N(K)

N(H,K) . Then

(∗) M ↑GN(K)= S
N(H,K)
H,W ↑GN(H,K)

∼= SGH,V ⊕ T ↑GN(H) .

By 11.5, every indecomposable summand of M has vertex K. By Green correspon-
dence, each such summand corresponds to an indecomposable summand ofM ↑GN(K)

with vertex K. But we have just seen that SGH,V is the only summand of M ↑GN(K)

with vertex K. It follows that M is indecomposable and (∗) shows that M is the
Green correspondent of SGH,V . �

12. Projective Mackey functors indexed by p-subgroups

In this section our coefficient ring will be a field k of characteristic p > 0. We
analyse the relationship between the projective Mackey functors PH,V where H
is a p-group, and their evaluations at the trivial subgroup 1. This provides a
bijection between these projectives and indecomposable trivial source modules, i.e.
the indecomposable summands of permutation modules. Also there is a strong
connection with Hecke algebras, by which we mean the k-algebras EndkG(k↑GH).

For completeness, we mention that the case of arbitrary projective Mackey func-
tors reduces to the situation analyzed in this section, thanks to the equivalence of
categories 10.1. Indeed if PGH,V is the projective cover of SGH,V , then by 9.6, SGH,V
lies in Mackk(G, J) where J = Op(H) and therefore so does PGH,V . By the equiv-

alence 10.1, SGH,V corresponds to SN(J)
H/J,V (because we have SGH,V = S

N(H)
H,V ↑GN(H))

and since N(H) ≤ N(J), we obtain

SGH,V = S
N(J)
H,V ↑

G
N(J)= (InfN(J)

N(J)
S
N(J)
H/J,V )↑GN(J) .

Therefore PGH,V corresponds to PN(J)
H/J,V under the equivalence and since H/J is a

p-group, we are in the situation of this section.
The following lemma is well known, but we give the proof for the sake of com-

pleteness.

(12.1) Lemma. Let H be a p-group. Then FPk↑G
H

(H) ∼= kNG(H) as
kNG(H)-modules.

Proof. We have a decomposition k↑GH↓GH=
⊕

x∈[H\G/H] k↑HHx∩H and each summand
has a 1-dimensional fixed point set which is spanned by trHHx∩H 1. In FPk↑G

H
(H)

there remain only the terms which are not traces from proper subgroups. These
arise when Hx ∩H = H, i.e. x ∈ NG(H), so FPk↑G

H
(H) =

⊕
x∈[NG(H)/H] k and the

action of NG(H)/H on these summands is to permute them regularly. �
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(12.2) Corollary. Let H be a p-subgroup of G and V a simple kNG(H)-module.
(i) The simple Mackey functor SH,V always occurs as a composition factor

of FPk↑G
H
.

(ii) PH,V (1) 6= 0. There exists a simple kG-module W such that S1,W is a
composition factor of PH,V . Equivalently, SH,V is a composition factor
of P1,W .

Proof. (i) Every simple kNG(H)-module V is a composition factor of kNG(H)
and so by applying Proposition 6.2 we obtain that SH,V is a composition factor
of FPk↑G

H
.

(ii) By (i) there exists a non-zero morphism PH,V → FPk↑G
H

. By the adjoint
property of the fixed point functor this means that there exists a non-zero morphism
PH,V (1)→ k ↑GH , and so we must have PH,V (1) 6= 0. Now if W is any composition
factor of PH,V (1), it follows by 6.3 that S1,W is a composition factor of PH,V . The
final assertion follows by symmetry of the Cartan matrix. �

(12.3) Lemma. For any subgroup H there is an isomorphism

BH ↑GH (1) ∼= k↑GH

as kG-modules.

Proof. This is a consequence of the facts that BH(1) = B(1) ∼= k and that induction
commutes with evaluation at 1 by 5.2. �

(12.4) Lemma. For any projective Mackey functor P , the morphisms
FQP (1) → P and P → FPP (1) which extend the identity map at the level of the
identity subgroup are, respectively, a monomorphism and an epimorphism.

Proof. We prove that the first of these morphisms is a monomorphism. It suffices
to assume P is indecomposable. Since P is a direct summand of one of the functors
BH ↑GH , it suffices to prove the result when P = BH ↑GH , and we will make this
assumption. Now BH ↑GH (1) = k ↑GH and FQk↑G

H

∼= FQk ↑GH by 5.2, so the first of
these morphisms is FQk ↑GH→ BH ↑GH . We claim that this morphism is (FQk →
BH) ↑GH . This is because both morphisms are uniquely determined by their effect
at the identity subgroup, and at that level they are both the identity morphism.
Because ↑GH is an exact functor it suffices to show that the morphism FQk → BH of
Mackey functors for H is a monomorphism. But at the level of a subgroup K ≤ H
this morphism is

FQk(K)→ BH(K)

1 7→ K/1

since in the functor FQk we have IK1 (1) = 1. This is evidently injective.
The argument that the second morphism is an epimorphism is similar. We reduce

to showing that BH → FPk is an epimorphism of Mackey functors for H. At the
level of a subgroup K ≤ H this morphism is

BH(K)→ FPk(K)

K/J 7→ |K/J |

which is seen to be surjective because K/K maps to 1. �



48 JACQUES THEVENAZ AND PETER WEBB

(12.5) Corollary. For every indecomposable projective Mackey functor P , the
kG-module P (1) is indecomposable.

Proof. Suppose P (1) = A⊕B with A and B non-zero. Then FPP (1) = FPA⊕FPB .
But P → FPP (1) is epi and any image of P is indecomposable since it has a simple
top. Hence P (1) cannot decompose. �

Our aim at the moment is to prove Theorem 12.7, but as a preliminary we first
prove a special case.

(12.6) Lemma. Let PH,V be an indecomposable projective Mackey functor where
H is a normal p-subgroup of G. Then PH,V (1) is the projective cover as a k[G/H]-
module of V , inflated to G. In particular, PH,V and PH,V (1) both have vertex
H.

Proof. PH,V (1) is an indecomposable summand of

BH ↑GH (1) = k↑GH= k[G/H],

and the summands of this module are exactly the projective covers over k[G/H]
of the simple k[G/H]-modules, so PH,V (1) is one of these. We show that there
is an epimorphism PH,V (1) → V as NG(H)/H-modules, and that will show that
PH,V (1) is the projective cover of V . We do know from 12.4 that the unique simple
image of PH,V as a Mackey functor is also an image of FPPH,V (1), so we have an
epimorphism FPPH,V (1) → SH,V . Evaluating this at H we obtain an epimorphism

PH,V (1)H = PH,V (1)→ V

as required. �

(12.7) Theorem. Let PH,V be an indecomposable projective Mackey functor.
(i) If H is not a p-group then PH,V (1) = 0.
(ii) If H is a p-group then PH,V (1) is a non-zero indecomposable summand

of k↑GH . In fact PH,V (1) is the trivial source module with vertex H which is
the Green correspondent g(PV ), where PV is the projective cover of V as a
kNG(H)-module, which we regard as a kNG(H)-module by inflation.

Proof. (i) The projective PH,V lies in Mackk(G,Op(H)) by 11.1(i) and 9.7, and so
if H is not a p-group then PH,V (1) = 0 by 9.5.

(ii) Since the Green correspondent of PGH,V is P
NG(H)
H,V by 11.2, we have

P
NG(H)
H,V ↑GNG(H)

∼= PGH,V ⊕M where M is a Mackey functor all of whose summands

have vertex smaller than H. Thus PNG(H)
H,V ↑GNG(H) (1) = PGH,V (1)⊕M(1) and since

induction commutes with evaluation at 1, M(1) is a module all of whose summands
have vertex smaller than H. Furthermore we may write the left hand side of the
last equation as (PNG(H)

H,V (1))↑GNG(H). Because H is a normal p-subgroup of NG(H),

Lemma 12.6 applies and we have PNG(H)
H,V (1) = PV , the projective cover of V . Now

PV ↑GNG(H)= g(PV ) ⊕ A, where A is a module all of whose summands have vertex
smaller than H. Combining the above, we have an equation

PGH,V (1)⊕M(1) = g(PV )⊕A

and equating the only two modules which have vertexH we obtain PGH,V (1) ∼= g(PV )
as required. �
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(12.8) Corollary. Let H be a p-subgroup of G.

(i) The vertices of PH,V and PH,V (1) are the same.
(ii) PH,V ∼= PK,W as Mackey functors if and only if PH,V (1) ∼= PK,W (1) as

kG-modules.

Proof. (i) The vertex of PH,V (1) is H. By 11.1 this is also the vertex of PH,V .
(ii) If PH,V (1) ∼= PK,W (1) as kG-modules then K and H are conjugate since

they are vertices of the module concerned. Now V and W are determined as the
unique simple image of a Green correspondent of PH,V (1), and hence they are
isomorphic. �

(12.9) Corollary. Let H be a p-subgroup of G. The indecomposable summands of
BH ↑GH biject with the indecomposable summands of k↑GH . In fact if BH ↑GH=

⊕
Pi

is a direct sum decomposition into indecomposable projective Mackey functors then
k↑GH=

⊕
Pi(1) is a direct sum decomposition into indecomposable kG-modules.

Proof. If PK,W is an indecomposable summand of BH ↑GH then K is conjugate to a
subgroup of H by 8.7(i), so is a p-group. Thus PK,W (1) is a non-zero indecompos-
able kG-module by 12.2 and 12.5, and the result follows. �

As an example of this connection between trivial source modules and Mackey
functors we state a result due to Alperin, having to do with weights. In this context
a weight is a pair (H,V ) where H is a p-subgroup of G and V is a projective
kNG(H)-module.

(12.10) Proposition. Let k be a field of characteristic p and let Q be a Sylow
p-subgroup of G. Suppose that (H,V ) is a weight for G. Then

(i) PH,V is a summand of BQ ↑GQ with non-zero multiplicity.
(ii) ( [2, Lemma 1]) Regarding V as a kNG(H)-module by inflation, the Green

correspondent g(V ) is a summand of k↑GQ with non-zero multiplicity.

Proof. (i) By virtue of 8.6 we need to show that SH,V (Q) 6= 0, which we do using
8.8. Since H is a p-subgroup, there exists g ∈ G with Hg ⊆ Q and it suffices to
show that trNgQ(H)/H

1 (V ) 6= 0. But NgQ(H)/H is a p-group so, being projective,
V is a direct sum of copies of k[NgQ(H)/H], from which it follows that the trace
from the identity is non-zero.

(ii) follows from (i) by evaluation at 1 using 12.7(ii). �

We now make the connection with Hecke algebras.

(12.11) Theorem. Let H be a p-subgroup of G. The ring homomorphism

s : EndMackk(G)(BH ↑GH)→ EndkG(k↑GH)

given by evaluation at 1 is surjective. Its kernel lies in the radical of
EndMackk(G)(BH ↑GH). It follows that every idempotent of EndkG(k↑GH) lifts through
s to an idempotent of EndMackk(G)(BH ↑GH).

Proof. Evidently every Mackey functor endomorphism of BH ↑GH at the level of the
subgroup 1 is a kG-module endomorphism of BH ↑GH (1) ∼= k↑GH , and this gives the
definition of s.
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We show that s is surjective. As abelian groups there is a decomposition

Hom(BH ↑GH , BH ↑GH) ∼= Hom(BH , BH ↑GH↓GH)

∼=
⊕

x∈[H\G/H]

Hom(BH , cx(BH ↓HHx∩H)↑HH∩xH)

∼=
⊕

x∈[H\G/H]

Hom(BH ↓HH∩xH , B
H ↓HH∩xH)

∼=
⊕

x∈[H\G/H]

Hom(BH∩
xH , BH∩

xH).

There is a similar decomposition

Hom(kH ↑GH , kH ↑GH) ∼=
⊕

x∈[H\G/H]

Hom(k, k)

of EndkG(k ↑GH) which gives the basis for this endomorphism ring attributed to
Schur. The ring homomorphism s respects the terms in these decompositions, and
on each summand it is the surjection End(BH∩

xH) → End(k) which sends the
identity mapping to the identity. Evidently this is surjective.

We now show that the kernel of s is contained in the radical. This follows from
the fact that the kernel contains no non-zero idempotent: for if the kernel did
contain a non-zero idempotent, the idempotent would correspond to a summand of
BH ↑GH with zero evaluation at 1. By 12.9 this cannot happen. �

We conclude this section with a remark that the connection between trivial
source modules and projective Mackey functors allows us to give a proof of the
well-known fact that trivial source modules are liftable from characteristic p to
characteristic 0. Namely, if O is a complete discrete valuation ring with residue
field k of characteristic p, then any indecomposable trivial source kG-module T is a
summand of k↑GH where H = vx(T ). Thus T = PH,V (1) for V as specified by 12.7,
and now P̂H,V (1) is an OG-module which lifts T , using the fact that projectives
lift.

13. Projective Mackey functors indexed by the trivial subgroup

Throughout this section we will work with Mackey functors defined over a field
k of characteristic p. Our main result asserts that for each simple kG-module V we
have P1,V

∼= FPPV
∼= FQPV

where PV denotes the projective cover of V as a kG-
module. This immediately gives us a direct way to compute the structure of these
Mackey functors, and we may also deduce some general facts, for example that P1,V

is an injective Mackey functor, as well as a projective one. This is not the case for
arbitrary projectives PH,V as we shall see in Section 19. The result may be extended
in two directions, the first being to the case when R = O is a complete discrete
valuation ring with residue field k. We may conclude that P̂1,V

∼= FPP̂V

∼= FQP̂V

using hats to denote the projective covers over the discrete valuation ring, since
FPP̂V

and FQP̂V
are liftings to O of FPPV

and FQPV
. The other direction in

which the result can be immediately extended is to a description of the projectives
PJ,V where J is a p-perfect subgroup of G. We use the equivalence of categories
given in 10.1 to deduce that PJ,V = (InfN(J)

N(J)
FPPV

) ↑GN(J), where now PV denotes

the projective cover of V as a kN(J)-module.
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(13.1) Proposition. Let k be a field, and let V be a kG-module. Conditions (i)
– (vi) are equivalent.

(i) V is a projective module (or equivalently an injective module).
(ii) FPV ∼= FQV .
(iii) FPV is an injective Mackey functor.
(iv) FQV is a projective Mackey functor.
(v) FPV is a projective Mackey functor.
(vi) FQV is an injective Mackey functor.

If we suppose further that V is a simple module, then (i) – (vi) are equivalent to:
(vii) S1,V = FPV .
(viii) S1,V is a projective Mackey functor.
(ix) S1,V is an injective Mackey functor.

Proof. (i) ⇒ (ii) There is an isomorphism ν : FQV → FPV given at each sub-
group H by νH =

∑
h∈H h : VH → V H . It is well known that νH is an isomorphism

for each subgroup H. Also one checks that ν is a natural transformation of Mackey
functors.

(ii) ⇒ (i) There is nothing to prove unless k has characteristic p > 0, so we will
assume this. The induction maps for FQV are all surjective, which means that if
we have an isomorphism FPV ∼= FQV then the induction map IH1 =

∑
h∈H h for

FPV is always surjective. In particular this holds when H is a Sylow p-subgroup of
G so that, as is well-known, V is projective on restriction to a Sylow p-subgroup,
and hence V is projective as a kG-module.

(i) ⇒ (iii) Suppose that θ : FPV →M is a monomorphism of Mackey functors.
We construct a splitting as follows. Evaluating at the identity subgroup gives a
monomorphism V → M(1), which is split by some map η(1) : M(1) → V since
V is injective. By adjointness this extends to a map η : M → FPV such that the
composite ηθ is the identity on V = FPV (1). But any endomorphism of FPV is
determined by its effect on V , so ηθ = 1.

(iii)⇒ (i) Suppose we are given a module monomorphism V →W . This extends
to a Mackey functor morphism FPV → FPW which is a monomorphism since for
every subgroup H, V H →WH is injective. Since FPV is injective the morphism of
Mackey functors splits. At the level of the identity subgroup this gives a splitting
of the monomorphism V →W . Hence V is injective, and also projective.

(i) ⇔ (iv) is similar to (i) ⇔ (iii).
(i) ⇒ (v) Suppose we have an epimorphism of Mackey functors θ : M → FPV .

We construct a splitting as follows. Evaluating at the identity subgroup gives an
epimorphism M(1) → V , which is split by some map η(1) : V → M(1) since V
is projective. By adjointness this extends to a map η : FQV → M , and now by
part (ii) we have an isomorphism ν : FQV → FPV which is also the identity at 1,
so we have ην−1 : FPV → M such that the composite θην−1 is the identity on
V = FPV (1). But any endomorphism of FPV is determined by its effect on V , so
θην−1 = 1.

(v) ⇒ (i) Suppose that FPV is projective. The natural map FQV → FPV is
injective by 12.4, so that FQV is isomorphic to a subfunctor of FPV . It follows
that the restriction morphisms RH1 for FQV are injective for every subgroup H
of G, since the same is true of FPV . But RH1 is the morphism on fixed quotients
induced by

∑
h∈H h, and it is well-known that these morphisms are all injective if

and only if V is projective.
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(i) ⇔ (vi) follows from (i) ⇔ (v) and duality.
(i)⇔ (vii) Both conditions are equivalent to the condition that the transfer map

IH1 : V → V H is surjective for all subgroups H.
(i) ⇒ (viii) follows by combining conditions (v) and (vii).
(viii) ⇒ (i) The epimorphism FQV → S1,V must split and so FQV ∼= S1,V ⊕M

for some Mackey functor M . Since FQV has a unique epimorphic image we have
M = 0, and so FQV is projective. We now apply (iv) ⇒ (i).

(i)⇔ (ix) may be proved in a similar fashion, or else by using (i)⇔ (viii) together
with the isomorphism S∗1,V

∼= S1,V ∗ and the fact that these functors are projective
precisely when S1,V is injective. �

(13.2) Corollary. SH,V is a projective simple Mackey functor if and only if H is
a p-perfect subgroup of G and V is a projective simple kNG(H)-module.

Proof. Suppose first that SH,V is projective and let J = Op(H). By 9.6 and the
equivalence of categories 10.1, we know that SH,V corresponds to a projective simple
Mackey functor P for N(J). Since P (1) 6= 0 by 12.2, it follows that SH,V (J) 6= 0
and since H is a minimum subgroup of SH,V we deduce that H = J is p-perfect.

Since SH,V = (InfN(H)

N(H)
S
N(H)
1,V ) ↑GN(H) , the projective simple Mackey functor P

corresponding to SH,V is in fact SN(H)
1,V . It follows now from 13.1 that V must be

a projective module.
For the converse, if H is a p-perfect subgroup and V is a projective simple

kNG(H)-module then by 13.1 S
N(H)
1,V is a projective Mackey functor for N(H).

The equivalence of categories 10.1 tells us that SH,V is a projective Mackey functor
for G. �

An extension of result 13.2 will be given at the end of Section 17.

(13.3) Theorem. Let V be a simple kG-module. The Mackey functor projective
cover and injective envelope of S1,V coincide, and are isomorphic to both FPPV

and
FQPV

, where PV is the projective cover of V as a kG-module. In particular, P1,V

has a simple socle isomorphic to its unique simple quotient S1,V .

Proof. We first show that P1,V
∼= FPPV

. By adjointness, the epimorphism FPPV
(1) =

PV → V extends to a morphism of Mackey functors FPPV
→ FPV . Since

FPPV
∼= FQPV

this Mackey functor has the property that the maps IKH are al-
ways surjective. Hence its image in FPV also has this property, so must be S1,V .
We thus obtain an epimorphism FPPV

→ S1,V . Since FPPV
is projective by 13.1,

it follows that the projective cover P1,V is a direct summand. At the identity sub-
group this projective cover is a module which has V as an image and is a direct
summand of FPPV

(1) = PV , which is indecomposable. Hence P1,V (1) = PV . But
since the maps IHK are always surjective in FQPV

, this functor is generated by its
value at the identity subgroup by 2.4. Thus P1,V = FPPV

as claimed.
The isomorphism of FPPV

and FQPV
is given by 13.1. To obtain the injective

envelope of S1,V we dualize what we have proved so far, to obtain that the injective
envelope of S1,V ∗ is FQPV ∗ . Interchanging V and V ∗ gives the injective envelope
as FQPV

∼= P1,V . �

We may also extract from the last dualization argument the following statement.
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(13.4) Corollary. P ∗1,V ∼= P1,V ∗ .

It follows from 13.3 that P1,V is a fixed point functor. We now emphasize that
the converse holds.

(13.5) Corollary. Let H be a p-group and let U = PH,V (1) be the trivial source
module corresponding to the indecomposable projective PH,V . If H 6= 1, then PH,V
is not a fixed point functor. In particular the canonical epimorphism PH,V → FPU
(see 12.4) is not an isomorphism.

Proof. If PH,V is a fixed point functor, then PH,V → FPU is an isomorphism and
so U is a projective module by 13.1. But U has vertex H by 12.7, so H = 1. �

14. Extensions of simple Mackey functors

Throughout this section we will work over a field k. We present a major
tool in determining the Loewy series of the projective Mackey functors, which is
the calculation of the groups Ext(SH,V , SK,W ). By this notation we really mean
Ext1µk(G)(SH,V , SK,W ). The main result is 14.3 in which we show that in certain
cases this information may be obtained from the functor (InfFPW ) ↑GN(K) which
has SK,W as its simple socle and was of importance in [20] in the construction
of SK,W . It is a practical proposition to compute with this functor since everything
about it is determined by the module W , so in principle it is known. On the other
hand, to compute the Ext groups directly from PK,W is generally not possible since
one does not have a priori sufficient information about this indecomposable projec-
tive. In the remaining cases which are not covered by (InfFPW )↑GN(K) we have to
consider (InfFPPW

)↑GN(K) instead, where PW denotes the projective cover of W as
a kN(K)-module.

We start with two lemmas, the first of which is the fundamental mechanism
behind what is going on.

(14.1) Lemma. Let 0 → SK,W → M → L → 0 be an extension of Mackey
functors in which

(a) Soc(M) = SK,W , and
(b) M(H) = 0 whenever H is a proper subgroup of K.

Then M can be embedded as a subfunctor of (InfN(K)

N(K)
FPPW

) ↑GN(K), where PW is

the projective cover of W as a kN(K)-module. If we suppose further that
(c) M(K) = W ,

then M can be embedded as a subfunctor of (InfN(K)

N(K)
FPW )↑GN(K).

Proof. We first assume conditions (a) and (b). Since M has a simple socle it suffices
to show the existence of a map M → (InfN(K)

N(K)
FPPW

) ↑GN(K) which is non-zero on
the socle. Consider the bijections of maps

Hom(M, (InfN(K)

N(K)
FPPW

)↑GN(K)) ∼= Hom(M ↓GN(K), InfN(K)

N(K)
FPPW

)

∼= Hom((M ↓GN(K))
+, FPPW

)
∼= Hom((M ↓GN(K))

+(1), PW )
∼= Hom(M(K), PW )

= Hom(M(K), PW ),
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and note that the latter equality is a consequence of (b). To ensure that a map
M → (InfN(K)

N(K)
FPPW

) ↑GN(K) is non-zero on Soc(M) it is sufficient that the cor-
responding map M(K) → PW should have non-zero composite with the inclusion
W → M(K), since the image of W in M(K) is (Soc(M))(K). (In fact this con-
dition is also necessary.) But we can certainly find such a map since PW is the
injective envelope of W . This completes the proof of the first assertion.

For the second assertion we assume the extra condition (c). The argument is
the same as the one we have just given, except that we replace PW by W . At
the end we need to find a map M(K) → W which has non-zero composite with
W →M(K), but this is assured by condition (c). �

(14.2) Lemma. Let H ≤ G and let A be a kN(H)-module whose socle is simple.
Then L = (InfN(H)

N(H)
FPA) ↑GN(H) has a simple socle as a Mackey functor. It is the

subfunctor of L generated by Soc(A) ⊆ L(H) = A.

Proof. By definition of induction (see also [20, 4.3]), we have

L(H) =
⊕

g∈[H\G/NG(H)]

(InfN(H)

N(H)
FPA)(H ∩Hg) = (InfN(H)

N(H)
FPA)(H) = A .

Let N be a non-zero subfunctor of L. It suffices to show that N(H) ⊇ Soc(A). Since
N is non-zero there is a subgroup K for which N(K) 6= 0, and we may assume K ≥
H. For the functor FPA the mappings RKH are monomorphisms. After inflation
and induction it is still true for these subgroups that RKH is a monomorphism
(see [20, 4.3]), so we deduce that the image RKHN(K) is a non-zero submodule of
L(H) = A. Therefore N(H) 6= 0 and we deduce the inclusion N(H) ⊇ Soc(A). �

(14.3) Theorem. Let SH,V , SK,W be simple Mackey functors over a field k.
(i) Ext(SH,V , SK,W ) = 0 unless either H ≤G K or K ≤G H.
(ii) If H = K then

dim Ext(SH,V , SH,W ) =multiplicity of SH,V
in the second socle layer of (InfFPPW

)↑GN(H)

=multiplicity of SH,W
in the second Loewy layer of (InfFQPV

)↑GN(H).

The evaluation at H induces a morphism

Extµk(G)(SH,V , SH,W )→ ExtkN(H)(V,W )

which is injective. In particular

dim Ext(SH,V , SH,W ) ≤ dim ExtkN(H)(V,W ).

(iii) If K <G H then

dim Ext(SH,V , SK,W ) =multiplicity of SH,V
in the second socle layer of (InfFPW )↑GN(K)

=multiplicity of SH,V ∗

in the second Loewy layer of (InfFQW∗)↑GN(K).
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(iv) If H <G K then

dim Ext(SH,V , SK,W ) =multiplicity of SK,W
in the second Loewy layer of (InfFQV )↑GN(H)

= multiplicity of SK,W∗

in the second socle layer of (InfFPV ∗)↑GN(H).

Proof. Suppose we have a non-split extension 0 → SK,W → M → SH,V → 0 and
that H 6≤G K. We will show that K ≤G H. This Mackey functor M satisfies
conditions (a) and (b) of 14.1 and so M embeds in (InfN(K)

N(K)
FPPW

) ↑GN(K). But
this induced Mackey functor is only non-zero on subgroups containing K (up to
conjugacy) and so K ≤G H. This proves part (i).

We will use all the time the fact that dim Ext(SH,V , SK,W ) = n if and only if n
is the largest number r for which there is an extension

(∗) 0→ SK,W →M → (SH,V )r → 0

in which Soc(M) = SK,W .
We turn to the proof of part (ii). The statement about Loewy layers follows from

the statement about socle layers by duality. Let L = (InfN(H)

N(H)
FPPW

) ↑GN(H). By
14.1, given an extension (*) then M must appear as a subfunctor of L and so SH,V
appears at least r times in the second socle layer of L. Conversely, if SH,V appears
r times in the second socle layer of L, then because L has SH,W as its simple socle
by 14.2 it has a subfunctor M appearing in such an extension (*). This proves the
equality of dim Ext(SH,V , SH,W ) and the multiplicity of SH,V in the second socle
layer of L. To show that Extµk(G)(SH,V , SH,W ) → ExtkN(H)(V,W ) is injective,
suppose we have a non-split extension

0→ SH,W →M → SH,V → 0.

Evaluated at H this gives a short exact sequence of kN(H)-modules

0→W →M(H)→ V → 0

which we show is non-split. For if this sequence were to split, the splitting M(H)→
W would extend uniquely to a morphism M → (InfN(H)

N(H)
FPW ) ↑GN(H), using a se-

quence of adjunctions as in 14.1 and the fact thatM(H) = M(H). The image of this
morphism must be SH,W because the evaluation of the functor (InfN(H)

N(H)
FPW )↑GN(H)

at H is equal to W (by an easy computation) and so SH,W is the only composition
factor ofM which can appear in the image. Hence we have a morphismM → SH,W .
It splits the original sequence since endomorphisms of SH,W are determined by their
effect at the subgroupH, so the composite SH,W →M → SH,W is the identity, since
this is so at the level of H. We have thus shown that the morphism of Ext groups
is injective, from which the inequality on dimensions immediately follows. Alter-
natively one can prove the fact that the extension 0 → SH,W → M → SH,V → 0
splits if its evaluation at H does by applying Proposition 3.2 of [20].
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The second part of each of (iii) and (iv) follows from the first by duality. Also
(iv) follows from (iii) by duality, for the reason that if we have an extension of
Mackey functors 0 → SK,W → M → SH,V → 0 with H <G K then the sequence
0 → SH,V ∗ → M∗ → SK,W∗ → 0 is an extension to which the condition of (iii)
applies. Hence it will suffice to prove the first part of (iii), and we now do this. On
the one hand, if we have an extension (*) then by 14.1 M embeds as a subfunctor
of (InfN(K)

N(K)
FPW )↑GN(K) and therefore SH,V appears at least r times in the second

socle layer of (InfN(K)

N(K)
FPW ) ↑GN(K). Conversely, if we have r copies of SH,V in

the second socle layer of (InfN(K)

N(K)
FPW ) ↑GN(K) then there is a subfunctor M with

an extension 0 → SK,W → M → (SH,V )r → 0, and this establishes the desired
equality. �

Remark. In general we may have a strict inequality in case (ii) above when H = K,
as happens, for example, with G the cyclic group of order 2 over the field of 2
elements and H = K = 1. Here Ext(S1,k, S1,k) = 0 but dim ExtkG(k, k) = 1.

Our information about Ext groups gives another proof of the semisimplicity of
µk(G) over a field k in which |G| is invertible, a result proved in [20].

(14.4) Corollary. If |G| is invertible in the base field k, then µk(G) is semisimple.

Proof. It suffices to show that all Ext groups of simple Mackey functors are zero.
Let W be a simple kNG(K)-module. ¿From the description of simple Mackey
functors, we know that SN(K)

1,W = FPW and so SGK,W = (InfFPW ) ↑GN(K). Also
W = PW since kNG(K) is semisimple. Therefore all Mackey functors appearing in
14.3 are simple, and in particular their second socle layers are zero. �

We will now improve on Theorem 14.3, but first we need a lemma.

(14.5) Lemma. For a Mackey functor M the following are equivalent:
(i) M is H-projective,
(ii) every morphism N →M which is split epi on restriction to H is split epi.
(iii) every morphism M → N which is split mono on restriction to H is split

mono.

Proof. We prove that (i) implies (ii). Suppose that M is H-projective, and let
α : N →M be a morphism such that its restriction N ↓GH→M ↓GH is split epi, split
by a morphism β : M ↓GH→ N ↓GH . Then β ↑GH splits the top arrow in the following
commutative square:

N ↓GH↑GH
α↓G

H↑
G
H−→ M ↓GH↑GHyθ yθ

N
α−→ M.

Since M is supposed to be H-projective, θ : M ↓GH↑GH→ M is split by a map
η : M →M ↓GH↑GH , and we claim that θβ ↑GH η splits α. We verify

α θ β↑GH η = θ α↓GH↑GH β↑GH η = θ η = 1 .

The argument that (ii) implies (i) is straightforward, since the natural transfor-
mation M ↓GH↑GH→M is always split epi on restriction to H.



THE STRUCTURE OF MACKEY FUNCTORS 57

The equivalence of (i) and (iii) is similar. �

Recall that by 11.4, a vertex vx(SH,V ) of SH,V satisfies H / vx(SH,V ) and
vx(SH,V )/H = vx(V ).

(14.6) Theorem. If Ext(SH,V , SK,W ) 6= 0 then either

H ≤G K ≤G vx(SH,V )

or
K ≤G H ≤G vx(SK,W ).

In particular there is an element g ∈ G so that either H / gK or K / gH.

Proof. We already know that to have a non-split extension we must have either
H ≤G K or K ≤G H. Suppose that H ≤G K and that

0→ SK,W →M → SH,V → 0

is a non-split extension. We show that K ≤G vx(SH,V ). If not, then the restriction
of the sequence to vx(SH,V ) is the sequence

0→ 0→M ↓vx(SH,V )→ SH,V ↓vx(SH,V )→ 0

so that evidently the epimorphism shown here is split. Therefore by the last lemma
the map M → SH,V must be split epi, which is a contradiction. Therefore K ≤G
vx(SH,V ).

The argument when K ≤G H is similar. �

(14.7) Corollary. If (H,V ) is a weight, and if Ext(SH,V , SK,W ) 6= 0 then
K <G H.

Proof. If K ≥G H then by 14.6, K =G H since vx(SH,V ) = H. But by 14.3
we have Ext(SH,V , SK,W ) = 0 if K = H because its dimension is bounded by
dim ExtkN(H)(V,W ) which is zero since V is projective. The only remaining possi-
bility allowed by 14.3 is K <G H. �

15. The computation of subfunctor lattices

We illustrate the techniques which we have so far assembled by using them to
give the complete lattice of subfunctors of certain Mackey functors. In order to
have non-split extensions we will work always over a field k of characteristic p. As
our examples, we will mostly take the fixed point functors FPV , which we have
seen play a fundamental role in the determination of Mackey functor structure. We
now start with the most basic of these, namely FPk.

(15.1) Lemma. Let k be a field of characteristic p, and let H be a p-subgroup of
G. Then SH,k(K) = 0 unless some conjugate of H is a Sylow p-subgroup of K, in
which case SH,k(K) = k.

Proof. First notice that S1,k(K) = (
∑
x∈K x) · k = |K| · k, and this in non-zero

precisely if p 6
∣∣ |K|. Now

SGH,k(K) = (InfN(H)

N(H)
S
N(H)
1,k ) ↑GN(H) (K)

=
⊕

x∈[N(H)\G/K]

(InfN(H)

N(H)
S
N(H)
1,k )(N(H) ∩ xK)
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and the only non-zero terms occur when xK ⊇ H, by the definition of inflation.
Furthermore, p must not divide |(NG(H) ∩ xK) : H| = |NxK(H) : H|. By a well
known property of p-groups this happens precisely ifH is a Sylow p-subgroup of xK.
Equivalently, Hx must be a Sylow p-subgroup of K. We complete the argument by
showing that there is at most one double coset of elements x for which this happens.
For suppose Hx and Hy are both Sylow p-subgroups of K. Then Hxk = Hy for
some k ∈ K. Now xky−1 = n ∈ NG(H), so y = n−1xk ∈ NG(H)xK. �

We work with the map ψ constructed in Section 6, and we wish to refer to its
matrix taken with respect to the two bases {SH,V } and {σH,V } of its domain and
codomain. We denote this matrix by Ψ. The columns of Ψ are given by the eval-
uations SH,V (K) ∈ G0(kNG(K)) and may be computed using the explicit formula
8.8 for the simple Mackey functors. Several examples are given in Section 21.

(15.2) Corollary. Let k be a field of characteristic p. The submatrix of Ψ with
rows and columns corresponding to basis elements SH,k and σH,k where H is a
p-group, is the identity matrix.

(15.3) Corollary. Let k be a field of characteristic p.
(i) The composition factors of the Mackey functor FPk are the simple functors

SH,k, one for each conjugacy class of p-subgroups H. These are also the
composition factors of FQk.

(ii) The Mackey subfunctors L of FPk are in bijection with the sets X of p-
subgroups of G closed under conjugation and taking subgroups. The bijection
is given as follows: if L ⊆ FPk we associate

X = {H ≤ G
∣∣ H is a p-subgroup, L(H) 6= 0},

and if X is a set of p-subgroups closed under conjugation and taking sub-
groups we associate the subfunctor

L = 〈FPk(H)
∣∣ H ∈ X〉.

Proof. (i) We have

ψ(FPk) =
∑

H
up to conjugacy

σH,k =
∑

H a p-group
up to conjugacy

ψ(SH,k),

using 15.1. The result for FPk follows from the fact that ψ is an isomorphism.
Exactly the same argument works for FQk, but the composition factors may also
be deduced from those of FPk by duality.

(ii) Let us denote the mappings described in the statement by

α : L 7→ {H ≤ G
∣∣ H is a p-subgroup, L(H) 6= 0}

β : X 7→ 〈FPk(H)
∣∣ H ∈ X〉.

It is evident that α(L) is closed under conjugation, and if K ≤ H ∈ α(L) then since
RHK is the identity on FPk(H) we have L(K) 6= 0, so K ∈ α(L). We need not check
anything like this in the definition of β, since β(X ) is by definition a subfunctor of
FPk.
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To check that α and β are mutually inverse, observe that βα(N) is a subfunctor
of N , and it has at least as many composition factors as N since by our previous
computations for FPk there is one for each p-subgroup H with βα(N)(H) 6= 0.
Hence βα(N) = N .

On the other hand, given a family X of p-subgroups of G, if H is a p-subgroup
then β(X )(H) 6= 0 if and only if H ∈ X . This follows from the formula 2.4, namely

β(X )(H) =
∑
K∈X
K≤H

IHKFPk(K),

and the fact that if K and H are p-groups then IHK = 0 unless K = H. Thus
αβ(X ) = X . �

We may express 15.3(ii) by saying that FPk has a diagram (in the sense of
Alperin [1]) whose vertices are the conjugacy classes of p-subgroups of G, and
where one conjugacy class with representative K is placed below another with
representative H if K is conjugate to a subgroup of H.

A second example where we work out the full lattice of subfunctors is given at
the beginning of Section 20, where we treat the indecomposable projective Mackey
functors in the situation where G has a normal Sylow p-subgroup of order p.

As we have already seen, we may find the composition factors of any Mackey
functor by computing the matrix Ψ, but as far as deciding how the composition
factors should appear in the lattice of subfunctors we need to employ a further
technique. To assist in this we bring in the bar construction

M(H) = M(H)/
∑
K<H

IHKM(K),

which was of use in Section 6 in obtaining a sufficient condition for a simple Mackey
functor to appear as a composition factor of a Mackey functor M , and in obtaining
complete information in case M is completely reducible. We now refine this to
obtain a necessary and sufficient condition that the simple Mackey functor should
appear in the top of an arbitrary Mackey functor M , that is that it should be a
homomorphic image of M . Since any non-zero map to a simple object is necessarily
an epimorphism we are thus interested in the simple Mackey functors for which there
exists a non-zero morphism M → SH,W .

Recall that if H ≤ K and M is a Mackey functor for K, we have the Brauer
morphism which is the composite

βH : M(K)
RK

H−→M(H)→M(H).

(15.4) Proposition. There is a non-zero homomorphism M → SH,U if and only if

(i) there is an epimorphism of NG(H)-modules α : M(H)→ U , and
(ii) for all subgroups K with H ≤ K ≤ NG(H) the composite

M(K)
βH−→M(H) α−→U

has image contained in (
∑
g∈[K/H] g) · U .
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Proof. There is a non-zero map M → SH,U if and only if there is a non-zero map of
Mackey functors for G, M → (InfNG(H)

NG(H)
FPU ) ↑GNG(H), whose image lies in the socle

of (InfNG(H)

NG(H)
FPU ) ↑GNG(H). By adjointness of induction and the description of the

socle [20, 8.1], this happens if and only if there is a non-zero map of Mackey functors
for NG(H), M → InfNG(H)

NG(H)
FPU , whose image lies in the socle of InfNG(H)

NG(H)
FPU .

Again by adjointness this is equivalent to requiring a non-zero map M+ → FPU
whose image is contained in Soc(FPU ). At the identity subgroup H/H of NG(H),
such a map gives rise to an epimorphism α : M+(H/H) = M(H) → U , which is
condition (i). At an arbitrary subgroup K/H ≤ NG(H) the map is the composite
M+(K/H) R−→M+(H/H) α−→U , by [20, 6.1]. Our requirement is that its image is
contained in (Soc(FPU ))(K/H), which equals (

∑
g∈[K/H] g) · U by [20, 7.1]. This

is equivalent to our condition (ii). �

In the next corollaries we apply 15.4 in the situation where M = FPV and V
is a kG-module. The extra condition we require in 15.5, that V H be completely
reducible as a kNG(H)-module, seems often to be satisfied in practice, and it allows
us to restrict the possibilities for the top Loewy layer of FPV . It also indicates that
simple Mackey functors parametrized by weights tend to occur there.

(15.5) Corollary. If there exists a non-zero homomorphism FPV → SH,U and
if V H is a direct sum of simple kNG(H)-modules then U must be a projective
kNG(H)-module.

Proof. Since FPV (H) and hence FPV (H) are completely reducible, the epimor-
phism α : FPV (H) → U must arise from an isomorphism between an irreducible
summand of V H and U . This therefore induces for each K an isomorphism between
a summand of V K and UK , so that the composite mapping in 15.4(ii) must be an
epimorphism onto UK . The image of this map is contained in (

∑
g∈[K/H] g) · U by

15.4, so we deduce that

(
∑

g∈[K/H]

g) · U = UK

for all subgroups K with H ≤ K ≤ NG(H). This means that the kNG(H)-module
U has the property that the trace from the identity is always surjective onto fixed
points under arbitrary subgroups. Such a module is necessarily projective. �

(15.6) Corollary. If dimV = 1 then FPV has SQ,V ↓N(Q) as its unique simple
image, where Q is a Sylow p-subgroup of G.

Proof. Certainly there exists some simple Mackey functor SH,U which is an image
of FPV . The last corollary applies since V H is simple, so we require a pair (H,U)
where H is a p-subgroup, dimU = 1 and U is projective as a module for NG(H).
The only possibility is that H = Q is a Sylow p-subgroup since otherwise p

∣∣
|NG(H)| and U could not be projective. It follows that U ∼= V Q = V ↓N(Q). �

The necessary and sufficient condition of 15.4 is not always easy to verify in
practice, and so we now develop this into a further condition in 15.7(ii) which
guarantees that certain simple Mackey functors will appear as quotients of M .
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(15.7) Proposition. Let M be a Mackey functor, and let H be a maximal subgroup
such that M(H) 6= 0.

(i) If H ≤ K ≤ G, the image of the Brauer morphism βH : M(K)→M(H) is
equal to (

∑
g∈[NK(H)/H] g) ·M(H).

(ii) If U is any simple homomorphic image of M(H), there exists a non-zero
homomorphism M → SH,U .

Proof. (i) If H = K the result is self-evident, so suppose that H < K. In this case
since M(K) = 0 we have

M(K) =
∑
J<K

IKJ M(J)

=
∑

H≤J<K

IKJ M(J) +
∑

H 6≤J<K

IKJ M(J).

If J is a subgroup for which H < J < K then similarly M(J) =
∑
L<J I

J
LM(L),

and on substituting such an expression into the first summand above we remove
all instances of that subgroup J . Eliminating such subgroups J by this means we
obtain

M(K) = IKHM(H) +
∑

H 6≤J<K

IKJ M(J).

Now observe that βK is zero on the second summand here, since it gives the image in
M(H) of

∑
H 6≤J<K R

K
HI

K
J M(J), in which after applying the Mackey decomposition

formula every term is the image of
∑
L<H I

H
L . We deduce that

βHM(K) = βHI
K
HM(H)

=
(
RKHI

K
HM(H) +

∑
L<H

IHLM(L)
)/ ∑

L<H

IHLM(L)

=
( ∑
g∈[H\K/H]

IHHg∩HcgR
H
H∩gHM(H) +

∑
L<H

IHLM(L)
)/ ∑

L<H

IHLM(L)

=
( ∑
g∈[NK(H)/H]

IHH cgR
H
HM(H) +

∑
L<H

IHLM(L)
)/ ∑

L<H

IHLM(L)

= (
∑

g∈[NK(H)/H]

g) ·M(H).

(ii) We need only verify condition (ii) of 15.4. This follows from part (i) in view
of the fact that the epimorphism α which appears in 15.4 is a module morphism
and so carries (

∑
g∈[K/H] g) ·M(H) into (

∑
g∈[K/H] g) · U . �

(15.8) Example. Let G = GL(3, 2) and let R be the field with 2 elements. G
has four simple modules over R, namely the trivial representation, the natural 3-
dimensional module, its dual, and the Steinberg module of dimension 8. We denote
these modules by 1, 3, 3∗ and 8. The subfunctor structure of FP3 has a diagram (in
the sense of Alperin [1])

SV2,2

SC2,1

SC4,1 SV1,1

S1,3
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Proof. Our notation for the 2-subgroups of G is that we may take

C2 = 〈

 1 0 1
0 1 0
0 0 1

〉 C4 = 〈

 1 1 0
0 1 1
0 0 1

〉
and V1, V2 to be representatives of the two conjugacy classes of subgroups C2×C2,
which we may take to be

V1 =

 1 0 ∗
0 1 ∗
0 0 1

 V2 =

 1 ∗ ∗
0 1 0
0 0 1

 .

It is straightforward to compute the structure of FP3(H) and FP 3(H):

2-subgroup H dimFP3(H) dimFP 3(H)

1 3 3
C2 2 1
C4 1 0
V1 1 0
V2 2 2
D8 1 0

One computes also that the action of N(V2)/V2
∼= S3 on FP3(V2) is as the pro-

jective simple 2-dimensional module for S3. We suppose that we have computed
the matrix Ψ, which is presented in Section 21. Using the method of Section 6
we conclude that FP3 has composition factors S1,3, SC2,1, SC4,1, SV1,1, SV2,2. Note
here that all the composition factors must necessarily be of the form SH,V with H
a p-group, by Section 9.

We now look for the semisimple quotient of FP3. The composition factor SV2,2

must certainly appear in this quotient since the condition of 15.7 is satisfied, but
this is not sufficient to eliminate the possibility that some of the other composition
factors might be in this quotient as well. We eliminate SC4,1 and SV1,1 by 15.5.
Finally we show that SC2,1 is not a quotient of FP3, and we suppose to the contrary
that there is an epimorphism FP3 → SC2,1. In that case by 15.4 the epimorphism
FP3(C2)→ FP 3(C2) = k has the property that the Brauer morphism FP3(V2)→
FP 3(C2) has image contained in (

∑
g∈[V2/C2]

g) · k = 0. But in fact FP3(V2) =
FP3(C2) and the Brauer morphism is surjective, so the epimorphism cannot have
this property. This shows that FP3 has a unique maximal subfunctor, and the
largest semisimple quotient of FP3 is SV2,2.

Let M1 denote the unique maximal subfunctor of FP3. We will show that M1

in turn has a unique maximal subfunctor M2, and that the quotient is SC2,1. To
demonstrate this we show that SC4,1 and SV1,1 are not images of M1. Suppose to
the contrary that SC4,1 is an image of M1. Then SC4,1 ↓GC4

would be an image
of M1 ↓GC4

, which equals FP3 ↓GC4
since the extra composition factor SV2,2 restricts

to zero on C4. But FP3 ↓GC4
is just FP3 when we regard the 3-dimensional module

as a module for C4, and this cannot have SC4,1 ↓GC4
as an image since FP 3(C4) = 0

by 15.4. The argument which shows that SV1,1 is not an image of M1 is just the
same, and we conclude that SC2,1 is the unique simple image.
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To complete the diagram which represents the subfunctor lattice of FP3 we use
the fact that S1,3 is the socle of FP3 and that there is no non-split extension of
SC4,1 and SV1,1. This is a consequence of 14.3(i). �

16. Cohomological Mackey functors

A Mackey functor for G is called cohomological if whenever K ≤ H ≤ G, one
has IHK RHK = |H : K|, that is, multiplication by the index of K in H. These
Mackey functors take their name because the restriction and corestriction of group
cohomology satisfy this relationship. Our aim in this section is to show that all
cohomological Mackey functors are closely related to group cohomology in that they
are precisely the Mackey functors which are quotients of fixed point functors. In
the process we determine the simple cohomological Mackey functors and describe
their projective covers when the ground ring is a field.

We start this section with some elementary remarks. The cohomological Mackey
functors form a full subcategory of MackR(G), which we denote
ComackR(G). They may be regarded as the representations of a quotient of the
Mackey algebra obtained by factoring out from µR(G) the ideal generated by the
elements IHKR

H
K − |H : K|IHH . An interesting description of the cohomological

Mackey functors which is due to Yoshida [24] is that they may be identified with
the additive functors

F : HG → R-mod

where HG is the full subcategory of RG-mod whose objects are the permutation
modules over RG. Given such a functor one obtains a Mackey functor by composing
with the functor

G-set→ HG

which takes the G-set X to the permutation module RX. This gives the covariant
part of a Mackey functor, and one obtains the contravariant part by defining RHK
to be F applied to the relative trace map R[G/H]→ R[G/K] where K ≤ H.

The following two lemmas are elementary.

(16.1) Lemma. Any subfunctor and any quotient functor of a cohomological Mackey
functor is cohomological.

One consequence of this result is that the simple objects in ComackR(G) are also
simple in MackR(G), so they are a subset of the SH,V .

(16.2) Lemma. If V is an RG-module, both FPV and FQV are cohomological
Mackey functors.

Another useful fact is the following characterisation of cohomological Mackey
functors, which has been pointed out to us by Lluis Puig [private communication].
Note that Yoshida proves a related (but different) result [24, 4.4].

(16.3) Proposition. Let FPR be the fixed point functor corresponding to the triv-
ial RG-module R, viewed as a Green functor. A Mackey functor M is cohomological
if and only if it is a module (in the sense of Mackey functors) over the Green functor
FPR .
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Proof. Since FPR is cohomological, it is clear that so is any module M over FPR .
Indeed if x ∈M(H),

IHK RHK(x) = IHK RHK(1H · x) = IHK (RHK(1H) ·RHK(x))

= IHK RHK(1H) · x = |H : K| · 1H · x = |H : K| · x .

Conversely assume that M is cohomological. Since FPR(H) = R, there is a unique
way to define an FPR(H)-module structure over M(H). For λ ∈ R, x ∈ M(H)
and y ∈M(K), it is plain that we have

RHK(λ · x) = RHK(λ) ·RHK(x) ,
g(λ · x) = gλ · gx ,

IHK (RHK(λ) · y) = λ · IHK (y) ,

because RHK(λ) = λ in the functor FPR . Finally our assumption implies that the
last property in the definition of a module over FPR is satisfied:

IHK (λ ·RHK(x)) = IHK RHK(λ · x) = |H : K|λ · x = IHK (λ) · x .

This completes the proof. �

We have seen in Section 8 that in the case of arbitrary Mackey functors, the pro-
jective objects are obtained as direct summands of induced Burnside functors. We
now show that the same result holds for cohomological Mackey functors, replacing
the Burnside functor by the fixed point functor FPR. As a first step we establish
the result analogous to 8.2, and give a direct argument since this is quite short.
We should note also that this result is immediate from the work of Yoshida [24],
using Yoneda’s lemma, since the functors FPR↑G

H
are the representable functors on

Yoshida’s category HG. We leave to the reader the task of expressing the result as
an adjointness property, as in 8.2.

(16.4) Lemma. Let M be a cohomological Mackey functor.
(i) Let m ∈M(G). Then there exists a unique morphism f : FPR →M whose

evaluation at G maps 1R to m.
(ii) Let H ≤ G and m ∈ M(H). Then there exists a unique morphism f :

FPR↑G
H
→ M whose evaluation at H maps 1 ⊗ 1R to m. (Here 1 ⊗ 1R ∈

(RG⊗RH R)H).

Proof. (i) There is no choice for the definition of f . Since RGH(1R) = 1R in FPR,
we have to define the evaluation of f at H by

f(H)(1R) = RGH(m)

and extend R-linearly. Now we have to check that f is a morphism of Mackey
functors. Clearly f commutes with restriction and conjugation, so we have to
consider only the induction maps IHK . But this follows immediately from the fact
that M is cohomological:

IHK (f(K)(1R)) = IHK RHK(f(H)(1R)) = |H : K| · f(H)(1R)

= f(H)(|H : K| · 1R) = f(H)(IHK (1R)) .



THE STRUCTURE OF MACKEY FUNCTORS 65

(ii) By part (i), there is a unique morphism f ′ : FPR →M ↓GH whose evaluation
atH maps 1R tom. By adjunction, this corresponds to a morphism (FPR)↑GH→M ,
hence to a morphism f : FPR↑G

H
→ M using the isomorphism given in 5.2. If one

traces the effect of this isomorphism and of the adjunction, one can check easily
that the evaluation of f at H maps 1 ⊗ 1R to m. Moreover the uniqueness of f ′

implies the uniqueness of f with this property. �

(16.5) Theorem.

(i) A Mackey functor M for G over R is cohomological if and only if it is
isomorphic to a quotient of a fixed point functor FPV , where V is an RG-
module which can be chosen to be a permutation module.

(ii) A cohomological Mackey functor is projective in ComackR(G) if and only
if it is isomorphic to a fixed point functor FPV where V is a permutation-
projective module for G (i.e. a direct summand of a permutation module).

Proof. (i) By 16.1 and 16.2, we already know that quotients of fixed point functors
are cohomological. Conversely suppose that M is cohomological. We choose a
set (mi)i∈I of Mackey functor generators of M , such that mi ∈M(Hi) for some
subgroup Hi . By 16.4, there is a morphism fi : FPVi →M having mi in its image,
where Vi = R↑GHi

. Therefore if we set V = ⊕i Vi, then

⊕
i
fi :

⊕
i

FPVi
= FPV →M

is an epimorphism. This proves the result since V is a permutation module.
(ii) We first prove that FPR↑G

H
is projective. Let π : M → FPR↑G

H
be an epimor-

phism, where M is cohomological. Let m ∈ M(H) such that π(H)(m) = 1 ⊗ 1R.
By 16.4, there is a unique f : FPR↑G

H
→ M such that f(H)(1 ⊗ 1R) = m. Then

πf : FPR↑G
H
→ FPR↑G

H
is the unique morphism whose evaluation at H maps 1⊗ 1R

to itself. Therefore πf = id, completing the proof of the projectivity of FPR↑G
H

.
Since any permutation-projective module V is a direct summand of a direct sum

of modules of the form R ↑GH , the same holds with the corresponding fixed point
functors and we obtain that FPV is projective.

Conversely let P be a projective cohomological Mackey functor. By (i) there
exists an epimorphism FPV → P where V is a permutation module. This splits
since P is projective. By 2.3 this immediately implies that P ∼= FPW for some
permutation-projective module W . �

(16.6) Corollary. If H is a subgroup of G and if M is a cohomological Mackey
functor for H, then M ↑GH is cohomological.

Proof. Write M as a quotient of FPV and induce. Since induction is exact, M ↑GH
is a quotient of FPV ↑GH∼= FPV↑G

H
. �

The spirit of the following result is completely opposite to that of group coho-
mology.

(16.7) Corollary. Let V be an RG-module. Then there exists a resolution

. . .→ Vn → . . .→ V0 → V → 0
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where each Vi is a permutation module, such that the sequence of fixed points

. . .→ V Hn → . . .→ V H0 → V H → 0

is exact for every subgroup H of G.

Proof. This is just a reformulation of the existence of a projective resolution in
ComackR(G) for the functor FPV . �

Assume now that our base ring is a field R = k. We wish to describe the simple
cohomological Mackey functors and their projective covers. First we consider the
case of characteristic zero.

(16.8) Proposition. Let SH,V be a simple Mackey functor for G over a field k
whose characteristic is zero or prime to |G|. Then SH,V is cohomological if and
only if H = 1.

Proof. Assume K < H. Then |H : K| is non-zero but the multiplication by IHKR
H
K

is zero since it factors through SH,V (K) = 0. Thus SH,V cannot be cohomological.
Conversely, S1,V is cohomological because it is FPV . �

(16.9) Corollary. Assume k has characteristic zero or prime to |G| and let M be
a Mackey functor for G over k. Then M is cohomological if and only if M = FPV
for some kG-module V .

Proof. By semi-simplicity of Mackey functors and the proposition, a cohomological
Mackey functor M is a direct sum of functors of the form S1,V = FPV . Alterna-
tively, use Theorem 16.5. �

Now we move to characteristic p. So from now on k denotes a field whose
characteristic is a prime divisor p of |G|. In the special case where G is a p-group,
an analysis of the projective covers of the simple functors in Comackk(G) can be
found in Section 5 of Tambara’s paper [18]. Our next result answers this question
in general.

(16.10) Proposition. Let k be a field of characteristic p and let SH,V be a simple
Mackey functor for G over k. Then

(i) SH,V is cohomological if and only if H is a p-group.
(ii) If H is a p-group, the projective cover of SH,V in Comackk(G) is FPU ,

where U is the trivial source module for G with vertex H and Green cor-
respondent PV . (Here PV denotes the projective cover of V as a kNG(H)-
module.)

Proof. If H is not a p-group, then there exists a proper subgroup K of index prime
to p. Then |H : K| is non-zero but the multiplication by IHKR

H
K is zero since it

factors through SH,V (K) = 0. Thus SH,V is not cohomological. Assume now that
H is a p-group and let PH,V be the projective cover of SH,V as a Mackey functor.
Then we know by 12.4 and 12.7 that there is a surjective morphism PH,V → FPU
where U = PH,V (1) is the trivial source module of the statement. Therefore there
is a surjective morphism FPU → SH,V . This proves that SH,V is cohomological and
that the projective cohomological Mackey functor FPU is its projective cover. �
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(16.11) Corollary. Comackk(G) is a subcategory of Mackk(G, 1).

Proof. The composition factors of a cohomological Mackey functor have the form
SH,V with H a p-group, and these belong to Mackk(G, 1). �

Dualizing 16.10 we obtain the injective objects in Comackk(G). Note that the
dual of a trivial source module has again trivial source and that the Green corre-
spondence commutes with taking duals. Thus using 4.1 we get:

(16.12) Corollary. If H is a p-group, the injective hull in Comackk(G) of SH,V
is the fixed quotient functor FQU , where U is the trivial source module for G with
vertex H and Green correspondent PV .

We will need to know in Section 17 that some Mackey functors which play an
important rôle in this paper are cohomological. We first need a lemma.

(16.13) Lemma. Let P be a normal p-subgroup of a finite group L. If M is a
cohomological Mackey functor for L/P , then InfLL/P M is a cohomological Mackey
functor for L.

Proof. Write Inf for InfLL/P and let X ≤ Y ≤ L. We have to show that IYX R
Y
X is

multiplication by |Y : X|.
If P 6≤ Y , then (InfM)(X) = 0 = (InfM)(Y ) and there is nothing to prove.
If P ≤ X, then (InfM)(X) = M(X/P ) and (InfM)(Y ) = M(Y/P ). The result
follows because M is cohomological.
If P 6≤ X but P ≤ Y , then (InfM)(X) = 0 and (InfM)(Y ) = M(Y/P ). The result
follows because |Y : X| is divisible by |XP : X| = |P : X ∩ P | which is a power of
p. �

(16.14) Proposition. Let k be a field of characteristic p. If H is a p-group,(
InfNG(H)

NG(H)
FPV

)
↑GNG(H) is a cohomological Mackey functor.

Proof. By 16.6 and 16.13, the property of being cohomological is preserved by both
inflation (with a normal p-subgroup) and induction. �

We conclude by pointing out the relationship between the two categories MackR(G)
and ComackR(G) in terms of the Mackey algebra, and what one might call the
cohomological Mackey algebra. This latter algebra would be defined as the path al-
gebra modulo an ideal of relations of the same quiver with relations which defined
µR(G), together with the additional relations IHKR

H
K = |H : K|IHH for all subgroups

K ≤ H ≤ G. It is immediate that cohomological Mackey functors are identified
as the modules for this quotient algebra of µR(G). However, we should notice
by the work of Yoshida [24] (used by Tambara [18]) that the algebra with these
generators and relations is none other than the opposite of a Hecke algebra, E =
EndRG(

⊕
H≤GR↑GH)op, and so we have a surjection α : µR(G)→ E , where E is iso-

morphic to the cohomological Mackey algebra. Specifically, α(RHK) : R ↑GK→ R ↑GH
is the natural projection, α(IHK ) : R↑GH→ R↑GK is x⊗RH 1 7→

∑
h∈[H/K] xh⊗RK 1

and α(cg) : R ↑GH→ R ↑GHg is x ⊗ 1 7→ xg ⊗ 1, the effect of these maps on other
components in the direct sum being zero.

Another way to view this homomorphism is that µR(G) may be identified as the
opposite of the endomorphism ring of its regular representation, which is

⊕
H≤GB

H ↑GH .
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Any such endomorphism yields an endomorphism of the evaluation at 1 of this reg-
ular representation, namely

⊕
H≤GB

H ↑GH (1) ∼=
⊕

H≤GR↑GH , and this defines the
effect of α.

Cohomological Mackey functors are viewed as Mackey functors by restriction
along α; equally, given a Mackey functor M we may form E ⊗µ(G) M , which is
the largest quotient of M which is cohomological. Taking M = PH,V to be a
projective, E⊗µ(G)PH,V is again projective (in ComackR(G)), and since the simples
in ComackR(G) are a subset of the simples in MackR(G), E ⊗µ(G) PH,V still has
a unique simple quotient and so is indecomposable (or zero). In fact this quotient
is E ⊗µ(G) SH,V , which equals SH,V if H is a p-group, and is 0 otherwise. Thus
E ⊗µ(G) PH,V = FPU is the projective cover of SH,V in ComackR(G) when H is a
p-group (here U = PH,V (1)) and is zero otherwise. We conclude that the largest
quotient of PH,V which is cohomological is FPU if H is a p-group, and is zero
otherwise.

17. Blocks of Mackey functors

In this section, we describe how Mackey functors for G over a field k of charac-
teristic p are distributed in blocks. The result appears also in a different form (and
without proof) in Yoshida’s paper [25, 3.4]. Recall that it suffices to describe the
block distribution of simples and that this is obtained by considering the transi-
tive closure of the relation linking two simples when there is a non-split extension
between them (one way or the other).

We already know that the primitive idempotents of the Burnside algebra B(G)
over k split Mackey functors and therefore it suffices to consider the block decom-
position of each category Mackk(G, J) where J is a p-perfect subgroup of G. Recall
that a simple functor SK,W belongs to Mackk(G, J) if and only if Op(K) =G J . Now
by 10.1 we have an equivalence of categories Mackk(NG(J), 1) −→ Mackk(G, J) so
that it suffices to treat the case J = 1. Thus we have to consider Mackk(G, 1) and
its simple Mackey functors SP,W indexed by p-subgroups P of G.

We are going to prove that the blocks of Mackk(G, 1) correspond in a natural
fashion to the ordinary blocks of kG. Let us first recall a few facts from block
theory (see for instance [4] or [6, §58]). By a block of G, we mean a primitive
idempotent of the centre Z(kG) of kG. A kG-module V is said to belong to the
block b if b · V = V . For every p-subgroup P of G, the Brauer morphism is a ring
homomorphism

BrP : Z(kG)→ Z(kCG(P ))NG(P ),

where Z(kCG(P ))NG(P ) denotes the subring of Z(kCG(P )) consisting of NG(P )-
fixed points. If b is a block of G, then BrP (b) breaks up as an orthogonal sum of
primitive idempotents in Z(kCG(P ))NG(P ). Each block e of NG(P ) actually lies in
Z(kCG(P ))NG(P ), where it is the sum of conjugate primitive idempotents, and so
there is a unique block b of G such that BrP (b) · e = e. This unique block will be
written b = eG.

Let P be a p-subgroup of G and NG(P ) = NG(P )/P . Any simple kNG(P )-
module V can be viewed as a kNG(P )-module, and as such, it belongs to a block
e of NG(P ). Thus to every simple Mackey functor SP,V , one can associate a block
e of NG(P ).

(17.1) Theorem. Let SP,V and SQ,W be two simple Mackey functors, where P
and Q are p-subgroups of G. Let e be the block of NG(P ) which V belongs to and f
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the block of NG(Q) which W belongs to. Then SP,V and SQ,W belong to the same
block of Mackey functors if and only if the corresponding blocks eG and fG of G
are equal. Thus the blocks of Mackk(G, 1) are in bijection with the blocks of kG,
via the map sending the block containing SP,V to the block eG of kG.

Proof. Suppose that SP,V and SQ,W belong to the same block of Mackey functors.
As mentioned above, by transitivity of the relation linking simples in a block, one
can assume that there is a non-split extension

(∗) 0→ SP,V →M → SQ,W → 0 .

If P =G Q, then one can assume that P = Q and by 14.3(ii) the sequence of
kNG(P )-modules

0→ V →M(P )→W → 0

is not split. Therefore V and W belong to the same block of NG(P ), that is e = f .
Hence eG = fG.

Now we claim that it suffices to treat the case P <G Q. Indeed the case Q <G P
reduces to the other one by duality, because in the sequence of dual Mackey functors

0→ SQ,W∗ →M∗ → SP,V ∗ → 0 ,

the left hand side is now indexed by the smaller of the two subgroups. Moreover V ∗

belongs to the dual block e and the correponding block of G is eG = eG, the dual
of eG. This last fact can be easily seen as follows: taking duals of blocks consists
in applying the canonical involution of the group algebra (which inverts group
elements) and moreover the Brauer morphism commutes with this involution.

Assume now that P <G Q. Without loss of generality, we can take P < Q. By
14.3(iii) we know that M is isomorphic to a subfunctor of (InfNG(P )

NG(P )
FPV ) ↑GNG(P )

and therefore by Proposition 16.14, M is a cohomological Mackey functor. Let
FPU be the projective cover of SQ,W as a cohomological Mackey functor; thus
by Proposition 16.10, U is the trivial source module for G with vertex Q and
Green correspondent PW , the projective cover of W as kNG(Q)-module. Since
the extension (*) is a non-split extension of cohomological Mackey functors, M is
isomorphic to a quotient of FPU . Notice incidentally that we have proved that the
blocks of Mackk(G, 1) coincide with the blocks of Comackk(G).

For any kG-module X consider the quotient of the Q-fixed points

XQ = XQ
/ ∑
L<Q

trQL (XL)

and the canonical map BrQ : XQ → XQ. If X happens to be a G-algebra, then
BrQ is an algebra homomorphism. If X is the G-algebra kG, then the Brauer
morphism defined above is the restriction to Z(kG) of the morphism BrQ : kGQ →
kGQ = kCG(Q).

Now by [5], UQ = PW , the projective cover of W as kNG(Q)-module. Therefore
W is a quotient of UQ. Similarly we want to show that V is a quotient of UP .
Since P < Q and since SQ,W (P ) = 0, we have M(P ) = SP,V (P ) = V . For similar
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reasons, M(L) = 0 for every proper subgroup L of P . Since M is a quotient of
FPU , there is a commutative diagram

UP −→ M(P ) = V

IP
L

x IP
L

x
UL −→ M(L) = 0

and this proves that V is a quotient of UP .
Let b be the block of G to which U belongs. Then there is a morphism of

G-algebras kG · b −→ Endk(U) mapping b to 1 and this induces a morphism

(kG · b)Q = (kG)Q ·BrQ(b) −→ Endk(U)Q ∼= Endk(UQ) .

Note the isomorphism on the right is proved in [5, (3.3)]. It follows that BrQ(b) acts
as the identity on UQ, hence also on its quotient W . Since W belongs to the block
f , this means that f appears in a decomposition of BrQ(b), that is, BrQ(b) ·f = f .
In other words fG = b. Similarly, BrP (b) acts as the identity on UP , hence also on
V , and it follows that eG = b. Thus we have established that eG = fG, completing
the first part of the proof.

Assume now that eG = fG. Consider again the surjection FPU → SQ,W , that
is the projective cover of SQ,W as a cohomological Mackey functor. The argument
of the first part of the proof shows that the trivial source module U belongs to
the block fG. Similarly let FPT → SP,V be the projective cover of SP,V as a
cohomological Mackey functor. Then T is an indecomposable trivial source module
for G which belongs to the block eG. Since SQ,W belongs to the same block of
Mackey functors as FPU , and since SP,V belongs to the same block as FPT , it
suffices to prove that FPU and FPT lie in the same block. But our assumption
tells us that U and T lie in the same block eG = fG of G. Therefore we only
have to prove that this relation is preserved by passage to fixed point functors.
But this fact is easy, because if X and Y are indecomposable kG-modules having
a common composition factor Z, then FPX and FPY have a common composition
factor, namely S1,Z . �

A practical way of finding in which block lies a Mackey functor is the following.

(17.2) Corollary. Let M be a Mackey functor such that M(1) 6= 0. If M lies in
a single block B of Mackk(G, 1) (e.g. if M is indecomposable), then M(1) lies in a
single block b of kG, and the block B corresponds to b.

Proof. Let V be any composition factor of M(1). By 6.3, S1,V is a composition fac-
tor of M , hence lies in B. By 17.1, B corresponds to the block b of kG containing V .
Since this holds for every composition factor V of M(1), the whole module M(1)
lies in b. �

We can now improve the result 13.2 on projective simple Mackey functors.

(17.3) Corollary. The following conditions on a simple Mackey functor SH,V are
equivalent.

(i) SH,V is a projective simple Mackey functor.
(ii) SH,V is the only simple Mackey functor in its block.
(iii) H is a p-perfect subgroup of G and V is a projective simple kNG(H)-module.
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Proof. (i) ⇒ (ii) is clear.
(ii) ⇒ (iii) If J = Op(H), the equivalence of categories 10.1 allows us to assume

that J = 1, so that H is a p-group. By Theorem 17.1 SH,V lies in the same block as
some S1,W and therefore H = 1. Let b be the block of G to which V belongs. If P is
a p-subgroup such that BrP (b) 6= 0, then there exists a simple kNG(P )-module W
such that BrP (b) ·W 6= 0. By the theorem SP,W belongs to the same block as S1,V

and therefore P = 1. This proves that BrP (b) = 0 for all non-trivial p-subgroups
P , showing that b is a block of defect zero. Thus its simple module V is projective.

(iii) ⇒ (i) This follows immediately from 13.1, as in the proof of 13.2. �

18. The representation type of Mackey functors

We recall that an algebra is said to be of finite representation type if it has only
finitely many isomorphism classes of finitely generated indecomposable modules.
We also speak of the category of modules as being of finite representation type in
this case. If k is a field of characteristic p, it is well-known that kG-mod has finite
representation type if and only if a Sylow p-subgroup of G is cyclic [12]. Our main
result settles the analogous question for Mackk(G). In the special case where G
has a Sylow p-subgroup which is cyclic and normal, the result has been obtained
independently by Wiedemann [22], who analyzes explicitly the quiver of the Mackey
algebra in this case.

(18.1) Theorem. Let k be a field of characteristic p and let C be a Sylow p-
subgroup of G. The following conditions are equivalent.

(i) Mackk(G) has finite representation type.
(ii) Comackk(G) has finite representation type.
(iii) The Hecke algebra EndkG(

⊕
H≤G k↑GH) has finite representation type.

(iv) |C| = 1 or |C| = p (or in other words p2 6
∣∣ |G|).

Proofs. It is clear that (i) implies (ii), and (ii) ⇔ (iii) is immediate from Yoshida’s
theorem [24].

Proof of (ii)⇒ (iv). We assume that p2 divides the order of G and we have to prove
that Comackk(G) has infinite representation type. Thus G contains a subgroup
H which is either isomorphic to the cyclic group Cp2 or to the elementary abelian
group Cp × Cp . In the latter case, the category kG-mod of (finitely generated)
kG-modules has infinite representation type [12]. Since there is a full and faithful
functor

kG-mod→ Comackk(G) ; V 7→ FPV ,

it is clear that Comackk(G) has infinite representation type.
Consider now the case H = Cp2 . It suffices to show that Comackk(H) has

infinite representation type. Indeed for each indecomposable N ∈ Comackk(H),
one can choose an indecomposable summand MN of N ↑GH such that N is a direct
summand of MN ↓GH (because N is a direct summand of N ↑GH↓GH). Only finitely
many indecomposable functors N can give rise to isomorphic functors MN because
N is a direct summand of MN ↓GH . This proves that Comackk(G) has infinite
representation type if so has Comackk(H).

To show that Comackk(H) has infinite representation type, we simply exhibit
infinitely many indecomposable cohomological Mackey functors for H = Cp2 . Let
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h be a generator of H and let K = 〈hp〉 be the subgroup of order p. For an arbitrary
integer n let M(1) be a 2n-dimensional k-vector space with basis

x0, y0, x1, y1, . . . , xn−1, yn−1

and with action of H given by

(h− 1)xi = yi , (h− 1) yi = 0.

Let M(K) be a 2n-dimensional k-vector space with basis

u0, v0, u1, v1, . . . , un−1, vn−1

and with action of H/K given by

(h− 1)ui = vi , (h− 1) vi = 0.

Thus both M(1) and M(K) are direct sums of n copies of the 2-dimensional inde-
composable kH-module. If p = 2, then M(K) is a free k[H/K]-module and this
forces us to introduce an n-dimensional vector space M(H). Thus we set

M(H) =
{

0 if p is odd,
〈w0, . . . , wn−1〉 if p = 2.

Now define restriction and transfer in the following way. We define

RK1 : M(K)→M(1)

by
RK1 (vi) = 0, RK1 (ui) = yi,

and IK1 : M(1)→M(K) by

IK1 (yi) = 0, IK1 (xi) =

{
vi+1 if 0 ≤ i ≤ n− 2,∑n−1
j=0 λjvj if i = n− 1,

where the elements λj ∈ k are such that the polynomial

P (X) = Xn + λn−1X
n−1 + . . .+ λ0

is a power of an irreducible polynomial over k. For the construction of infinitely
many indecomposables, it would suffice to choose λj = 0 for all j, so that P (X) =
Xn, but the general case does not require more effort. When p = 2, we also have
to define restriction and transfer from and to M(H):

RHK : M(H)→M(K) ; RHK(wi) = vi

IHK : M(K)→M(H) ; IHK (ui) = wi , I
H
K (vi) = 0 .

The proof that M is a Mackey functor for H is easy and is left to the reader. We
only remark that the extra data when p = 2 are introduced in order to make the
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Mackey formula hold. Note that any restriction followed by a transfer is zero, so
that M is cohomological.

The Mackey functorM for p odd can be pictured in the following self-explanatory
fashion, where R = RK1 , I = IK1 and a = h− 1.

u1 x1 u2 xn
a

↙
R

↘
a

↙
I

↘
a

↙
R

↘ . . .
a

↙
I

↘
v1 y1 v2

The last arrow I on the right is understood to map xn to the linear combination∑n−1
j=0 λjvj .
We now recall a standard argument in the representation theory of finite-dimensional

algebras, showing that M is indecomposable. Let

V = 〈v0, . . . , vn−1〉 = Soc(M(K))

and define
φ = IK1 (h− 1)−1RK1 (h− 1)−1 ∈ Endk(V ).

Note that it is easy to see that both IK1 (h−1)−1 and RK1 (h−1)−1 are well defined.
Thus V becomes a module over the polynomial ring k[X], with X acting via φ.

(18.2) Lemma. The restriction to V defines a surjective ring homomorphism with
nilpotent kernel

π : EndMackk(H)(M)→ Endk[X](V ) ; f 7→ f(K)|V .

Proof. We assume that p is odd. The necessary modifications when p = 2 are left
to the reader. First it is clear that f(K) must preserve Soc(M(K)) = V , because
f(K) commutes with the action of h. The fact that f(K)|V commutes with the
endomorphism φ of V is a straightforward consequence of the fact that f commutes
with restriction, transfer and conjugation. Thus π is well-defined.

We now prove that π is surjective. Let f(K)|V be a given endomorphism of
V commuting with φ. Extend f(K) to the whole of M(K) by defining f(K)(ui)
to be some element in the inverse image under (h − 1) of f(K)(vi). Then define
f(1)(yi) = RK1 f(K)(ui) and extend f(1) to the whole of M(1) by defining f(1)(xi)
to be some element in the inverse image under (h−1) of f(1)(yi). By construction,
f commutes with (h− 1) and with RK1 . Moreover

IK1 f(1)(xi) = IK1 (h− 1)−1f(1)(yi) = IK1 (h− 1)−1RK1 f(K)(ui)

= IK1 (h− 1)−1RK1 (h− 1)−1f(K)(vi) = φ(f(K)(vi))

= f(K)(φ(vi)) = f(K)(IK1 (h− 1)−1RK1 (h− 1)−1(vi))

= f(K)(IK1 (xi)),

and this proves that f commutes with IK1 . Therefore π is surjective.
Finally suppose that f ∈ Ker(π). Then (h − 1)f(K)(ui) = f(K)(vi) = 0 so

that f(K)(ui) ∈ Ker(h − 1) = V and f(K)2 = 0. Now f(1)(yi) = RK1 f(K)(ui) ∈
RK1 (V ) = 0. Thus f(1) is zero on 〈y0, . . . , yn−1〉 = Ker(h − 1) = Im(h − 1) and
again f(1)2 = 0. This completes the proof of the lemma. �
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Now we can show that M is indecomposable. We have to show that the ring
EndMackk(H)(M) is local and by the lemma we only have to prove that Endk[X](V )
is a local ring. But since

φ(vi) =

{
vi+1 if 0 ≤ i ≤ n− 2,∑n−1
j=0 λjvj if i = n− 1,

it is clear that V is generated as a k[X]-module by v0 and that V ∼= k[X]/(P (X))
where P (X) = Xn + λn−1X

n−1 + . . . + λ0. Then Endk[X](V ) ∼= k[X]/(P (X))
and this is a local ring because P (X) is a power of an irreducible polynomial by
assumption.

We have proved that M is an indecomposable cohomological Mackey functor for
the cyclic group H of order p2. Since M depends on the choice of n (and P (X)),
this completes the proof that Comackk(H) has infinite representation type.

Proof of (iv) ⇒ (i). If |C| = 1, then p does not divide |G| and we know that
Mackk(G) is semi-simple by 3.5 or 14.4, hence of finite representation type. So we
assume now that C has order p.

We use the decomposition given by the idempotents in the Burnside ring (9.1
and 9.3(ii))

M =
⊕

{p-perfect J}/G

fJ ·M

for any Mackey functor M . Each summand lies in Mackk(G, J) and so it suffices
to show that Mackk(G, J) is of finite representation type. By the equivalence of
categories 10.1 we reduce to showing that Mackk(G, 1) has finite representation
type. Indeed since p2 does not divide |G|, a Sylow p-subgroup of NG(J) has order
1 or p and this applies for each p-perfect subgroup J .

We use the fact that by 9.7 any M ∈ Mackk(G, 1) is projective relative to a
Sylow p-subgroup C of G. Now the argument of D.G. Higman shows that it suffices
to prove that Mackk(C) has finite representation type, since on inducing to G the
indecomposable Mackey functors for C we obtain only finitely many indecomposable
summands.

To show that Mackk(C) has finite representation type, we exhibit the quiver
with relations corresponding to Mackk(C) and then we list the finite number of
indecomposable representations of this quiver.

Any Mackey functor for the cyclic group C = 〈h〉 of order p can be viewed as
a representation of the following quiver with relations. Let R = RC1 , I = IC1 and
a = h− 1. Take two vertices 1 and C, three arrows

1 I−→ C , 1 R←− C , 1 a−→ 1 ,

and three relations

I a = 0 , aR = 0 , R I = ap−1 .

In the following description of representations, we denote by Vk the k-dimensional
indecomposable representation of the group C over the field k. This has a basis
v1, . . . , vk , so that a · vi = vi+1 for i < k and a · vk = 0.
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There are two simple representations S1,1 and SC,1 with

S1,1(1) = k, S1,1(C) = 0,

SC,1(1) = 0, SC,1(C) = k.

Their projective covers (which coincide with their injective hulls) are P1,1 = FPkC
and PC,1 = BC defined explicitly as follows. First P1,1(1) = Vp and P1,1(C) = k
with R(1) = vp and I(v1) = 1 (the value of I on all other basis elements being
zero). On the other hand PC,1(1) = k and PC,1(C) = k2 = 〈x, y〉 with R(x) = 0,
R(y) = 1 and I(1) = x.

Then there are four families of indecomposable representations Ak , Bk , Ck and
Dk . In each case the value of the representation at 1 is the module Vk and we have
to specify the value at C as well as R and I. As before we only give the definition
of R and I on basis elements when it is non-zero.

Ak(C) = k , I(v1) = 1 (1 ≤ k ≤ p− 1) ,
Bk(C) = k , R(1) = vk (1 ≤ k ≤ p− 1) ,

Ck(C) = k2 = 〈x, y〉 , I(v1) = x, R(y) = vk (2 ≤ k ≤ p− 1) ,
Dk(C) = 0 (2 ≤ k ≤ p− 1) .

This gives the complete list of all indecomposable Mackey functors for C over k.
The proof of this either follows by direct calculation, or by using the fact that µk(G)
is a Brauer tree algebra as proved in Section 20, and the classification of indecom-
posables for such algebras. This completes the proof of the main theorem. �

19. Self-injectivity

In this section we will assume that our base ring is a field k of characteristic p.
Using the duality introduced in Section 4, every statement about projective Mackey
functors has its counterpart for injective Mackey functors. Thus we do not need to
develop a theory of injective Mackey functors over k. Our aim in this section is to
show that, contrary to the case of group algebras, injectivity is rarely equivalent to
projectivity, and we show in Theorem 19.2 that it happens precisely if p2 6

∣∣ |G|.
(19.1) Lemma. Let k be a field of prime characteristic p. Every projective PC,V
where |C| = 1 or p is also injective, and Soc(PC,V ) = SC,V .

Proof. In case C = 1 a proof of this result has already been given in 13.3. The proof
we now give works in general, and we suppose |C| = 1 or p. Every projective PC,V
is a summand of BC ↑GC by Section 8 and since injectivity is preserved by induction
and taking direct summands, in order to prove that PC,V is injective it suffices
to prove that the projective indecomposable Mackey functor BC is also injective.
This is clear if C = 1 because Mackey functors for the trivial group are just vector
spaces. If C is cyclic of order p, then we have seen in the proof of 18.1 that BC

(written PC,1 in the last section) is both the projective cover and the injective hull
of SCC,k . In fact it is easy to see that this 3-dimensional Mackey functor is self-dual.

Now to show that Soc(PC,V ) = SC,V it suffices to show that (PC,V )∗ = PC,V ∗
since this has simple top SC,V ∗ . By the injectivity of PC,V we know that (PC,V )∗

is an indecomposable projective, and it has the form (PC,V )∗ = PC,W since its
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vertex is C. Now W is identified as the simple quotient of the Green correspondent
f((PC,V )∗(1)) by 12.7. We have

f((PC,V )∗(1)) = f((PC,V (1))∗) = (f(PC,V (1)))∗

and the unique simple quotient is (Soc(f(PC,V (1))))∗ ∼= V ∗ since f(PC,V (1)) = PV
as kNG(C)-modules and the top and socle are isomorphic. �

Recall that an abelian category is called self-injective if projective and injective
objects coincide.

(19.2) Theorem. Let k be a field of prime characteristic p. Then Mackk(G) is
self-injective if and only if a Sylow p-subgroup of G is cyclic of order 1 or p.

Combining this with the main result of Section 18, we deduce the following
corollary.

(19.3) Corollary. Mackk(G) is self-injective if and only if it is of finite represen-
tation type.

We first need another lemma.

(19.4) Lemma. Let H be a p-group and let RHK : B(H)→ B(K) be the restriction
map to a subgroup K ≤ H, where B(H) is the Burnside algebra over k. If S is a
normal subgroup of H, then

RHK(H/S) =
{
K/K ∩ S if KS = H,
0 otherwise.

Proof. This is an easy application of the Mackey formula.

RHK(H/S) =
∑

h∈[K\H/S]

K/K ∩ hS =
∑

h∈[KS\H]

K/K ∩ S = |H : KS| ·K/K ∩ S

and the result follows. �

Proof of Theorem 19.2. Assume first that a Sylow p-subgroup of G is of order 1
or p. We use the decomposition given by the idempotents in the Burnside ring
(Section 9). So it suffices to show that for each p-perfect subgroup J , the category
Mackk(G, J) is self-injective. By the equivalence of categories 10.1 we reduce to
showing that Mackk(G, 1) is self-injective. Indeed a Sylow p-subgroup of NG(J)/J
is also of order 1 or p. Now the projectives in Mackk(G, 1) are precisely the PC,V
where |C| = 1 or p, and these are also injective by 19.1.

Assume now that a Sylow p-subgroup H of G has order a multiple of p2. We
have to exhibit a projective Mackey functor which is not injective. Any projec-
tive indecomposable PH,V has vertex H and source BH , by 11.1. Since BH is a
summand of PH,V ↓GH and since injectivity is preserved by restriction, it suffices
to prove that BH is not injective. Since it is indecomposable and the socle of an
injective indecomposable is simple, it is enough to show that the socle of BH is not
simple. In fact we prove that SHH,k (which is one-dimensional on evaluation at H
and vanishes at proper subgroups) appears at least twice in the socle of BH . The
proof divides into two cases.
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For the first case, assume that H is not elementary abelian and let Φ(H) be the
Frattini subgroup of H, which is not trivial by assumption. Let J be any normal
subgroup of H contained in Φ(H) (and there are at least two of them: J = 1 or
J = Φ(H)). There is a morphism of Mackey functors f : SHH,k → BH defined on
evaluation at H to be the map f(H) sending the generator 1 of SHH,k(H) = k to
the H-set H/J , viewed as an element of the Burnside algebra B(H). In order to
check that f is a morphism of Mackey functors, it suffices to see that f commutes
with restriction from H to a proper subgroup K of H, because SHH,k vanishes on
proper subgroups of H. Thus we only have to check that RHK(H/J) = 0. But this
is clear by 19.4 because KJ is a proper subgroup of H (since J ≤ Φ(H)). Thus we
have constructed at least two linearly independent morphisms f : SHH,k → BH and
this proves that the socle of BH is not simple.

For the second case, we assume that H is elementary abelian (of rank ≥ 2).
Again we have a morphism f : SHH,k → BH defined on evaluation at H to be the
map f(H) sending the generator 1 of SHH,k(H) = k to the H-set H/1. Now we
construct another morphism g : SHH,k → BH which is linearly independent of f and
this will prove that the socle of BH is not simple. Let C be the set of all subgroups
of H of order p (i.e. the lines in the vector space H). We define g(H) : k → B(H)
to be the map sending 1 to the element X =

∑
C∈C H/C . As above it suffices to

prove that RHK(X) = 0 for every proper subgroup K of H. By 19.4, we have

RHK(X) =

{ ∑
C∈C , KC=H

K/1 if K has index p,

0 otherwise.

In the first case, we let D be the set of all subgroups of K of order p and we have

RHK(X) = (|C| − |D|) ·K/1 .

Now if |H| = pn, then |C| = (pn− 1)/(p− 1) and |D| = (pn−1− 1)/(p− 1) , so that
|C|− |D| = pn−1 is a power of p. This shows that X restricts to zero and completes
the proof. �

We may consider the injective objects in the category Comackk(G) of coho-
mological Mackey functors. We know by 16.12 that the injective indecomposable
cohomological Mackey functors are the functors FQV where V is as above. If
the characteristic p of k does not divide |G|, then Comackk(G) is semi-simple and
FPV = FQV for all V . Otherwise, in contrast with 19.2 above, Comackk(G) is
never self-injective. Indeed it suffices to take V = k, the trivial module: all restric-
tion maps in FPk are isomorphisms and some of the induction maps are zero (as
soon as p divides the index), while the opposite holds for FQk . Thus FPk cannot
be injective and FQk cannot be projective.

20. Brauer trees

In this section we consider a complete discrete valuation ring O with quotient
field K of characteristic 0 and residue field k of characteristic p. Recall from the
previous two sections that Mackk(G) has finite-representation type if and only if it
is self-injective, and that it happens precisely if p2 6

∣∣ |G|. We go on to show that
in this case each block of the Mackey algebra over k is either a Brauer tree algebra
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or a matrix algebra, and that the Brauer tree may be calculated by decomposition
in exactly the same way as for group representations. For the properties of Brauer
tree algebras we refer to [3]. Since the Brauer trees give total information about
the structure of projective modules [3] as well as decomposition, and since also
there is a well-known classification of indecomposable representations (and also the
Auslander-Reiten quiver) in this situation, we use these trees to specify all this
information when we give tables in Section 21.

We first start with the situation where G has a normal Sylow p-subgroup C of
order p. We deal only with the projectives of the form P1,V and PC,V since the other
projectives may be reduced to this case using the equivalence of categories 10.1.
Now these projectives are indexed by letting V range through the complete set of
simple kG-modules, since the normal p-subgroup C must act trivially on such V
and so we may regard V either as a kG-module or as a k[G/C]-module.

We obtain the structure of P1,V by means of the isomorphism P1,V
∼= FPPV

given
in 13.3, where PV is the projective cover of V as a kG-module. These modules PV
are uniserial, being given by a Brauer tree which is a star [3], and within any block
we may number the simples V1, . . . , Ve so that

PVi =

Vi
Vi+1

...
Vi−1

Vi

with a cyclic ordering of the i’s. We have FPPVi
(C) = Vi by [3, p.37]. Thus the

composition factors of FPPVi
are S1,Vi

, S1,Vi+1 , . . . , S1,Vi−1 , S1,Vi
and SC,Vi

by 6.3,
and by the method of Section 6 using the map ψ. Here we use the fact that each
of the S1,Vj vanishes at C. By 14.3 the only possible non-zero Ext groups between
these simples are between S1,Vi and SC,Vi , and between SC,Vi and S1,Vi , where the
Ext groups have dimension 1, and also between S1,Vj

and S1,Vj+1 for j = 1, . . . , e,
where the Ext group has dimension ≤ 1.

We conclude that the top two Loewy layers of P1,Vi
must be either

S1,Vi

S1,Vi+1 SC,Vi

or S1,Vi

SC,Vi

and we eliminate the second of these using the fact that P1,Vi
is also the injective

hull of S1,Vi
by 13.3, and there must also be a subfunctor

SC,Vi

S1,Vi
.

Now using the remaining restriction on Ext groups we obtain that P1,Vi has a
diagram

S1,Vi

S1,Vi+1

...
S1,Vi−1

SC,Vi

S1,Vi .
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We turn now to the indecomposable projectives PC,Vi for which we use decompo-
sition theory. We shall use superscripts K or k to indicate the field over which the
simple Mackey functors are defined. Observe that Vi lifts to a simple KG-module
also written Vi because p does not divide |G/C|. By 9.10, the decomposition of SK1,Vi

and SKC,Vi
is completely determined by the decomposition of their evaluations at p-

subgroups, namely 1 and C. Since SKC,Vi
vanishes at 1, we obtain d(SKC,Vi

) = SkC,Vi
.

Now SK1,Vi
= FPVi has value Vi at both 1 and C, and since Sk1,Vi

vanishes at C, we
obtain d(SK1,Vi

) = Sk1,Vi
+ SkC,Vi

. This works for every simple K[G/C]-module Vi .
Moreover the other characteristic zero simple Mackey functors do not decompose
with SkC,Vi

as a composition factor, because they all vanish at C, since C acts
non-trivially on them. Using the fact that the Cartan matrix is the product of
the decomposition matrix and its transpose, we deduce that the only composition
factors of P kC,Vi

are SkC,Vi
with multiplicity 2 and Sk1,Vi

with multiplicity 1. Re-
turning to the situation where k is our sole field of definition (and thus omitting
superscripts), we have Ext(SC,Vi , SC,Vi) = 0 by 14.3. The only possibility is that
PC,Vi

has a diagram
SC,Vi

S1,Vi

SC,Vi
.

We may now sum up the results of our calculations in the following way.

(20.1) Theorem. Let k be a field of characteristic p and let G be a group with
a cyclic normal Sylow p-subgroup of order p. Let b be a block of Mackey functors
lying in Mackk(G, 1). Then b is a Brauer tree algebra with Brauer tree having the
form of a star with arms of length 2.

◦

SC,V1

◦

S1,V1

◦
SC,V2

◦
S1,V2

•
S1,Ve

◦
SC,Ve

◦

...
...

. . . . . .. . .

The inner star is the Brauer tree of the corresponding block of kG-modules (with
exceptional vertex in the center).

Proof. We merely have to observe that the indecomposable projective Mackey func-
tors have the structure determined by this tree, as described in [3]. �

Now we can state the general result.

(20.2) Theorem. Let k be a field of characteristic p and let G be a group for
which p2 6

∣∣ |G|. Then each block of µk(G) is either a matrix algebra over a division
ring, or a Brauer tree algebra.
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Proof. Since the types of algebra mentioned are stable under Morita equivalence,
by the equivalence of categories Mackk(N(J), 1) ≈ Mackk(G, J) it suffices to prove
the result for blocks in Mackk(G, 1). We suppose we have a block b̂ of Mackey
functors of this form, which is associated by 17.1 to a block b of representations of
G. By 17.3 b̂ is a matrix algebra if and only if b is a block of defect zero. Thus we
now suppose that b has defect C where C is a Sylow p-subgroup of order p.

Let e be the unique block of NG(C) for which b = eG and let ê be the correspond-
ing block of Mackk(NG(C), 1). We claim that the Green correspondence provides
a stable equivalence between b̂ and ê. The arguments we use here are similar to
the case of group representations, with some modifications. We must show that
Green correspondence provides a bijection between the (isomorphism classes of)
indecomposable non-projective Mackey functors in b̂ and in ê, and also that the
corresponding groups of homomorphisms modulo projectives are isomorphic. We
start by observing that by 9.7 all the indecomposables in these blocks which are
not 1-projective have C as a vertex, so the Green correspondence applies. Also
the Green correspondent of a projective (with vertex C) is again a projective since
the restriction and induction of projectives are projective. Thus the non-projective
Mackey functors correspond.

It is now necessary to prove that an indecomposable non-projective Mackey
functor M is in b̂ if and only if its Green correspondent f(M) is in ê. To do this,
notice that if V is a simple kG-module in b so that SG1,V ∈ b̂, then f(SG1,V ) = S

N(C)
1,f(V )

by 11.6, and this lies in ê by 17.2 since its evaluation at 1, namely f(V ), lies in e.
Thus there is at least one Mackey functor in b̂ whose Green correspondent lies in
ê. Now observe that if L and M lie in b̂ with vertex C then by the usual argument
[3, section 10]

Hom1
Mackk(G)(L,M) ∼= Hom1

Mackk(NG(C))(f(L), f(M))

where these groups denote homomorphisms modulo 1-projectives. We use again
the fact that Green correspondence sends projectives to projectives to deduce that
in fact we have an isomorphism

HomMackk(G)(L,M) ∼= HomMackk(NG(C))(f(L), f(M))

where these groups denote homomorphisms modulo projectives. We deduce that

Extµk(G)(L,M) ∼= Extµk(NG(C))(f(L), f(M))

as in [14, II 5.9]. Since the closure of any non-projective object under the equivalence
relation generated by the property of having a non-zero Ext group gives all non-
projectives in the block, we deduce for non-projective Mackey functors that M is
in b̂ if and only if f(M) is in ê. At the same time we have also proved the desired
isomorphism of homomoprhisms modulo projectives.

To sum up these arguments, we have shown that Green correspondence gives a
stable equivalence of b̂ and ê. By 20.1 ê is a Brauer tree algebra. We finally quote
the theorem of Gabriel and Riedtmann [10] which states that an algebra stably
equivalent to a Brauer tree algebra is a Brauer tree algebra, and this completes the
proof. �
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For the rest of this section, we fix the following notation. We continue to suppose
that G is a group whose order is divisible by p but not p2. Let b be a block of G-
modules which is not a matrix algebra, and let b̂ be the corresponding block of
Mackey functors for G. Let TMod be the Brauer tree of b and let TMack be the
Brauer tree of b̂.

We want to show that TMod is naturally a subgraph of TMack. We first need
an elementary property of graphs. Given a graph with edge set E, we define the
neighbours of an edge e to be the set of edges

N(e) = {f ∈ E
∣∣ f has a vertex in common with e}.

Moreover an edge is called a twig if one of its vertices is the vertex of no other edge.

(20.3) Lemma. Let T be a finite graph which is a disjoint union of trees. Then,
apart from isolated vertices, T is determined by knowing for every edge e the set of
neighbours N(e).

Proof. There may be edges e for which N(e) = {e}, namely components consisting
just of e and its two end vertices. By removing these we may assume that N(e) 6=
{e} always. Now for each edge e we partition N(e)− {e} into (at most) 2 subsets
by means of the equivalence relation e1 ∼ e2 ⇔ e1 ∈ N(e2). The edges for which
N(e)−{e} consists of just one equivalence class are precisely the twigs. By removing
such a twig from the situation, together with all occurences of that twig in the
neighbour sets, we reduce to a union of trees of smaller size. Now by induction we
can reconstruct the smaller graph, and the twig e we removed is joined on to it at
the common vertex of all the edges N(e). �

(20.4) Proposition. The edges in TMack labelled by simple Mackey functors of
the form S1,V span a subtree isomorphic to TMod. The isomorphism is given by
associating to an edge labelled S1,V the edge of TMod labelled V .

Proof. Let T be the subgraph of TMack whose edges are the S1,V . Thus T is a union
of trees and has no isolated vertices. To show that T and TMod are isomorphic it
suffices by 20.3 to show that the neighbour sets of edges V0 and S1,V0 correspond
under the correspondence V ↔ S1,V . According to the structure of a Brauer tree
algebra, the neighbour sets of each edge of the Brauer tree are precisely the simples
which occur as composition factors of the projective cover of the simple labelling
that edge. Thus we need to show that W is a composition factor of PV if and only
if S1,W is a composition factor of P1,V . But by 13.3 P1,V = FPPV

and the result is
clear by 6.3. �

We move now to decomposition theory and for this we suppose that the fields
K and k are both splitting fields for the respective Mackey algebras. From the
known decomposition theory of blocks with cyclic defect group, we can label the
vertices of TMod by the simple modules in characteristic zero in such a way that each
simple decomposes according to the edges incident with that vertex (each non-zero
decomposition number being equal to 1). In fact there is an exceptional vertex
which is possibly labelled by several simple modules, but their decompositions are
all equal.

We analyse further the structure of the Brauer tree for Mackey functors in b̂,
and show that its vertices may also be labelled by simple Mackey functors in char-
acteristic zero in such a way that each simple decomposes according to the edges
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incident with that vertex. Thus the Brauer tree may be calculated from the de-
composition map (and conversely) in the same way as for group representations.
In the process we shall also see how TMack is constructed from TMod. First note
that we can already label the vertices of TMack which belong to TMod, using the
already existing labelling of TMod. Thus we have to find a labelling of the remaining
vertices, using the simple Mackey functors SKC,W in characteristic zero which are
indexed by C (where C still denotes a Sylow p-subgroup of order p).

As earlier in this section, we use superscripts K or k to indicate the ground field
over which Mackey functors are defined. To simplify notation, we shall use the
letter U to denote simple KG-modules and the letter V for simple kG-modules.
Moreover the simple modules for NG(C)/C will be written with the letter W .
Since NG(C)/C has order prime to p, we can use the same letter W both over K
and k (that is, we identify W and its decomposition d(W ) ). The letter d stands
for the decomposition of both modules and Mackey functors. We are going to
use repeatedly the following consequence of the fact that the Cartan matrix is the
product of the decomposition matrix and its transpose. Given two simple Mackey
functors SkH,V and SkH′,V ′ , the Cartan integer c(SkH,V , S

k
H′,V ′) is non-zero (that is,

the two edges SkH,V and SkH′,V ′ of the Brauer tree are neighbours) if and only if
there exists a simple Mackey functor SKJ,U over K whose decomposition contains
both SkH,V and SkH′,V ′ .

We proceed in a series of lemmas, starting with a general description of d.

(20.5) Lemma.
(i) If U is a simple KG-module and d(U) =

∑
i Vi, then

d(SK1,U ) =
( ∑

i

Sk1,Vi

)
+XU

where XU is a linear combination of simple Mackey functors SkC,W indexed
by C.

(ii) d(SKC,W ) = SkC,W .

Proof. (i) This is an immediate consequence of 9.10 (with J = 1), using also 6.3.
Note that the map ψ appearing in 9.10 involves only the two subgroups 1 and C.

(ii) This is again an immediate consequence of 9.10 using the fact that SKC,W and
SkC,W vanish at 1. �

The first statement above implies that if U labels a vertex of TMod, so that it
decomposes into the edges Vi emanating from that vertex, then the simple Mackey
functors of the form Sk1,V appearing in d(SK1,U ) are precisely the edges emanating
from the vertex SK1,U which lie in TMod.

We shall also need a technical lemma on exceptional characters, which we only
prove under special assumptions (see 20.11 for a more general result).

(20.6) Lemma. Let U1, . . . , Um be the simple KG-modules labelling the excep-
tional vertex of TMod.

(i) The dimension of the fixed points (U j)C is independent of j.
(ii) If only one simple Mackey functor SkC,W indexed by C appears in the decom-

position of each SK1,Uj , then for 1 ≤ j ≤ m all of the decomposition numbers
d(SK1,Uj , SkC,W ) are equal. Thus in the notation of 20.5, XUj is independent
of j.
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Proof. (i) Let χ be the character of some U j . We compute the dimension of fixed
points by restricting χ to C and taking the scalar product with the trivial character.
If u denotes a generator of C, we have

p 〈χ, 1〉C =
p−1∑
i=0

χ(ui) = χ(1) +
p−1∑
i=1

∑
φ

du
i

χ,φ φ(1)

where du
i

χ,φ denotes the higher decomposition number and φ runs over the set of all
Brauer characters of CG(ui) = CG(C) belonging to the blocks corresponding to the
block b of G. (In fact by Brauer’s second main theorem, these blocks are conjugate
in NG(C) and their sum is the block of NG(C) corresponding to b. Moreover each
of them actually contains a single Brauer character.) Now it is known from the
theory of blocks with cyclic defect group that the higher decomposition number
duχ,φ corresponding to an exceptional character is a sum of primitive p-th roots
of unity (which depend on the exceptional character), up to a sign δ which is
independent of the exceptional character:

duχ,φ = δ(ζ1 + . . .+ ζe) .

(Here e is in fact the inertial index.) Moreover the decomposition number corre-
sponding to a power ui of u is simply

du
i

χ,φ = δ(ζi1 + . . .+ ζie) .

Therefore we obtain

p 〈χ, 1〉C = χ(1) +
∑
φ

φ(1) δ
p−1∑
i=1

(ζi1 + . . .+ ζie) = χ(1)−
∑
φ

φ(1) δ e ,

because
∑p−1
i=1 ζ

i = −1 for any primitive p-th root of unity ζ. Now the result is in-
dependent of the exceptional character, because χ(1) is the same for all exceptional
characters since they all decompose in the same way.

(ii) Let aj = d(SK1,Uj , SkC,W ) so that d(SK1,Uj ) = (
∑
i S

k
1,Vi

) + aj S
k
C,W . As an

immediate consequence of 9.10, we have

dim((U j)C) = dim(SK1,Uj (C)) =
(∑
i

dim(Sk1,Vi
(C))

)
+ aj dim(SkC,W (C)) .

Since dim((U j)C) is independent of j by part (i), we see that aj is independent
of j. �

Now we establish the link between the tree and the simple Mackey functors SkC,W
appearing in the (yet unknown) factor XU of Lemma 20.5.

(20.7) Lemma.
(i) If SkC,W appears in the decomposition of SK1,U , then SkC,W is a neighbour of

Sk1,Vi
for all edges Vi emanating from U .

(ii) If conversely SkC,W is a neighbour of Sk1,V , then for one end U of the edge V
of TMod, SkC,W appears in the decomposition of SK1,U . Moreover SkC,W is a
neighbour of Sk1,Vi

for all edges Vi emanating from U .
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Proof. (i) Let Vi be any edge emanating from U . Then the decomposition number
d(SK1,U , S

k
1,Vi

) is non-zero. By assumption d(SK1,U , S
k
C,W ) 6= 0 and so the Cartan

integer c(SkC,W , S
k
1,Vi

) is non-zero.
(ii) By assumption the Cartan integer c(SkC,W , S

k
1,V ) is non-zero. Therefore there

exists a simple Mackey functor SKH,U whose decomposition contains both SkC,W
and Sk1,V . Then H cannot be C by 20.5 (ii), so H = 1. Thus V appears in a
decomposition of U , and this means that U is one of the ends of the edge V of TMod.
Moreover since SkC,W appears in the decomposition of SK1,U , part (i) applies to deal
with all edges Vi emanating from U . �

We now refine our knowledge of the Mackey functor tree TMack and consider the
remaining edges SkC,W .

(20.8) Lemma. Each edge SkC,W of TMack is a twig, the non-free end of which
belongs to the subtree TMod.

Proof. If Sk1,V is a neighbour of SkC,W for some V , then SkC,W is fastened to TMod.
Assume now that SkC,W ′ is a neighbour of SkC,W for some W ′. Then there exists a
simple Mackey functor SKH,U whose decomposition contains both SkC,W and SkC,W ′ .
By 20.5 (ii), we must have H = 1 and by 20.7 (i), SkC,W is a neighbour of Sk1,Vi

for
all edges Vi emanating from U . Thus in all cases SkC,W is fastened to TMod. Since
TMack is a tree and TMod is connected, the end vertex of SkC,W which does not lie
in TMod cannot be connected to any other vertex, hence is free. This proves that
SkC,W is a twig. �

(20.9) Lemma. The free end of the twig SkC,W is not an exceptional vertex of the
Brauer tree.

Proof. If it were, then by the structure of projective modules in a Brauer tree
algebra, the heart Rad(PC,W )/Soc(PC,W ) of the projective cover PC,W would be the
direct sum of two uniserial modules, one of which having only SkC,W as composition
factors. Then there would be a non-trivial extension between SkC,W and itself,
contradicting 14.3, because ExtkNG(C)(W,W ) = 0 since NG(C) has order prime
to p.

Another proof is the following. If TMod has an exceptional vertex, then it must
remain exceptional in TMack and so the free end of the twig SkC,W (which is not
in TMod) cannot be exceptional. So we can assume that TMod has no exceptional
vertex, in which case we want to prove that TMack has no exceptional vertex. But
this property is preserved by the stable equivalence between G and NG(C). This
follows from the arguments of the last section of [3], using the determinant of the
Cartan matrix. Thus we can assume that C is normal, but then the result is clear
by 20.1. �

We now sum up the situation as follows.

(20.10) Theorem. Let TMack be the Brauer tree of a block of Mackey functors in
a situation where G has a Sylow p-subgroup C of order p and we are working over
a splitting p-modular system (k,O,K). The vertices of TMack may be labelled with
the simple Mackey functors over K, in such a manner that each simple decomposes
to give the simple Mackey functors over k which label the surrounding edges (each
simple Mackey functor over k appearing once). The edges and vertices of TMack
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labelled by the simples indexed by the trivial subgroup form a subtree isomorphic
to the corresponding Brauer tree TMod for G-modules. Each remaining edge is a
twig fastened to TMod. If e denotes the number of edges of TMod, then there are
also e edges outside TMod. In particular the number of vertices of TMack is 2e+ 1.
The exceptional vertex is labelled with all of the simples SK1,U for which the KG-
modules U label the exceptional vertex of TMod.

Proof. Let us first compute the number of edges. It is known from the theory of
cyclic defect groups that the number e of simple kG-modules in the block b is equal
to the number of simple kNG(C)-modules W in the block b′, where b′ is the Brauer
correspondent of b. Each such module W gives rise to a simple Mackey functor
SkC,W lying in the block b̂ of Mackey functors corresponding to b. These simples
SkC,W are precisely the edges of TMack which do not lie in TMod. So there are e such
edges, as required.

We have already labelled the vertices in the subtree TMod, and for the remaining
vertices we label the free end of the twig SkC,W with its lifting to characteristic 0,
namely SKC,W . It only remains to show that each vertex decomposes to give the
surrounding edges. This is clear for SKC,W because d(SKC,W ) = SkC,W by 20.5 and
SKC,W is the free end of the twig SkC,W . Consider now the decomposition of SK1,U .
By 20.5 the terms in TMod are exactly the edges Vi in TMod surrounding U . So we
only have to deal with the case of a simple SkC,W appearing in d(SK1,U ).

We want to prove that the decomposition number d(SK1,U , S
k
C,W ) is non-zero if

and only if SkC,W is fastened to the vertex SK1,U . If the number of all edges Vi
emanating from U is at least 2, then since we have a tree the result is clear by 20.7.
But if there is a single edge V1 in TMod emanating from U , it could be (using
again 20.7) that d(SK1,U , S

k
C,W ) is non-zero and that SkC,W is fastened to the other

end U2 of V1. We now wish to eliminate this possibility. We write U1 = U and
assume that SkC,W appears in d(SK1,U1

) and that SkC,W is fastened to U2 .
First assume that there is another edge V2 in TMod emanating from U2, with end

U2 and U3. Then TMack has a subtree of the following shape:
SK1,U1◦

Sk1,V1

SK1,U2◦
Sk1,V2

SK1,U3◦

SkC,W
SKC,W

◦

Let mi be the multiplicity of the vertex Ui in TMod and let U1
i , . . . , U

mi
i be the

simples in characteristic zero labelling the vertex Ui . Of course at most one of the
vertices has multiplicity greater than 1, so at least two of m1,m2,m3 are equal to 1,
but we don’t know which ones. We are interested in the occurrence of SkC,W in the
decomposition of SK

1,Uj
i

so we write the decomposition numbers

d(SK
1,Uj

1
, SkC,W ) = aj , 1 ≤ j ≤ m1 ,

d(SK
1,Uj

2
, SkC,W ) = bj , 1 ≤ j ≤ m2 ,

d(SK
1,Uj

3
, SkC,W ) = cj , 1 ≤ j ≤ m3 .
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By assumption at least one aj is non-zero. Since V1 appears only in the decompo-
sition of U j1 and U j2 , we obtain the Cartan integer

c(Sk1,V1
, SkC,W ) =

m1∑
j=1

d(SK
1,Uj

1
, Sk1,V1

)d(SK
1,Uj

1
, SkC,W )

+
m2∑
j=1

d(SK
1,Uj

2
, Sk1,V1

)d(SK
1,Uj

2
, SkC,W )

=
m1∑
j=1

aj +
m2∑
j=1

bj

and similarly c(Sk1,V2
, SkC,W ) =

∑
j bj +

∑
j cj . Also we have

c(SkC,W , S
k
C,W ) = d(SKC,W , S

k
C,W ) +

∑
U

d(SK1,U , S
k
C,W )2

≥ 1 +
∑
j

a2
j +

∑
j

b2j +
∑
j

c2j .

On the other hand from the structure of Brauer tree algebras, we have

c(Sk1,V1
, SkC,W ) = m2 , c(Sk1,V2

, SkC,W ) = m2 , c(SkC,W , S
k
C,W ) = m2 + 1 ,

using for the last equality the fact that the vertex SKC,W is not exceptional (by 20.9).
Putting together these values of Cartan integers, we first obtain

m3∑
j=1

cj =
m1∑
j=1

aj

and it follows that at least one cj is non-zero. Thus we have

m2 =
∑

aj +
∑

bj ≤
∑

a2
j +

∑
b2j <

∑
a2
j +

∑
b2j +

∑
c2j ≤ m2 ,

a contradiction.
Now we assume that there is no other edge in TMod emanating from U2 , so that

both U1 and U2 are ends of the tree TMod. This implies that TMod just consists in
the two vertices U1 and U2 joined by the edge V1 = V . By the first part of the
proof, we know that TMack has only one extra vertex, and the whole tree looks as
follows:

SK1,U1◦
Sk1,V

SK1,U2◦
SkC,W

SKC,W
◦

Recall that the hypothesis we are trying to eliminate is that SkC,W appears in
d(SK1,U1

). We can proceed as follows.
Let mi be the multiplicity of Ui and write U1

i , . . . , U
mi
i for the simples in char-

acteristic zero labelling the vertex Ui . Of course at most one of m1, m2 is greater
than 1. We set

a = d(SK
1,Uj

1
, SkC,W ) , b = d(SK

1,Uj
2
, SkC,W ) .
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Each of these numbers is independent of j by 20.6. Our assumption is that a 6= 0.
Then we immediately obtain the Cartan integers

c(Sk1,V , S
k
C,W ) = m1a+m2b

c(SkC,W , S
k
C,W ) = m1a

2 +m2b
2 + 1

which by the structure of the Brauer tree algebra are also equal to

c(Sk1,V , S
k
C,W ) = m2 , c(SkC,W , S

k
C,W ) = m2 + 1 ,

using for the last equality the fact that the vertex SKC,W is not exceptional (by 20.9).
It follows that

m1a+m2b = m1a
2 +m2b

2 = m2

which implies first that a and b are either 0 or 1, and then that b = 0 because a 6= 0.
Thus a = 1 and m1 = m2 . But there is at most one exceptional vertex, so m1 =
m2 = 1. Now we are in a situation where it is impossible to distinguish between
the two vertices of TMod, so we can exchange them. Then the extra vertex SKC,W is
fastened precisely to the vertex of TMod for which the corresponding decomposition
number is non-zero, as required.

Now we know that SkC,W is fastened to SK1,U if and only if d(SK1,U , S
k
C,W ) 6= 0.

We compute the Cartan integers from the decomposition numbers in order to show
that each such non-zero decomposition number has to be equal to 1 and that also it
must be constantly equal to 1 for the exceptional vertex. Let m be the multiplicity
of the vertex U and let U1, . . . , Um be the simple KG-modules labelling this vertex.
We assume that SkC,W is fastened to SK1,U so that at least one of the decomposition
numbers aj = d(SK1,Uj , SkC,W ) is non-zero. If V is some edge in TMod with end
vertex U , then the decomposition number d(SK1,Uj , Sk1,V ) is equal to one and so we
obtain the Cartan integer

c(Sk1,V , S
k
C,W ) =

m∑
j=1

d(SK1,Uj , Sk1,V )d(SK1,Uj , SkC,W ) =
m∑
j=1

aj

which is also equal to m by the structure of a Brauer tree algebra. Similarly

c(SkC,W , S
k
C,W ) = d(SKC,W , S

k
C,W )2 +

m∑
j=1

d(SK1,Uj , SkC,W )2 = 1 +
m∑
j=1

a2
j

and this is equal to 1 +m by the structure of a Brauer tree algebra. It follows that

m =
m∑
j=1

aj =
m∑
j=1

a2
j

and this implies that aj = 1 for all j, as required. This argument works of course
if m = 1. The proof of Theorem 20.10 is now complete. �

(20.11) Corollary. Let U1, . . . , Um be the simple KG-modules labelling the excep-
tional vertex of TMod . Then the K[NG(C)/C]-modules (U j)C are all isomorphic.

Proof. We use the fact that all simple Mackey functors SK1,Uj decompose in the
same way by the theorem above. By 9.10, we deduce that all K[NG(C)/C]-modules
SK1,Uj (C) = (U j)C decompose in the same way. Since NG(C)/C has order prime
to p, it follows that these modules are isomorphic. �
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21. Appendix: tables

We present as examples the matrices Ψ introduced in Section 6, and also the
decomposition matrices and Cartan matrices of Mackey functors for some small
groups. We always give only the information relating to the blocks in Mackk(G, 1),
which contain precisely the simple and projective Mackey functors indexed by p-
groups. Thus, for instance, we only give the entries in Ψ which are indexed by such
simple Mackey functors, and this is sufficient to determine the composition factors
of a Mackey functor in Mackk(G, 1) by 9.10. The Mackey functors in other blocks
may be computed from this case using 10.1. In situations where the behaviour of
Mackey functors is described by a Brauer tree we give just the tree, and not the
decomposition or Cartan matrices, which are deducible from it.

We adopt an ad hoc notation for representations, mostly referring to them by
their dimensions. If ζ is an nth root of unity, we denote by ζ a 1-dimensional
representation in the group generated by ζ. Generally ω will be a primitive cube
root of unity.

Cp

The matrices Ψ:

Cp SH,V

characteristic 0 1 Cp
1 χ1 · · · χp−1 1

K,W 1 1 1
χ1 1

...
. . .

χp−1 1
Cp 1 1 0 · · · 0 1

Cp SH,V

characteristic p 1 Cp
1 1

K,W 1 1 1
Cp 1 1

Brauer tree: SCp,1◦
SCp,1

S1,1
◦

S1,1

S1,χ
•

χ ranges through the p− 1 non-identity characters χ1, . . . , χp−1.
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S3

The matrices Ψ:

S3 SH,V

characteristic 0 1 C2 C3 S3

1 −1 2 1 1 −1 1

K,W 1 1 1
−1 1

2 1
C2 1 1 1 1
C3 1 1 1

−1 1 1
S3 1 1 1 1 1

S3 SH,V

characteristic 2 1 C2 C3 S3

1 2 1 1 1

K,W 1 1 1
2 1

C2 1 1 1
C3 1 1 1
S3 1 1 1

Brauer trees:

SC2,1◦
SC2,1

S1,1
◦

S1,1

S1,−1
◦

SS3,1◦
SS3,1

SC3,1◦
SC3,1

SC3,−1
◦

Simple projective: S1,2
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S3

The matrix Ψ:

S3 SH,V

characteristic 3 1 C2 C3 S3

1 −1 1 1 −1 1

K,W 1 1 1
−1 1

C2 1 1 1
C3 1 1

−1 1
S3 1 1 1 1

Brauer tree:

SC3,1◦
SC3,1

S1,1
◦

S1,1

S1,2
◦

S1,−1

S1,−1
◦

SC3,−1

SC3,−1
◦

Simple projectives: SC2,1, SS3,1
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A5

The matrices Ψ:

A5 SH,V

characteristic 0 1 C2 C2 × C2

1 3a 3b 4 5 1 −1 1 ω ω

K,W 1 1 1
3a 1
3b 1
4 1
5 1

C2 1 1 1 2 1
−1 1 1 1 1 1

C2 × C2 1 1 1 1 1
ω 1 1
ω 1 1

A5 SH,V

characteristic 2 1 C2 C2 × C2

1 2a 2b 4 1 1 ω ω

K,W 1 1 1
2a 1
2b 1
4 1

C2 1 1 1 2 1
C2 × C2 1 1 1

ω 1
ω 1
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A5

Decomposition matrix:

A5 SH,V

characteristic 2 1 C2 C2 × C2

1 2a 2b 4 1 1 ω ω

SK,W 1 1 1 1 1
3a 1 1
3b 1 1
4 1
5 1 1 1 1 1 1

C2 1 1 1
C2 −1 1

C2 × C2 1 1
ω 1
ω 1

Cartan matrix:

A5 PH,V

characteristic 2 1 C2 C2 × C2

1 2a 2b 4 1 1 ω ω

SK,W 1 1 4 2 2 2 1 1 1
2a 2 2 1 1 1 1
2b 2 1 2 1 1 1
4 1

C2 1 2 1 1 4 2 1 1
C2 × C2 1 1 2 3

ω 1 1 1 1 2 1
ω 1 1 1 1 1 2
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GL(3, 2)

The matrices Ψ:

GL(3, 2) SH,V

characteristic 0 1 C2 C4 V1 V2 D8

1 3 3 6 7 8 1 1a 1b 1c 1 −1 1 −1 2 1 −1 2 1

K,W 1 1 1
3 1
3 1
6 1
7 1
8 1

C2 1 1 2 1 1
1a 1 1 1 1 1
1b 1 1 1 1
1c 1 1 1 1

C4 1 1 2 1 1 1
−1 1 1 1 1 1 1

V1 1 1 1 1 1
−1 1 1 1

2 1 1 1 1 1
V2 1 1 1 1 1
−1 1 1 1

2 1 1 1 1 1
D8 1 1 2 1 3 1 1 1 1 1 1 1 1

GL(3, 2) SH,V

characteristic 2 1 C2 C4 V1 V2 D8

1 3 3 8 1 1 1 2 1 2 1

K,W 1 1 1
3 1
3 1
8 1

C2 1 1 1 4 1
C4 1 2 1
V1 1 1

2 1 1
V2 1 1

2 1 1
D8 1 1 1 1 1
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GL(3, 2)

Decomposition matrix:

GL(3, 2) SH,V

characteristic 2 1 C2 C4 V1 V2 D8

1 3 3 8 1 1 1 2 1 2 1

SK,W 1 1 1 1 1 1 1 1
3 1 1
3 1 1
6 1 1 2 2 1 1 1 1
7 1 1 1 1 1 1 1
8 1

C2 1 1 1 1 1 1 1 1
1a 1 1
1b 1 1 1
1c 1 1 1

C4 1 1 1
−1 1

V1 1 1 1
−1 1

2 1
V2 1 1 1
−1 1

2 1
D8 1 1

Cartan matrix:

GL(3, 2) PH,V

characteristic 2 1 C2 C4 V1 V2 D8

1 3 3 8 1 1 1 2 1 2 1

SK,W 1 1 2 1 1 2 2 2 2 1
3 1 3 2 3 4 2 1 2 1
3 1 2 3 3 4 2 1 2 1
8 1

C2 1 2 3 3 10 8 6 4 6 4 2
C4 1 2 4 4 8 12 5 3 5 3 3
V1 1 2 2 2 6 5 7 3 4 2 3

2 1 1 4 3 3 4 2 2 1
V2 1 2 2 2 6 5 4 2 7 3 3

2 1 1 4 3 2 2 3 4 1
D8 1 1 2 3 3 1 3 1 6
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PSL(2, 7)

The matrices Ψ:

L2(7) SH,V

characteristic 0 1 C7

1 3 3 6 7 8 1 ω ω

K,W 1 1 1
3 1
3 1
6 1
7 1
8 1

C7 1 1 1 1
ω 1 1
ω 1 1

L2(7) SH,V

characteristic 7 1 C7

1 3 5 7 1 ω ω

K,W 1 1 1
3 1
5 1
7 1

C7 1 1 1
ω 1
ω 1

Brauer tree:
SC7,ω◦

SC7,ω

SC7,1◦
SC7,1

S1,1
◦

S1,1

S1,6
◦

S1,5

S1,8
◦

S1,3

S1,3, S1,3
•

SC7,ω

SC7,ω◦

Simple projective: S1,7
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4. J.L. Alperin and M. Broué, Local methods in block theory, Annals of Math. 110 (1979),
143–157.
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