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A local method in group cohomology 

P. J. WE~ 

1. Introduction 

Let G be a finite group. The classical approach to the local control of the 
cohomology of G is described in the book of Cartan and Eilenberg [5] and relies 
on the fact that for any prime p the Sylow p-subgroup of H"(G, M) is isomorphic 
to the subgroup of "stable elements" of Hn(P, M) under the action of G, where 
P is a Sylow p-subgroup of G. In some situations the computation of the stable 
elements has been reduced to a local problem, as in for example [14] and [16]. 
When this is done it is usual to make restrictions that the action of G on M is 
trivial, and either that G has a special structure or that the prime p is sufficiently 
large. However, in the most general situation it seems hard to make this method 
work, the problem being to compute the conjugation action of G on Hn(P, M). 
We present a completely different approach to the local calculation of cohomol- 
ogy which avoids these restrictions. Our method has some connections with 
equivariant cohomology in that we consider a group acting on a simplicial 
complex and we obtain the cohomology of G in terms of the cohomology of the 
isotropy groups. But our approach is mostly algebraic, and we seem to obtain 
sharper results than are usually obtained with equivariant cohomology. 

Our first theorem concerns the abstract situation of a finite group G acting on 
a simplicial complex A, and we later go on to give the applications to particular 
cases. We assume G acts simplicially, and denote the isotropy group {g 
G Iag = o} by Go. Assume further that Go fixes the vertices of o pointwise. This 
can always be achieved by passing to a barycentric subdivision if necessary. 
Throughout this paper we will let q~ denote the collection of subgroups H of G 
which have a normal p-subgroup with a cyclic p '  quotient, that is 

qff = (H <<- G I H/Op(H) is cyclic}. 

The subgroups in qg are sometimes called "cyclic mod p."  

THEOREM A. Let G act simplicialty on the simplicial complex A, suppose 
for each simplex o the isotropy group Go fixes o pointwise, and let p be a fixed 

135 



136 P.J.  WEBB 

prime. Assume that one of  the following conditions holds: 
(a) for each H ~ cr with Op(H) 4:1 the fixed point complex A ~I has Euler 

characteristic X( A H) = 1 
or (b) for each cyclic subgroup H of  order p, A H is acyclic. Then for any 

7/G-module M and integer n, 

/4~(G, M)p = ~ (--1)dim~~ M)p. 
o e A / G  

In the statement of Theorem A we use the suffix p to indicate the Sylow 
p-subgroup of the corresponding cohomology group. The sum on the right is 
taken over a set of representatives for the orbits of G on A and the alternating 
sum is to be understood in the Grothendieck group of finite abelian groups with 
relations given by direct sum decompositions. It can also be interpreted by 
transferring the groups with negative sign over to the left hand side with a 
corresponding positive coefficient. There is then an isomorphism between the 
direct sums of the groups on either side. It is plain that this is sufficient to 
determine the isomorphism type of/~n(G, M)p provided M is a finitely generated 
7/G-module, since then all the cohomology groups are finite. In fact condition (b) 
implies a condition (a), as we shall see, but it is usually easier to verify, for 
example by showing that A H is contractible if IHI -- p. The conclusion of Theorem 
A does not hold in this generality for the ordinary/_/o and/4o; instead we must 
take Tate cohomology, which of course includes the usual homology groups in 
dimensions ~< - 2. 

In the applications of Theorem A the simplicial complex A always arises from 
a partially ordered set in the following standard fashion: if S is a poset, the 
associated simplicial complex has as its n-simplices the chains s 0 < ' "  < s ,  of 
length n + 1 of elements of S. The faces of such an n-simplex are the subchains of 
shorter length. If G acts on S there is an induced action on the simplicial 
complex, and it is clear that the isotropy group Go will stabilize all the vertices of 
a, since it must fix all elements of S in the chain or. We will use the symbols M to 
denote the poset of all non-identity elementary abelian p-subgroups of G and 5e 
to denote the poset of non-identity p-subgroups of G. We regard these also as 
simplicial complexes by the above construction, and G acts on all of them by 
means of conjugating the subgroups. Our results apply to these simplicial 
complexes and also to the Tits building of a finite Chevalley group. This can be 
regarded as the simplicial complex obtained from the poset of proper parabolic 
subgroups of G. For each of these complexes the condition that A r/is contractible 
and hence acyclic when IHI =p  has been verified by Quillen. We therefore 
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obtain: 

T H E O R E M  B. The cohomology formula in Theorem A is a valid when 
A = sg, ~,  or A is the Tits building of  a finite Chevalley group in defining 
characteristic p. 

In the case of a Tits building, if we choose the simplices to be the proper  
parabolic subgroups themselves, rather than chains of subgroups, the formula 
adopts the following form. 

C O R O L L A R Y  C. Let G be a finite Chevalley group in defining characteristic 
p and let B be a fixed Borel subgroup. Then 

t;t"(G, M)p = ~'~ (--1)r"'k(P)/4"(P, N)t ,. 
P~B 

The sum here is taken over  all parabolic subgroups containing B. By the rank of a 
parabolic subgroup P we mean that integer m so that P =Pm < Pro- ~ < �9 �9 �9 < P~ < P0 
is a chain of proper  parabolics of maximum length. Maximal parabolic subgroups 
thus have rank 0. 

In many cases evaluation of the formula for cohomology in Theorem A can be 
quite straightforward. If A arises from a poser of subgroups of G as in Theorem B 
then the simplices of dimension zero are just the subgroups themselves, and the 
stabilizers Go are the normalizers of the subgroups. In general, if o is a simplex 
H 0 < ' "  < H ,  where the Hi are subgroups of G, then G , , = N ~ ( H I ) N . . . A  
Nc,,(H,). Observe that for each of the posets sr and 5r the maximal p-local 
subgroups always appear  amongst the isotropy groups G, ,  because for example 
with M, a p-local subgroup always normalizes some elementary abelian p- 
subgroup. We can say in general that the p-part  of the cohomology of G is 
determined by the cohomology of certain p-local subgroups, and their intersec- 
tions. However ,  if G has a normal p-subgroup then G itself will appear on the 
right hand side of the cohomology formula with these three posets, and Theorem 
B is of less use. In this situation we can apply a different reduction theorem which 
emerges as a step in the proof  of Theorem A. 

T H E O R E M  D. Let ~ be a class of subgroups of  G which is closed under 
taking conjugates and forming subgroups, and with ~ ~_ ~. Then 

H"(G, M)p = f(H) H"(H, M)p 
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for any integer n and ~_G-module M, where f : gT---> ~ is the function defined by the 
equations 

f (K)= l for every J e ~. 
J ~ K ~  

This theorem works both for Tate and ordinary cohomology and homology (the 
only difference between the two being the groups H ~ H0 and the corresponding 
Tate groups/2/0 and/~- l ) .  

There is another way to view the function f ;  if we let ~ be the poset ~ U {~} 
where ~ is an artificial maximal element, then f (H)= -#(H,  ~), where # is the 
MObius function. It is often an elementary but time-consuming matter to compute 
the values of f from the defining equations in Theorem D. Evidently if H is a 
maximal member of ~ then f(H) = 1, and by working down through chains of 
subgroups from these maximal members we may build up further values of f. 
Because the MObius function is zero except on intersections of maximal elements, 
these intersections are the only subgroups we need consider. At the end of w we 
present a formalized version of the inductive computation procedure just hinted 
at, and this may be suitable for machine computation. 

We prove Theorem A by obtaining an isomorphism between direct sums of 
certain permutation modules. Let Zp denote the p-adic integers, and if H is a 
subgroup of G, write un for the corresponding permutation module Zp | ZpG 
over ZpG. 

THEOREM A'. uc -- E,,~a/c (-1)dim(~ (modulo projectives). 

Here the alternating sum is taken in the Green ring of finitely generated 
7lpG-modules, but it may also be treated in a similar manner to the sum in 
Theorem A. The congruence modulo projectives means that we may achieve 
equality by adding a suitable finitely generated projective module to each side. 

There is a theorem analogous to Theorem D concerning permutation modules. 

THEOREM D'. With ~ and f defined as in Theorem D, 

w u f (H)  
UG ~ Z ~  H 

The above equation holds in the Green ring defined over Q of ZpG-modules. 
The formula in Theorem A reminds one of an Ruler characteristic, and in 
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particular the theorem of Brown (as improved by Quillen) [3, p. 267] that 

Z(G) ~--- E (-- 1)dim~ (mod G )  
ae .~ l /G 

valid for certain groups with vcd (G) < ~, where ~r is the complex of elementary 
abelian p-subgroups. In w167 and 6 we investigate the connection between our 
approach and the method which Brown used, namely equivariant cohomology. It 
would be satisfying to prove Theorem A using the spectral sequence of 
equivariant cohomology, but I have been unable to do this in general without 
assuming some further properties of the simplicial complex on which G acts. 
Under slightly stronger conditions on A than those in Theorem A we prove that 
A has these further properties, provided A is a graph. This happens for A = ~r 
when G has p-rank 2, that is, the largest elementary abelian p-subgroup of G is 
Cp x Cp. The properties we require are summarised in the next result, and they 
immediately give a proof of Theorem A in this case. 

THEOREM E. Let G be a group o f  p-rank 2, and let A = ~l or 5L Then for  
each r the p-adic completion ISlr( A)p is a projective ZpG-module,  where fir denotes 

reduced homology. I f  C1 d ~ Co is the chain complex o f  M then both o f  the short 
exact sequences 

0 -*  H~( M)p --~ ( C,)p --~ Im ( d)p ~ 0 

and 

0--* Im (d)p --~ (Co)p "-~ Ho(M)p ~ 0 

are split as sequences o f  •p G-modules. 

In 5.1 as a stage in the proof of Theorem E we state a similar result valid for 
arbitrary connected graphs A under a certain contractibility hypothesis. This 
result seems to be known, but it is perhaps of some combinatorial interest since 
group actions on graphs of the required kind do arise in practice, an important 
example being a finite Chevalley group acting on a Tits building when this is a 
graph. In this case the fact that the first homology group is projective at the prime 
p is well-known, because it is the Steinberg module. Theorem 5.1 can be regarded 
as an extension of this fact for arbitrary groups. A straightforward consequence is 
that the rank of Hi(A) is divisible by the order of a Sylow p-subgroup of G. 

In w we calculate the isotropy groups in the formula in Theorem A for 
various specific cases, and in several of these the information given about the 
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cohomology is new. We conclude in w with some formulae which have the nature 
of an Euler characteristic and involve numbers such as the group order, or convey 
certain local information about G. 

This work has benefited from the interest shown by many people over a long 
period, and I would like to thank them all. In particular I thank K. S. Brown and 
J. Th6venaz. 

2. Reduction to local subgroups and the proof of Theorem D 

The proofs we shall give of Theorems A and D have rather little to do with 
cohomology, and rely on establishing Theorems A' and D', which are results in 
representation theory. We first make some remarks about the Grothendieck 
groups in which the equations in these theorems are supposed to hold. To handle 
the equations between permutation modules we work in the representation ring 
of 7/pG-modules. This is the vector space A(G) over the rational numbers with 
the set of isomorphism classes of finitely generated indecomposable 2epG-modules 
as a basis, allowing both torsion and torsion free modules. If M = M1 (3 �9 �9 �9 ~) M, 
is any finitely generated 7/pG-module where the Mi are indecomposable, we 
associate to M the corresponding element M1 + �9 �9 �9 + M~ in A(G). We will fail to 
distinguish in our notation between a module and its isomorphism class. Because 
of the Krull-Schmidt theorem (see [26]) the choice of the element M1 + �9 �9 �9 + Mn 
representing M is uniquely determined. There is a product in A(G) defined on 
basis elements by M �9 N = M | N, and the identity element is 2~p. Our aim is to 
obtain an alternative expression for 7/p, and we do this using Conlon's induction 
theorem and a formula for idempotents in A(G) which arise from the Burnside 
algebra. The expressions involving sums of cohomology groups on the right hand 
sides of the equations in Theorems A and D hold inside the Grothendieck group 
of finite abelian p-groups with respect to direct sum decompositions, tensored up 
to Q. This is a subspace of A(1), and it was the observation that H"(G, ) 
preserves finite direct sums and hence induces a homomorphism 

H"(G, ):A(G)---*A(1) 

which provided a starting point for this research. A similar observation was made 
by Roggenkamp and Scott [20]. 

Continuing with the notation for permutation modules un =Zp | 
used in the Introduction, we indicate how Theorems A and D may be deduced 
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from A' and D'. It depends on the isomorphisms 

Ext~pc (uu, Mp) = Ext~.c (Zp | ZpG, Mp) ~ Ext~.. (Zp, Mp) 

ExtOrt (Z, M) | ~p -- H"(H, M)p. 

The penultimate isomorphism where we take the completion at p outside the Ext 
term is valid because Z is finitely presented as a 2~H-module, and completion at p 
is an exact functor [12, p. 233]. If we thus apply Ext~pc ( , M~) to both sides of 
Theorem D' we immediately obtain Theorem D, at least when n/> 1. For the zero 
cohomology and homology groups the formula follows in the same way using the 
functors Hom~pc ( , M p )  and ~;zpGMp. We may deduce the result for Tate 
groups Hn(G, M) when n ~< 0 by applying dimension shifting, as in the formula 
Hn(G, M)=/7/"+~(G, I2~(M)), where K2 is the Heller operator (see [26]). Thus 
for n ~< 0 we take s = - n  + 1 and the desired formula for Hn(G, M) is identical 
with the corresponding formula for/4~(G, K2-"+~(M)). We should note in passing 
that g2 commutes up to projective summands (on which /4~ vanishes) with 
restricting M to H. Theorem A follows similarly from Theorem A',  except that 
here we start off with a congruence modulo projectives. We obtain an equality in 
cohomology because the Ext groups which have a projective module in the first 
place are all zero. The dimension shifting argument works again to get the 
negative Tate groups, but note that Theorem A does not hold in general for H ~ 
and H0. 

In the remainder of this section we give a proof of Theorem D' and discuss its 
uses. We introduce the Burnside algebra, B(G), which Burnside considered in his 
book. This is the Q-vector space with the set of equivalence classes of transitive 
G-sets as a basis. A transitive G-set is a set of cosets H\G, and H\G is equivalent 
to K\G if and only if H and K are conjugate subgroups of G. The product on 
B(G) is given on the basis elements by taking the direct product of the 
corresponding G-sets and expressing it as a disjoint union of transitive G-sets. 
This determines a linear combination of the basis elements according to the 
multiplicities with which they occur in the disjoint union, and this is defined to be 
the product. We will use the same symbol un for the G-set H\G that we 
previously used for the corresponding permutation module Zp(H\G)= Zp | 
ZpG, even though it may happen that un = ur  in A(G) but un 4: ur  in B(G) for 
different subgroups H and K [Scott, unpublished]. There is, however, a 
homomorphism B(G)---~A(G) sending un as H\G to un as the permutation 
module Yp(H\G). B(G) is a semisimple algebra [22], and for each subgroup 
H ~  < G  there is an idempotent eH lying in the span of {uk[K<-H}. These 
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idempotents are given by the following formula: 

2.1. THEOREM (Gluck [11], Yoshida [25]). 

1 ~ I~(g, n ) .  Ig l .u , ,  
e. = [Nc(n)[ ~,-~. 

B(G), 

where l~ is the MObius function on the lattice of  subgroups of  G with defining 
property 

Y~ Iz(K, H) = 6jH for all subgroups H, J of  G 
J~K~H 

( Kronecker delta). 

The en form a complete set of primitive idempotents in B(G), and we have 

ttG = l = Z e H 
H 

the sum taken over all conjugacy classes of subgroups H. Applying the 
homomorphism from B(G) to A(G) we obtain an identical formula there. In 
A(G) we may perform some simplification, because many of the eu are zero. 

As in w we define 

qg = {H <~ G [ H/Op(H) is cyclic} 

and call the subgroups in c~, "cyclic mod p" ,  If ~ is any class of subgroups of G 
closed under conjugation, let ~* denote a set of representatives for the conjugacy 
classes. Note that c~ is itself closed under taking subgroups (and under 
conjUgation). 

2.2. THEOREM (Conlon [8]). Under the canonical homomorphism B(G)---> 
A(G) the idempotent eft is mapped to zero if and only if H ~ % 

This allows us to throw away terms in the expression UG = EH etr and we obtain 

2.3. COROLLARY. Suppose ~[ is a class of  subgroups of  G closed under 
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conjugation and with ~ ~_ qg. Then in A(G), 

U G ----" ~_l ell" 
Hr 

We may evidently substitute the formula for e H given in 2.1 into the expression in 
2.3 to obtain our identity between the UH in A(G). By doing this and rearranging 
the double sum we obtain Theorem D'. 

Proof of Theorem D' 

1 
UG = E eH= ~ ~'~ I~(K, H) " IKI " uK 

1 1 = ~ 
K~-H,~IG :Nc(H)I ]No(H)] ~(K, H)IKI uK 

1 ~ UK'[K] ' (  ~ tt(K,H)). = IGI K . , , ~ I  E it( K, H)IKI uK = IGI , ~  K_, ,~ .  

We now define f (K)= ~X~H~I~(K, H). Then for any fixed J r ~, 

E f (K)= E g(K,H)= ~, 6 in=l ,  
J ~ K ~  J<<-K~Hr J ~ H E ~  

and it is apparent that these equations suffice to determine the values of f 
completely. This proves Theorem D'. 

Remark. If H and K are conjugate subgroups of G then UH ~ UK. Thus UH 
appears [G :No(H)] times in the sum in Theorem D', and hence we may rewrite 
it as 

= E f(H) 
. ~ .  u .  ING(H) : HI 

A similar modification to Theorem D is possible. 
The computation of values of the function f is a rather mechanical process and 

can profitably be done with computer assistance. The author has found the 
following scheme to be quite economical. For each pair of subgroups J, K in ~, 
define GK to be the number of conjugates of K which contain J. This number 
does not depend on the choice of Y or K within their conjugacy classes. Then for a 
fixed J r ~ the defining equation 

~'~ f(K) = 1 
J~K~YI" 
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becomes 

f ( K ) c j , ,  = 1. 

If we define the matrix C = (Cjr)j,r~e* and the column vector f = (f(K))r~,., 
the last equation is 

c IE I 
The problem is now to compute the matrix C, and this is usually best done by 
noting that 

C,x IG :NG(K)[ 
- [O : No(J ) l  " CjK 

where C~r is the number of conjugates of J contained in K. This latter equation 
may be verified by considering the bipartite graph whose vertices are the 
conjugates of J and the conjugates of K, and jx is joined to K y if and only if 
jx~_ K r. The number of edges in the graph may be computed in two ways as 
G r  tG: Nc(J)[ and C'~r [G: Nc(K)I. Finally, the solution of the matrix equation is 
elementary, since by placing the elements of ~* in non-decreasing order, C is a 
triangular matrix. 

We give an example of the above calculation when G = 2"4, P = 2 and ~ = cr 
Representatives of the conjugacy classes of cr are A4, D8, V = 
((12)(34), (13)(24)), ((12), (34)), (?4, (73, ((12)), ((12)(34)) and with rows and 
columns corresponding to these subgroups in the given order we have 

C =  

1 

0 1 
1 3 1 

0 1 0 1 
0 1 0 0 
1 0 0 0 
0 1 0 1 

1 3 1 0 

1 

0 1 
0 0 1 
1 0 0 1 
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The upper triangle is zero. Solving the equation C . f = ( 1  . . . . .  1)' gives 
f = (1, 1, - 3 ,  0, 0, 0, 0, 0)', so that the vector with entries f(K)/IN~.(K) : KI is 
(�89 1, - �89 0, 0, 0, 0, 0)'. The statement of Theorem B' is 

UZ4 = lUA 4 -~- UDX -- lUv" 

Passing to cohomology we obtain 

H"(X4, M)2 = �89 M)z + H"(D8, M)2 - �89 M)z. 

Some simplifications of the above procedure are possible. If we are only 
interested in cohomology it is a waste of  time to compute the u ,  where P)flHI, 
since these are projective 7/pG-modules and have trivial cohomology. Thus we 
might as well omit such subgroups from the matrix C. Secondly, one sees that 
f(K) = 0 except when K is expressible as an intersection of maximal members of 
~. The shortest way to establish this is to interpret f as a MObius function, as was 
indicated in w We let �9 be the poset �9 t_J {oo}, where ~ is greater than every 
member  of ~. The MObius function on ~ is then defined by 

/z(K, o,) = 0 

~(oo, o~) = 1 

for every J 4: 

and evidently these equations are satisfied if we take l~(K, ~ ) = - f ( K ) .  This 
MObius function should not be confused with the MObius function on the lattice 
of subgroups of G. It was proved by Philip Hall [13] that/~(K, oo) = 0 unless K is 
an intersection of maximal elements,  hence our assertion. With this observation 
we could have said immediately that A4, D8 and V are the only subgroups which 
make a non-zero contribution in the calculation for X4. 

We wish to conclude this section by describing another  way in which formulae 
for uc. can be obtained. If G is not itself cyclic m o d p  (i.e. G/Ot,(G ) is not cyclic) 
then ec. = 0  in A(G) by Conlon's  Theorem 2.2. In Gtuck's and Yoshida's 
expression for ec; (Theorem 2.1) the coefficient of uc. is/~(G, G)  = 1, so we may 
write 

1 ~ IKI ~(K, G)'ut,:. 
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We obtain 

2.4. PROPOSITION. H~(G, M)p = -1/IGI EK<o IKI #(K, G)H~(K, M)p for 
every prime p such that G / Op(G) is non-cyclic. Observe that we also obtain this 
result from Theorem D on taking Sg = all proper subgroups of G. 

In [13], Hall used the notation #(K) for our MSbius function ~(K, G), and he 
computed values of / t (K)  for some particular groups. Thus, for example, he gives 
the following MSbius inversion formula for GL(3, 2) = 6168: 

~b(G,68) = o(G,6s) - 7o(024) - 70(024) - 8or(MT,3) -I- 21o(O8) 

+ 28o(D6) + 56o(C3) - 84o((72). 

Hall's notation for the subgroups of GL(3, 2) is 024 for the octahedral group of 
order 24, M7.3 for the non-abelian group of order 21, 08 for dihedral of order 8, 
De for dihedral of order 6, and C3, Ca for cyclic groups. We have written 
-14o(024) as - 70 (02 4  ) - 7 0 ( 0 2 4 )  because there are two conjugacy classes of 
these subgroups. Hall did not need to distinguish between the conjugacy classes 
in this way. To explain the rest of his notation it is sufficient for our purposes to 
say that there are (for example) 8 maximal subgroups of type M7.3, for each of 
which /z(M7.3)=-1, so we obtain a term -8o(M7.3) in the above expression. 
Here ~ and o are functions defined on the subgroups of G168 satisfying 
tr(H)=Ex~udp(K). We immediately read off the following formula in 
cohomology: 

H"(G, M)2 = ~-~[7.24H"(024, M)2 + 7.24H"(024, M)2 - -  21.8Hn(08, M)2 

- 28.6H"(D8, M)2 + 84.2H"(Ca, M)2] 

= H"(024, M)2 + H"(Oz,, M)2 - H"(Os, M)2 - H"(D6, M)2 

+ H"(Ca, M)2. 

Since we have decided to compute the 2-parts of cohomology groups we have 
omitted the terms with subgroups of odd order. It is well known, and easy to 
prove, that Hn(D6, M)2 = Hn(Ca, M)2, so the last two terms above cancel, and 
we obtain 

H"(G, M)2 = Hn(024, M)E + H~(O:4, M)2 - Hn(O8, M)z 

= �89 M)2 + �89 M)2 + H'(Os, M)2 - �89 M)2 

- �89 Mh. 

The second line is obtained by inserting the formula previously obtained for 024. 
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Here V = Ca • Ca, and repeated terms with the same subgroup indicate different 
conjugacy classes. Using a formula such as this one may readily compute the 
Poincar6 series of the cohomology ring ~ = 0  H'(G, F2). 

3. Proof of Theorems A and A' 

As explained in w Theorem A follows from Theorem A' by applying 
Ext,,c( , My) to both sides of the congruence of Theorem A'. Since Ext is zero 
on projective modules, the congruence becomes an equality between cohomology 
groups. We therefore prove Theorem A'. 

The idea behind the proof of Theorem A' is as follows. For each term uco 
which appears in the congruence we have to verify, we obtain by Theorem D' an 
expression in terms of the UH where H is cyclic mod p and is a subgroup of Go. 
We will substitute these expressions into both sides of the congruence in Theorem 
A' and after some rearrangement of the terms we will show that the two sides are 
equal. With this end in view we use the notation ($(Go) for those subgroups of Go 
which are cyclic modp, so that ~(G) = (~. Evidently ~(Go) = qg D {all subgroups 
of Go}. For each subgroup Go there will be a function f defined on ~(Go). We 
now denote this function by fo, retaining the symbol f for the function on q~. For 
each subgroup Go Theorem D' gives an identity 

fo(H) 
22 

Heq~(Go) 

in A(Go). We use the up arrow to denote induction. Inducing this Up to G we 
obtain 

L(H) 
Uco: E leo:re'" H~:~(Go) 

in A(G). The right hand side of the equation in Theorem A' is 

(_ 1)dim( ~ ) 
E (--1)dim( a}U Ga = E I G : a o l  UGa 

ae~/G oeA 

(-11 dim{~ fo(H) 
= 22 I a : a o l  22 Iao:nl u" oeZ~ He~(Go) 

(--1)dim{~ 
= Y. IG:HI u .  Heq~(Go) 

oEA 

=He~2{G)]G~/I ('0o~H2 (--1)dim'o'fo(H))" 
oEA 
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By Theorem D', the left hand side of the equation in Theorem A' is 

uH f(H). u.-- E Ia:nl Hr 

We will show that provided Op(H) #: 1 and H e ~r 

f ( H ) =  ~ (--1)dim(~ 
Go~_ H 
a~A 

This will suffice to prove Theorem A',  since the two sides of the congruence in 
the theorem differ by at most a linear combination of the un, H e q~(G), where 
Op(H) = 1. Such a subgroup H has order prime to p, so un is projective. 

To verify the last equation above we check that the right hand side satisfies 
the defining property of f, namely 

f(K)=l for all He~g(G) 
H~Kr 

provided that Op(H)~ 1. We wish to use this to define f(H) inductively when 
Op(H) =/: 1 and when f(K) has already been defined if H < K e ~g(G). This is 
valid, since in this situation Op(K)~ 1. Note that the condition Go ~_ H in the 
equation to be verified is equivalent to saying o is fixed by H, i.e. o e A". We 
calculate 

E E ( - - x )d im(a ) fa (K)=  E (--1) dim(a) E fo(K)= ~ ( - 1 )  dim(~ 
H~K~q~(G) o~A g oeA u H~K~Go oeA H 

KEqg(G) 

by the defining property off~ This last quantity is the Euler characteristic z(A"), 
and if we assume condition (a) in the statement of Theorem A then it is 1 if 
Op(H) d: 1, H e q~(G). This completes the proof of Theorems A and A' on the 
assumption that (a) holds. 

We finish with the observation that (b) implies (a). If H e cr with Op(H) :/: 1 
then H has a subnormal series /-/1 <~ HE <1 H where //1 has order p, HE is a 
p-group and H/HE is cyclic. Now AUl is acyclic by hypothesis, and hence 
Z/pT/-acyclic, thus by a theorem of Smith ([23], or VII, 10.5(b) in [3]) 
A n, = (An1) H~ is also Z/pZ-acyclic. Therefore AH~ is •-acyclic and since A n is the 
fixed points on AH~ under the action of the cyclic group H/H2, x(A ~) = x(A n2) = 1 
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by the Lefshetz trace formula. This completes the proof. The argument just 
indicated can also be found in Proposition 2 of [17]. 

It is interesting to compare the various rival conditions on A under which 
results like Theorem A are proved. A frequent condition in theorems proved by 
equivarient cohomology is that A H is acyclic for all p-subgroups H of G. 
Evidently this implies condition (b), and in general it is a more stringent 
condition, as explained in [17]. In order to prove that Theorem A holds in the 
presence of (b), the condition (a) which we worked with in the actual proof has 
to be suitably weak. For example, if we replaced (a) by "A n is 7//pT/-acyclic for 
all H ~ '~" then we would not be able to deduce (a) from (b) (see [17]). 

4. Proof of Theorem B and Corollary C 

Quillen showed in [18] that if A = ~/, 5r or the Tits building of a Chevalley 
group and H <~ G is a p-group then A n is contractible, from which condition (b) 
of Theorem A follows. Clearly, for any simplicial complex arising from a poset of 
subgroups, Go will always fix tr pointwise since the vertices of o are subgroups 
ordered by inclusion. Hence Theorem A applies to ~ ,  5r and buildings. 

In fact a slight extension of Quillen's argument shows that when A = ~ or 
and H e 5e with Op(H) 4:1 then A n is contractible, as we now demonstrate in the 
case A=M.  Write kip =Op(H)  and put C =  g2(~(Hp)), the largest central 
elementary abelian subgroup of Hp. Then 1 ~ C char lip <3 H, so C <~ H. Let 
A e M u be any non-trivial elementary abelian p-subgroup normalized by H. Then 
A Hp is non-trivial and is normalized by H since Hp <3 H. Hence the assignments 

A'--~ A Mp---~ A H" �9 C--', C 

take place inside M" and give a contraction of ~r [3, p. 268]. 
Suppose now that A is the Tits building of a finite Chevalley group in 

characteristic p. We may take the parabolic subgroups of rank n to be the 
simplices of dimension n, and then if B is a Borel subgroup the parabolic 
subgroups containing B form a set of representatives for A/G. Since the isotropy 
group or stabilizer of a parabolic subgroup is its normalizer, and parabolic 
subgroups are self normalizing, we obtain Corollary C. 

5. Structure of the complex of elementary abelian p-subgroups 

We first establish the conclusion of Theorem E for an arbitrary graph with 
similar fixed point properties to ~/, but under the hypothesis of connectivity. This 
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was essentially proved by Oliver [17], and the situation is very similar to one 
analysed by Quillen [18]. We give an algebraic proof  for the benefit of the reader. 

5.1. T H E O R E M .  Let A be a finite connected graph on which G acts and let p 
be a fixed prime. Suppose that G acts without inversions (i.e. any element o f  G 
which fixed an edge, fixes its two end vertices) and that for every subgroup P <~ G 
o f  order p, A P is a non-empty tree. Then the p-adic completion Hl(A)p is a 

projective Zp G-module. Furthermore, if C1 d ~ Co is the chain complex o f  A then 
both o f  the short exact sequences 

O--~H~(A)p--~ (COp---~ Im (d)p--* 0 

and 

0--* Im (d)p ~ (Co)~, --~ Yp ~ 0 

are split as sequences o f  ~_pG-modules. 

Proof. Let  Q by a Sylow p-subgroup of G. Since YpG-modules are projective 
and morphisms split if and only if, respectively, they are projective and split on 
restriction to Q, it suffices to assume G = Q is a p-group. Now for each 
1 4: H ~< G, A H is contractible. This is because if P <] H is a normal subgroup of 

order p then A p is a non-empty tree on which H acts and any finite group acting 
on a tree has a fixed point (Serre), so A H = (Ae) H is also a non-empty tree. Thus 
(...J~H~c. An has the homology of the poset of subgroups of G [3, IX, 11.2], and 
this is contractible since the poset has a maximal element [18, 1.5]. Hence the 
chain complex Di---~ Do of U l , , ~ c ;  An has the homology of a point, and since this 
subcomplex consists of those points where the action is not free we can write 
Ci = Di ~ P,. for i = 1, 2 where the P~ are free modules. By examining the long 
exact sequence associated with the sequence of chain complexes 0--* D. ~ C. 
P . ~  0 we see that C. and P. have the same reduced homology, so there is an 
exact sequence 

o--,  H, (A)--,  P, --, P,,---, o. 

This splits since P0 is projective, so H~(A) is projective. 
It remains to show that the short exact sequences split. The first one splits 

because Hl(A)p is projective, and Im (d)p is torsion free, being a subgroup of 
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(Co)p. For the second sequence, G has been assumed to be a p-group and we 
have seen that A c is a non-empty tree. Thus at least one of the transitive 
permutation summands of (Co)p is just 7/p and the restriction of the map 
(Co)p ~ 7/p to this summand is the identity 7/p ~ 7/p. The inverse of this map gives 
the desired splitting. 

We now turn our attention to the connectivity of 5g. Since M and ~ are 
homotopy equivalent, they have the same number of components and evidently 
the action of G on them is the same. Let ~ / b e  a connected component  of ,ff and 
r the set of elements of G which preserve ~/, so the permutation representation 
of G on the components of M is the action on the cosets of (~ in G, since G 
permutes the components transitively. We state the following for a group of 
p-rank ~<2. 

5.2. LEMMA.  Let C. = C1 ~ Co be the chain complex of  fg. Then 
(i) the chain complex of  ~l is C. = C. "~, obtained by applying the induction 

functor to C. . 
(ii) Hr(M) ---- Hr(~/) 1'~ as 7~G-modules, for r = 1, 2. 

Proof. (i) M is (equivalent to) the induced G-poset  I3 g,O\o ~g defined in an 
obvious way as the disjoint union of pairwise incomparable copies of ~ / indexed  
by the cosets G\G.  Evidently passing to the associated chain complex commutes 
with the process of induction. 

(ii) This is because ZG is projective, and hence flat as a ZO-module ,  so that 
taking homology commutes with tensoring. 

Proof of Theorem E. Since the inclusion map M ~ 5r is a homotopy equiv- 
alence [18] it suffices to prove the result for M. Projectivity of Hi(M) follows from 
5.1 and 5.2 (ii). Since 

0---~ ker (d)v ~ (C~)p ~ Im (d)p ~ 0 

and 

0 ~ Im (d)p ~ (~ )p  2_~ 7/p ~ 0 

both split, and this is preserved under induction, the corresponding sequences for 
~/spli t  as well. It remains to show that/~0(M)p is projective. Now Ho(~f)p is the 
permutation module 7/p 1' ~. We will show that the augmentation map Zp 1' ~---~ 
Zp splits with a projective kernel. In [18] Quillen showed that 0 is self- 
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normalizing and is a strongly p-embedded subgroup of G, which means that for 
every x e G either t~ x N t~ = t~ or t~ x N t~ contains no elements of order p. It 
follows that t~ contains a Sylow p-subgroup of G, and it suffices to show (by the 
theory of relative projectivity) that on restriction to G the augmentation map 
splits with a projective kernel. By Mackey's theorem, 

~n~' 

where the sum is taken over double cosets, and for each double coset apart from 
t~ itself, It~ x N t~ I is prime to p. Hence all summands on the right are projective 
apart from a single copy of 7/p corresponding to the double coset G. On this 
summand the map 22p ~ 7/p is the identity, so the inverse gives a splitting for the 
augmentation as a (~-map, and the kernel is isomorphic to the sum of the 
remaining summands, which is projective. 

The only extra complication in Theorem E over Theorem 5.1 is that ~ might 
not be connected. But then the stabilizer (~ of a component of ~ is self- 
normalizing and strongly p-embedded,  and as far as cohomology is concerned we 
might just as well work with (~ as with G. This is shown in the next result. 

5.3. PROPOSITION. The restriction map res :I2I"(G, M)p---~ 12In(G, M)p is an 
isomorphism. 

Proof. By [5] res is mono, and 

cores.res = _~_ Cx �9 rese, ne, x �9 cores~no  
G x G  

Every map on the right is zero on the p-part of cohomology, except for the 
summand with t~ x (~ = (~. This is because the other maps factor through 
/4n(t~x N (~, M), and this has trivial p-part because p Jr tG x N (~1 if x ~ t~. Hence 
cores.res = 1 and res is epi on the p-part of cohomology. 

There is a group-theoretical interpretation of 5.1 and 5.2 which we now 
mention. We return to the situation of 5.1 where G acts on a graph A without 
inversions. The quotient graph A,/G acquires the structure of a graph of groups 
by choosing a connected lifting of A/G to A and assigning as vertex or edge 
groups of A[G the stabilizers in G of the liftings of the vertices or edges to A. For 
the application to M in case G has p-rank 2, we should replace ~ by a connected 
component ~t if necessary, and G by (~. In any case, M/G ~- ~ / G .  Let (~ denote 
the fundamental group of this graph of groups. There is a unique homomorphism 
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~ G which is an isomorphism on corresponding vertex or edge stabilizers, and 
since A is connected it is surjective, by Bass-Serre theory [21]. The kernel N of 
this homomorphism may be identified as the fundamental group :rl(A), and it is 
the free group on a fundamental set of cycles in A. Thus N/N' is a free abelian 
group, and it is acted upon by (~ by means of conjugation within G. Since N itself 
acts trivially on N/N', this free abelian group becomes a 7/G-module, and one 
sees that N/N' ~ Hi(A) as 7/G-modules. Thus we have: 

5.4. COROLLARY. With the hypotheses of 5.1, (N/N')p is a projective 
•pG-module. 

This kind of situation was considered by Brown on p. 67 of [2]. There is a 
Mayer-Vietoris sequence giving the equivariant cohomology of G on A, and also 
a Mayer-Vietoris sequence for the cohomology of (~ [7]. These both have the 
form 

�9 ..---~I2In(d, M)---~ (~I2I"(G,,, M)---} (~I2I"(G~, M)--oltt"+~(G, M)---}... 
v E V  e ~ E  

in the case of G, or the same sequence with the G term replaced by/-:/~(A; M) 
for equivariant cohomology. Here V and E are the vertex and edge sets of A, and 
we will always work with Farrell-Tate cohomology, denoted by /~. As Brown 
observed, it follows that for 7/G-modules M, inf: Itt"(G, M)p-->Itt"(G, M)p is 
an isomorphism, since/:/~(A; M)p ~ Itln(G, M)p and because we have isomorph- 
isms on the vertex and edge groups. Because of the information about/~"(G, M)p 
in Theorem A we also obtain: 

5.5. THEOREM. Let M be a ZG-module and G the fundamental group of the 
graph of groups A/G, with A as in 5.1. Then at the prime p the Mayer-Vietoris 
sequence for the cohomology of G with coefficients in M is the splice of split short 
exact sequences of the form 

O--* ttl"(G, M)p--* (~ I21"(G., M)p--} (1~ I?t~(G~, M)p--*O 
v e V  e ~ E  

Proof. The isomorphism t:I"(G,M)p~ItI"(G,M)p and the formula of 
Theorem A show that the middle term in the above sequence is isomorphic to the 
direct sum of the two outer terms. By counting composition lengths it immed- 
iately follows that the above is a short exact sequence. It splits because of the 
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following much more general theorem of Miyata: 

T H E O R E M  (Miyata [27]). Let R be a ring with a Noetherian subring Z 
contained in the centre o f  R such that R is a finitely generated Z-module. Let 
O--* A--* B ~ C---~ 0 be a short exact sequence of finitely generated R-modules. I f  
B ~ A ~ C then the sequence splits. 

6. The connection with equivariant cohomology 

The approach of equivariant cohomology is to obtain the cohomology of G 
in terms of the cohomology of the isotropy groups in an action of G on some 
suitable space. In our situation of G acting on A, if A N is acyclic for all 

Ho(A, M) p-subgroups 1 4: H ~ G then the p-part of the equivariant cohomology ~ * 
is isomorphic to the p-part of /q*(G, M) [3, p. 292], and there is a spectral 
sequence whose E1 page is 

E1 ~ IgP(Go, M)p ~ ^ "+" "'~= HG (A, M)p (6.1) 
~e~, lG 

[3, p. 173] where A, is the set of simplices in dimension r. It would be interesting 
to prove Theorem A using this spectral sequence, but I have not been able to do 
so in general. The case where I can do it is the one treated in Theorem E, when 
A is a graph. Here the splitting of the differential and the projective homology 
immediately imply Theorem A', and hence Theorem A, but Theorem E also 
demonstrates that the p-torsion part of the equivariant cohomology spectral 
sequence terminates at the F-,2 page. 

6.2. PROPOSITION. Let G and A be as in Theorem E. The p-torsion 
equivariant cohomology spectral sequence (6.1) has F_~ = E= and the E2 page is 
zero except on the f b r e  E ~ . 

Proof. The spectral sequence arises from the double complex 
homzpG (~, homzp (C.(za)p, Alp), where ~ is a 7/pG projective resolution of 2~p. 
Since the reduced homology tTlr(A)p is always projective, it splits off from C. (A)p 
and the remaining differential on C. (A)p is then split (by Theorem E). It follows 
that homz~ (C.(A)p, Mp) also has projective homology and split differential so 
that when we take homology along the columns of the double complex the 



A local method in group cohomology 155 

projective homology groups contribute nothing, and what remains is the E~ page 

. ~ 

@ BI(Ga, M) v d ~]~ I?t,(G,,, M)p 
o ~  A n / G  a e  z~ I I G  

t~) fl~ M)p a ~]) i21O(G,,, M)p 
o e  z ~ o l G  a e  z ~ / G  

where each of the maps d is induced by the differential of C.(A) and is thus split 
epi. Hence E2 is only non-zero on the fibre, and the spectral sequence stops 
there. 

I am in fact able to show that the conclusion of Proposition 6.2 holds without 
restriction on the dimension of A, namely that the rows in the Ej page of the 
above spectral sequence are all split acyclic, except at the left hand-end where the 
homology is/4*(G, M)p. I hope to return to this in another paper. 

It is also just conceivable that the following question might always have an 
answer in the affirmative. This would immediately imply Theorems A and A'. 

6.3. Let A = oW be the complex of p-subgroups of G and 

dn d I 
C. ' C.-1--- '""  " - - ' G  ' G, 

be its chain complex. Is it true that for every r the reduced homology completed 
at p,/4,(A)p is a projective 2~pG-module, and the sequence 

0--, ker (d~)p--> (C~)p--* Im (d~)p --~ 0 

is split? 

7. Cohomology of some specific groups 

In this section we use Theorems A and D to give reduction formulae for the 
cohomology of certain specific groups in terms of the cohomology of their 
subgroups. As well as being valid for arbitrary 7/G-modules M we give more 
detailed results when M has the trivial action, and for this we consider the 
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Poincar6 series of the cohomology ring with 0:p coefficients: 

ac 

Pc(t) = ~ t". dim H"(G, ~:p) 
n = O  

The results for the Poincar6 series when p = 2 are summarised in the following 

table 

A4 

D~ 

~6 

A5 

A6 

A7 

Group Pa(t) 

PSLz(q), q odd 

PSL3(q), q odd 

M11 

1 + t  3 

( 1  - t 3 ) ( 1  - t 2) 

1 

( 1  - 0 2 

l + t  2 

( 1  - t ) ( 1  - t 3 )  

same a s  "~4 

l + t  3 

( 1  - t ) ( 1  - t 2 ) ( 1  - t 3)  

same a s  m 4 

same a s  m 4 

same a s  m 4 

same a s  A 4 

1 + t  5 

( 1  - t 3 ) ( 1  - t 4) 

l + t  5 

( 1  - t 3 ) ( 1  - / 4 )  

(1 + ts)(1 + t 6) 

( 1  - t 3 ) ( 1  - t 4 ) ( 1  - t 7 )  

The above groups will be taken, in order  through this section, where further 
formulae will appear  with details of the calculations. From 7.4 onwards where the 
formulae become more  complicated we will omit the coefficient module M from 
our  notation; thus H"(G)2  will mean H"(G, M)2. The formulae still work for 
arbitrary modules M. Many of the above Poincar6 series would be regarded as 
known, in particular the first two. 
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The series for A4 may be obtained from the fact that H"(A4, ~22) is isomorphic 
under the restriction map to the fixed points H"(V, Dz2)c3 where V is the Sylow 
2-subgroup of A4 [5]. Now ~ = o H " ( V ,  0:2) is a polynomial ring with two 
generators in degree 1, and the action of C3 is induced by that on Hi(V, ~:2), 
which is the dual of the action of C3 on V. The Poincar6 series of the ring of 
invariants may now be computed using Molien's Theorem [24]. 

When G = Dzm is a dihedral 2-group the Poincar6 series may be obtained from 
the description of the kernels in a minimal projective resolution of D:2 provided by 
Butler and Shahzamanian [4]. From their description, the dimension of the 
maximal semisimple quotient of the nth kernel is n + l ,  and this is 
dim Hn(D2 m, ~z2). Hence 

a c  

~] t" dim Hn( D2 m, ~-2) = 1 + 2t + 3t 2 + 4t 3 + . . . .  1 
. = o  ( 1  - t)  2" 

We will treat the general dihedral group in 7.3. 
From time to time we will use the following elementary but rather powerful 

observation. 

7.1. LEMMA. (1) Suppose 1--+ N---~ G --+ Q --~ 1 is a short exact sequence of  
groups and uo = XJ.rur in A (Q)  where the sum is taken over various subgroups 
K <~ Q. Let K, be the inverse image of  K in G. Then uc = 2Zrug  in A(G) ,  and 
H~(G, M)p = XArH"(K, M). .  

(2) Suppose G = A x B and UA = X)tHUn in A(A) ,  uB = X;trur in A(B) ,  for 
subgroups H<~A and K<~B. Then uc =X;~nAruH• and Hn(G, M)p = 
XAHZrH"(H x K, M)p. 

Proof. The cohomology formulae follow from those for permutation modules 
as explained in w 

(1) We regard u o = X;~rur as an equation of ZpG-modules via the homo- 
morphism G ~ Q. 

(2) u~ = UA | U8 = XZnZKUH | UK = XZHZrUH• 

7.2. G = X 4 ,  p = 2  
We apply Theorem D with �9 = cg, the subgroups of X4 which are cyclic 

(mod 2). The maximal members of c~ are A4 and three copies of/)8. Every pair of 
these intersects in the four group V which is normal in 24 so these are the only 
subgroups which arise as intersections of maximal members. As explained in w 
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the function f of Theorem D is only non-zero on these subgroups, and we have 
f(A4) =f (Ds)  = 1, f ( V )  = -3 .  Theorem D becomes 

H"(Z4, M)2 = �89 M)2 + H"(D8, M)2 - �89 M)2 

where V<~]X4 . The Poincar8 series is now computed as 

Pz,(t) = �89 + Pos(t) - �89 

7.3. G = D2r,, where m is odd, p = 2 
The procedure is the same as for Z4. Maximal members of cO:C z,-l,, and Dzr 

(m copies). These intersect only in the subgroup C2, ~. Therefore f(C2, 'm)= 
/(DE') = 1, f(C2,-,) = - m .  The indices of these subgroups in their normalizers are, 
respectively, 2, 1 and 2rn. Hence by Theorem D 

Hn(Dz,m, M)2 = Hn(D2 ~, M) + �89 M)2 - Hn(G , ~, M)] 

7.4. G = Z s ,  p = 2  
We apply Theorem 

follows: 
A. The quotient graph M/G may be represented as 

Z4 

~ ]  (FaJCz x X3 
D8 

This means that there are two conjugacy classes of subgroups of type C2 x C2, 
and two of type C2. The normalizers of the  corresponding subgroups are Z4, Da, 
/98 and C2 x Xs. For each conjugacy class of subgroups C2 and C2 x C2 there is at 
most one orbit of edges C2 ~_ C2 x C2, and the edge stabilizers are shown adjacent 
to the edges. Reading from left to right, typical representatives of the C2 x C2 
subgroups are ((12)(34), (13)(24)), ((12), (34)); and of the C2 subgroups are 
((12)(34)) and ((12)). All of the/98 subgroups shown are the same. It follows by 
Theorem A that 

H"(G)2 = H"(Z4)2 + 2H"(Ds) + H"(Cz x Zs)z - 2H"(Ds) - H " ( G  x C2) 

= n"(z4)2 + H"(C2 x X3)2 - H"(G x G)2- 

We are now omitting the coefficient module M from our notation. This equation 
holds for arbitrary coefficients M. Some simplification of the last two terms is 



A local method in group cohomology 159 

possible using Theorem D. We know by Theorem D' that 

u~3 = Uc2 + �89 - uO. 

So that by Lemma 7.1, uq• = Uc2xc2 + �89215 - Uc2). Hence 

H"(G)2 = Hn(2"4)2 + H"(Ca x Ca) + �89 x (73)2 - H"(Ca)] - H"(Ca x Ca) 

= Hn(2"4)2 + �89 X C3): - -  Hn(C2)]. 

By the Kiinneth formula, the ~:z-cohomology ring for C2 x (23 has the same 
Poincar6 series as for Ca, and so Pc(t) = Px,(t). 

7.5. G = Z 6 ,  p = 2  
To describe M / G  is rather complicated, since there are 3 conjugacy classes of 

Ca subgroups, 5 classes of C2 • Ca, and 2 classes of C2 x Ca • (72, and indeed, this 
is not the best approach. Up to conjugacy the maximal 2-local subgroups have the 
form Z4 x (72 where 2"4 permutes four of the letters, and No,(((12), (34), (56))). 
This latter group has the structure Ca x Ca x C2 ~ 2"3, since the three transposi- 
tions shown are the only ones in the group they generate, and this set of three 
elements is preserved. We apply Theorem D with ~ = {all 2-local subgroups}, 
i.e. subgroups of "~"4 X C2, C 2 X C 2 X Ca ~ 2"3, and their conjugates. These are the 
maximal elements of ~f. A calculation shows that the possible intersections of 
these have the form 

l. 2"4 X C2 
2. Cax Cax Ca~2"~ 
3. X~ permuting 3 of the letters 
4. /)8 x Ca with/98 permuting 4 letters 
5. ((12), (34), (56)) 
6. ((12)(34), (13)(24), (56)) 
7. ((12)) 

Intersections which have odd order have been omitted. Taking the rows and 
columns to correspond to these subgroups in the above order, the matrix C 
discussed in section 2 is 

C =  

1 
0 1 
4 3 1 
1 1 0 
3 1 0 
1 3 0 

' 7  3 4 

1 
3 1 
3 0 1 
9 3 1 1 
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solving the equation C . f =  (1 . . . .  ,1) '  gives f =  (1 1 - 6  - 1  0 0 24) t, and the 
vector with entries f (K ) / [Nc , (K) :K  I is (1 1 - 1 - 1  0 0 1)'. Therefore by 
Theorem D, 

H"(Z6)z = H"(~,4 x C2)2 + Hn(c2 X C2 x Ca ~ Z'3) z 

- Hn(D8 x Ca) - Hn(X3)z + H"(Ca). 

Note that in the last two terms, Ca may be chosen to be a subgroup of ~3, and 
since Hn(~v'3) 2 = Hn(C2),  the last two terms cancel. Some further simplification of 
the remaining terms is possible, but we must take care to distinguish non-conjugate 
subgroups which are abstractly isomorphic. Since uz4 = uo~ + �89 UC2• by 
Lemma 7.1 we obtain H"(274 x C 2 )  2 = H~(D8 x Ca) + �89 x Ca)2 - H"(Ca x 
Ca x Ca)], and since uz~ = uc2 + �89 - ul) we have 

n" ( ca  X Ca x C2 q ,~'3)2 = n"(O8 x Ca) + �89 x (72 x Ca ~ C3) 2 

- H~(C2 x Ca x Ca)] 

Substituting this into the formula for H n ( ~ ' 6 ) 2  gives 

Hn(~v'6) 2 = H"(D8 x Ca) + �89 x C2)2 - H"(Ca x Ca x Ca) 

+ H"(Ca x Ca x (72 ~ C3)2 - Hn(ca X Ca x Ca)] 

In this formula, one of the groups Ca x Ca • Ca is ((12), (34), (56)) while the 
other is ((12)(34), (13)(24), (56)). Extending each of these groups by the 3-cycles 
(135)(246) and (123), respectively, we obtain the groups denoted by Ca x (72 x 
Ca ~ (73 and A4 x C2, which are abstractly isomorphic. The formula holds for 
arbitrary coefficient modules M. 

7.6. G = A s ,  A6OrAT,  p = 2  
When G =As,  a Sylow 2-subgroup P is a TI set and so Hn(G, M)2 = 

H n ( N ~ ( P ) ,  M ) 2  by [5]. If G = A6 Then G = PSL(2, 9), and this will be covered 
by the discussion of the groups PSL(2, q). Now let G = A 7. We apply Theorem 
A. M/G  is 

@ Q 
(A, x q )  1 q ( q  x q x q )  (] q 274 

with vertex and edge stabilizers of M as shown. 
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A copy of the group (C2 x C2 x Ca) ~ Cz is generated by the elements 

(12)(34), (13)(24), (567), (12)(56), 

and representatives of the two conjugacy classes of four-groups are V~ = 
((12)(34), (13)(24)) and V2 = ((12)(34), (12)(56)). Hence H~(AT)2=H~(24)2 + 
H"((A4 • C3) q)2  - H"(Ds)2. 

We may reduce this further by applying the formula already obtained for Z'4, 
and applying Theorem D to (A4 x (73) ~ C2, as follows. In Theorem D we take 
to be all subgroups of A 4 • (73 and Ds, and conjugates of these. Then ~_~ cr and 
the maximal members of �9 are A4 x C3 and 9 copies of Da, any two of which 
intersect in exactly C2 x C2. Hence f(A4 x Ca) =f(Ds)  = 1, f(C2 x C2) = -9 ,  and 
the indices of these subgroups in thein normalizers are 2, 1 and 18 respectively. 
By Theorem D, 

Hn((A4 X G)  ~ C2)2 = Hn(Os)z + �89 X q )2  -- �89 x C2)2. 

We substitute this and the formula for X4 into the formula given above for A 7 to 
obtain 

H"(A7)2 = �89 + �89 x (73)2 + H~(D8) - �89 - �89 

The first group A 4 here normalizes the second four-group V2, and A 4 X C 3 acts as 
A4 on {1, 2, 3, 4} and as C3 on {5, 6, 7}. Since A4 and A4 x (73 have the same 
cohomology with F2 coefficients (by the Kiinneth formula), the Poincar6 series is 

PAT(t) = PA,(t) + Po,(t) - Pqxq(t)  = Pa,(t). 

7.7. G = PSL(2, q), q odd, p = 2. 
The structure of ~I/G is as follows: 

q x q  
D2r A4 

Z4 D2r ~,4 

if q-= +3 (mod8) 

if q -- + l  (mod 8) 

(see [9]). In these diagrams r is the integer such that/)2, is the centralizer of an 
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involution. 

Hn(G)2 = H"(A4)2 + Hn(DEr)2 - H~(C2 x C~)2 if q -= +3 (rood 8) 

H" (G)2  = H~(X4)2 + H~(Z4)2 + Hn(D2,)2 - H"(D8) - H"(Ds)  if q ~- +1 (rood 8). 

We repeat  groups according to the different conjugacy classes. 

7.8. G = PSL(3,  q), q odd, p = 2 
The  structure of M/G is 

GL(2, q) (Cq-t x Cq_,) ~ X3 

(see [1]). Hence  

H"(PSL(3, q) )2  

= H"(GL(2, q))2 + nn(Cq-1 X Cq_ 1 ~ Z3) 2 -- nn(Cq_l X Cq_ 1 ~ C2) 2. 

We may reduce the middle term on the right using Theorem B. With 
G = (Cq-1 x Cq-1) ~ X3, take ~ to consist of all subgroups of (Cq-1 • Cq-O ~ C3, 
(Cq-i x Cq-l)~ C2 and their conjugates. These are the maximal elements  of 
and any two of  them intersect in Cq-1 x Cq_l. Hence f((Cq_~ • Cq-1) ~ (?3) = 1 = 

f ( (Cq_ 1 X Cq_l) ~ C2) , f (Cq_ 1 X Cq_l) -~- --3. 

/4"((c~_, x G - , )  ~ z~)~ = }H"((G_, x Cq_,) ~ c~)~ 

+ Hn((Cq_l x Cq_l) ~ C2) 2 - -  �89 X Cq-1)2 

Therefore  

H"(PSL(3, q))2 

= H"(GL(2, q))2 + �89 x Cq_~ ~ C3)2-  H"(Cq_~ x Cq-~)2] 

We can use this to determine the Poincar6 series for PSL(3, q) over 0:z. By work 
of Quillen, 

l + t  3 

P6L(Z,q)(t) = (1 - / ) ( 1  - t ' )  



A local method in group cohomology 163 

(see [19] or [10]). The cohomology ring of Cq_~ x Cq_~ is a polynomial ring in two 
variables, and that of Cq-i x Cq_~ ~ Cs is the fixed points under the action of C3 
on this ring [5]. Cq_~ • Cq_~ ~ Cs thus has the same Poincar6 series as m4, and 

l + t 3  + ~ {  l + t 3  
P e s L ( 3 , q ) ( t )  - (1  - t ) - ( i  -2-  t 4) (1 - t3 ) (1  - t z) 

l + t  s 

( 1  - -  t 3 ) ( 1  - t 4) 

1 

(1 - t )  2] 

7.9. MH has the same 2-local structure as PSL(3, 3) 
The graph ag/G for MI~ is 

GL(2, 3) Z4 

7.10. G =Jl, P = 2  
Because Sylow 2-subgroups are abelian the 2-cohomology with trivial 

coefficients may be computed using Swan's theorem, the details being given in 
Chapman [6]. Chapman gives the expression for Pc,(t), and this may be shown to 
be correct using Molien's Theorem. The normalizer of a Syiow 2-subgroup has 
the structure N = (C 2 x C 2 x C2) ~ (C 7 ~ C3) , and for trivial coefficients 
H"(G, M)2 ~ Hn(N, M)2. This result should be modified for arbitrary coefficient 
modules M, as we shall see. 

By [15], ~I/G has the structure 

C2xA5 A4xC_~ 

Qx 

xC~x 
N 

with vertex and edge stabilizers as shown. Therefore by Theorem A, and after 
some cancellation, 

H"(G)2 = H"(N)2 + H"(C2 x A.s)2 - H"(Cz • A4)2. 
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Some simplification of the last two terms is possible. By Theorem D, 

uA~ = uA,  + �89 - uc3) 

and so by Lemma 6.1, Uc2• = UC2• + �89215 -- UC2• Hence 

Hn(G)2 = H~(N)2 + �89 x C5)2 - Hn(C2 x C3)2). 

Some reduction of H~(N)2 is also possible with Theorem D, but we do not give 
this. 

8. Euler characteristic formulae 

It was proved by K. S. Brown (see [2]) that the Euler characteristic of 
satisfies 

X(~r  ~- 1 (mod IclA. 

This was significant in his investigation of the Euler characteristic of G, and was 
reproved by QuiUen [18] and Oluck [11]. In this section we show that our own 
Theorem A'  contains this congruence, and prove some other formulae of a 
similar nature. We work in the generality of a group acting on a simplicial 
complex so that condition (a) of Theorem A is satisfied, and this includes the 
cases M and 5e. The condition is: (a) for all H e q~ with p[[H[, x ( A  H) = 1. 

8.1. T H E O R E M .  Let G act on the simplicial complex A so that (a) holds. 

Then 

x ( A )  = 1 (rood [G[. ). 

Proof. Take ranks of both sides in Theorem A' .  We obtain 

1 ~ E (--1) dim{o) [G:Gol = X(A) (rood IGIA, 
o e ~ t / G  

the congruence arising because every finite rank projective 7/~,G-module has rank 
divisible by I G[p. 

In the next result we impose the further condition that all isotropy groups 
have order divisible by p. This is satisfied when A - - M  or 6% since if 
o = Eo < -  �9 �9 < En is a simplex then Eo is a non-identity p-group with Eo _ Go. 
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8.2. PROPOSITION. Let G act on the simplicial complex A so that (a) holds 
and for all a e A, plla01. 

(i) Let A/G denote the quotient complex of  A by the action of  G. Then 
x (A /G)  = 1. 

( U d""  r / ~ '  ( - 1 )  di"~ 
(ii) IGI, -- IIoE ,  a ,  and IG/G'Ip = I-Io~A/c v o , v o p  

Proof. (i) Recall from [5] that H~ 7/) is cyclic of order IGI. Substituting 
this into Theorem A we obtain 

clol  = E 
o e z l l G  

We may take the negative terms over to the left hand side and take the rank of 
both sides as p-groups to obtain 

I =  E (--1) dimO 
o e z i / G  

after returning the negative terms to the right hand side. This is now precisely 
X(A/G).  

(ii) Instead of taking the rank of both sides in (i), take the order of both sides 
to obtain the first formula. The second formula follows in a similar way using the 
(co)homology group /4-2(G, ?7) = Hi(G, Y_) -~ G/G' .  Evidently a formula of the 
type in 8.2 (ii) will hold for the order of any cohomology group, for example the 
Schur multiplier. 

8.3. C O R O L L A R Y .  If  G has p-rank 2 then ,~/G is a tree. 

Proof. M/G is a connected graph with Euler characteristic 1. 
The last result is a statement about the p-local structure of groups of p-rank 2. 

For example, it implies that in such a group, if x and y are commuting elements of 
order p with (x, y)  ~ Cp x Cp and (x) is conjugate to (y)  in G, then (x)  is 
conjugate to (y)  in Nc( (x , y ) ) .  This is because in M there are edges 
(x) ~_ (x, y ) and (y)  ~_ (x, y )  whose end points fuse in M/G. Because M/G is a 
tree, there is only one edge between these two vertices of ~ / G ,  so the above two 
edges of ~ are conjugate. This means there is an element g e G with (x }g = (y)  
and (x, y}g = (x, y) .  It seems, however, that the overall p-local information 
conveyed by 8.3 is of a more subtle nature than this. It is interesting also that 
Corollary 8.3 retains some force even when G is a p-group, in contrast to many of 
the results in this paper. 
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The approach adopted in 8.2 can also be applied to Theorem D to yield a 
number of similar results. We use the notation of Theorem D. 

8.4. PROPOSITION. Let ~g be any class of subgroups of G which is closed 
under conjugation and taking subgroups, and which contains the class qg of 
subgroups which are cyclic mod p. 

(i) ~'~ f(H) = 1; ~, f(H) = 1 (mod [Glp ) 

plIHI 

f(H) 5, f (H)_ (ii)   IG:HI-1; 1 
p[IH[ 

(iii) IGIp = l-I Inl  
H ~  
Pllnl 

Proof. (i) The equation is really included for completeness, because it is one 
of the defining equations for f. We may also verify it by taking ranks of both sides 
of the equation in Theorem D'.  This is how we prove the second formula, except 
that on omitting the terms for which p )f Inl we obtain a congruence mod IGle, 
since for such H, rank un is divisible by I Glp. 

(ii) The formula in Theorem D' is equivalent to an isomorphism between two 
direct sums of modules. Taking fixed points and then ranks of both sides gives the 
first equation. For the second we use the expression in Theorem D for 
ffI~ ~-)p ~- C[GIp and take the rank of each side as a p-group. 

(iii) Follows by taking the order of both sides of the equation for/-)~ 7/)p. 
A similar formula holds for the order of any other cohomology group. 

Remark. The sums in 8.4 are often more easily evaluated if taken over a set 
�9 * of representatives of conjugacy classes of subgroups in ~ ,  and factors 
[G:N6(H)I are introduced. These identities have a use as a check on the 
accuracy of one's calculation of the values of the function f, computed, for 
example, as described in w 
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