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1. Introduction

A number of authors have shown how the homological properties of modules for
the group ring of a finite group G over a field k of characteristic p are in some sense
controlled by the elementary abelian p-subgroups of G. Quillen proved in {8] that
the Krull dimension of the mod p cohomology ring of G is the maximum rank of an
elementary abelian p-subgroup of G. Subsequently Chouinard proved in [4] that a
kG-module is projective if and only if it is projective on restriction to all elementary
abelian p-subgroups of G, and more recently Alperin and Evens [2] and Carlson [3]
have proved theorems in characteristic p which imply the results of Quillen and
Chouinard as corollaries. In this paper we consider the problem of obtaining
analogous results to these for the integral group ring ZG, and when we do this the
role of the elementary abelian p-subgroups will be taken by the set of all such
subgroups for all prime divisors p of |G|. Our main result is an integral version of
Carlson’s theorem and this implies integral versions of the theorems of Alperin—
Evens and Chouinard.

If M is any ZG-lattice, that is.a.ZG-module which is a free abelian group of finite
rank, we may write M = core(M)@® proj(M) where proj(M) is a projective module
and core(M) is a submodule of M with no projective summands. In general the
submodule core(M) is not uniquely determined by these requirements, but all the
possible choices for core(M) will have the same rank as an abelian group. We will
prove:

Theorem. Let G be a finite group. There exists a constant B with the property that
if M is any ZG-lattice with no nonzero projective summands, there exists an
elementary abelian p-subgroup E of G for some prime p such that

rankz(M) < B- rankz(core Mlg).
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The theorem includes a number of results as corollaries. The following integral
version of Chouinard’s theorem is an immediate application:

Corollary A. The ZG-lattice M is projective if and only if it is projective on
restriction to every elementary abelian p-subgroup of G, for every prime divisor p of
|G|

However, one can also deduce this result rather easily from Chouinard’s original
theorem [4] using, for example, [5, 3.13 and 8.6].

The second corollary is due in substance to Talellj [10] and concerns periodicity
under the Heller operator. The ZG-lattice M is said to be periodic if there is a
nontrivial exact sequence of modules

0—»M—»An—»...—»A0—»M—»0 i (1)

in which the A; are finitely generated projective ZG-modules.

Corollary B. The following are equivalent for the ZG-lattice M:
(i) M is periodic.
(ii) M is periodic on restriction to every elementary abelian p-subgroup of G, for
each prime p||G|.
(iii) For every prime p||G|, M/pM is periodic as a (Z/pZ)E-module for every
elementary abelian p-subgroup E of G.

Corollaries A and B are both special cases of the next result, which is an integral
version of the theorem of Alperin and Evens [2]. Their theorem is stated in terms of
the ‘complexity’ of modules in characteristic p, and we mimic their definition of
complexity as follows in the case of ZG-lattices. Given a ZG-lattice M let

...—»Pz—»Pl—»PO—»M—»O 2
Yooy
K Ko

be a minimal projective resolution of M. By this we mean that for each n, P, is a
projective of minimal rank subject to having K,_; as an image. We will say that the
complexity of M is ¢ provided that c is the least nonnegative integer such that there is
a positive number 1 with rankz(Py) < - d¢~! for all sufficiently large d, and we will
write czg(M) for c. It will be shown in Section 3 that every ZG-lattice has a
complexity. We can prove:

Corollary C. Let M be a ZG-lattice. Then there exists a prime p||G| and an
elementary abelian p-subgroup E of G such that cz6(M) = czg(M).

In fact we will also show that if p is the prime in Corollary C, then cz5(M) equals
the complexity of M/pM as a (Z/pZ)G-module in the sense of Alperin and Evens.
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Throughout this paper we will use Z"(,,, to denote the ring of p-adic integers, and if
M is a ZG-lattice we will write M(,,=Z,,®;M. We also wish to extend in an
obvious way the notation for the decomposition M =core(M)@® proj(M) to apply in
the case that M is a finitely generated RG-module, where R may be either Z, Z,, or
a field.

2. Proof of the theorem

There are two stages to the proof. In the first stage we produce the prime p in the
statement of the theorem and reduce the problem about the ZG-lattice M to a
problem concerning M,,. The second stage is to prove the analogous statement to
the theorem for M,,, and we can deduce this fairly easily from Carlson’s theorem
(3]. If M is any ZG-lattice let o,(M)= rankz_ (coreM), and put o(M)=
max{a,(M):p||G|}.

Lemma 2.1. There exists a constant B, such that whenever M is a ZG-lattice with no
projective summands, then rankz(M) < B, a(M).

Proof. Let x be the ordinary character of M. If x is any element of G of order
divisible by a prime p, then }x(x)[sa,,(M); for if x;, x> are the characters of
core M,y and proj M), then x=x+x;, x2(x)=0 and [x,(x)| <|xi(1)|=0,(M).
Thus for all non-identity x in G, |x(x)| = a(M).

A ZG-lattice N has a nonzero projective summand if and only if Z,,G is a
summand of N, for all primes p| |G| (for example, by [5, 6.5], since if Z'u,)G isa
summand of N, then (Z/pZ)G is a summand of N/pN). Since M has no
projective summand there exists a prime ¢ | |G' and an indecomposable projective
Z,,G-lattice which appears as a summand of M, a smaller number of times than in
ZyG. Let ny,...,ns be the characters of the indecomposable projective Z(,,G-
modules and let 4y, ..., u;be the integers for which u 5, + --- + u;n;is the character of
the regular representation. If xp.o;=417+ -+ + A4, is the character of proj M,
then for some j, A; <u;. Writing ... for the character of core M(;,, we have that for
any nonidentity element x of G,

; Ain1:(x)

= | Xproi ()] = 1X)] + X corel)] S G(M) + 0, (M) < 20(M).

That is

o(M)! ; Ani(x)|=<2 forall nonidentity xin G, 3)

since o(M)#0 if, as we may suppose, M # 0.
Let 1 =x,x3,...,X, be representatives of the g-regular conjugacy classes of G, and
let H be the s xr matrix (7:(x;)). We may regard the entries 5;(x;) as lying in some
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algebraic number field K contained in the complex numbers and which is a splitting
field for G. If we let R be the integers of K and q be a prime of R containing g, then
if n1,...,n; are the characters of the indecomposable projective R,G-modules, the
corresponding square matrix H'=(n/(x))) is invertible. Each row of H is a linear
combination of certain rows of H’, and each row of H' appears in the expressmn for
precisely one row of H. It follows that the rank of H is s.
Let ey, ..., e, be a standard basis for the vector space K, let T be the line ¢,K, and
let
U={(, .- . y)EK31=0, |y|=<2 for all i}.

Here |y means the absolute value of y; as a complex number. Then condition (3)
may be restated as

oM) YAy ...,A) -HeT+U={t+u:teT,ue U}.
Now U is a bounded set, so the distance of any point in T+ U from the line T is at
most sup{ |u|:ue U}. T is the image under H of the line (uy, ..., us)K, so since H is
both a monomorphism and a linear map any point in the preimage of T+ U under H
lies a bounded distance from (u;,...,u;)K. Let d be a bound for this distance and let
c € K be a number for which the distance between g(M)~ (11, ..., A;) and c(uys .. » iis)
is at most d. It follows that |cu; — o(M)~'A;| <d for each j. Since we also know that
0<Ak;<u; for some j, and o(M)=1 we have O=<u;—o(M) 'A;<y;, and so
lcﬂj—ﬂjl Sd+ﬂj. Thus

lc|<2+du ' <2+ max{u;",...,u;'}-d
and this latter number depends only on the prime q. This bound for |c| means that
a(M)~Y (A}, ..., &) lies in a bounded region of K*, and there is a constant b, such that

max{i,,...,A;} < b, a(M).

We will put fo=7,(1) +--- + n4(1), and similarly we define constants b, and f, for
all the prime divisors p of |G|. Let

B =1+max{b,  f,:p||Gl|}.
Then

rank z(M) = 0,(M) + i}; Amni(D)
<O M)+ max{iy ... A} - ,-gl D)
soM)-(1+ by f)<B,-oM).
Lemma 2.2. For each prime p there exists a constant BY’ with the following

property: whenever M is a 2( pG-lattice with no nonzero projective summands there
is an elementary abelian p-subgroup E of G for which

rankz, (M)=<BY - rankz, (core Mlg).



Bounding the ranks of ZG-lattices 315

Proof. It follows from the fact that M has no projective summands that M/pM also
has no projective summands (since projective summands over Z/pZ can be lifted to
projective summands over Z(p,). Hence using the theorem of Carlson [3],

rank(M) = dim M/pM < BY - dim(core(M/pM)l;)

for some elementary abelian p-subgroup E of G and some constant BY’, where the
dimensions are taken over Z/pZ. Also, since core((M/pM).g) is the reduction mod p
of core(Mlg) we obtain rank(M) < BY- rank(core Mlg) as required.

We now complete the proof of the theorem. Given the ZG-lattice M choose a
prime p||G| for which o(M)=0,(M), and choose an elementary abelian p-
subgroup E of G for which

op(M)=BY¥ - rankz core(M,le),
by Lemma 2.2. Notice that
rankz, core(Mp)lg) = rank zcore Mg,

since E is a p-group (for example, by [5, 6.5]). If we let B=B,- max{B¥):p| |G|},
then
rankz(M)<B, - o(M)<B, - BY- rankzcore(M|g) < B- rank zcore(Ml).

3. Proofs of Corollaries B and C

Before proving the corollaries we outline some properties of the resolution (2) of
the ZG-lattice M. In [9], Swan gave a method for deducing the ranks of the
projective modules P, in (2) from information about resolutions of M/pM for the
various primes p| |G|, and we may describe this method as follows. We will define
the dth partial Euler characteristic of the minimal resolution (2) to be

d

Vd(G,M) = Z (— ])d—jrankz(Pj®ZGZ).

Jj=0

It is a consequence of the methods of [9] that if we had used any other minimal ZG-
resolution of M to calculate v4(G, M) we would have obtained the same answer. If S
is any simple kG-module where k= Z/pZ for some prime p | |G| we will set

d -
fd(8)= ¥ (=1)?~/dimExtic(k®zM, S).
j=0

Then v,4(G, M) is related to the numbers f;(S) by the formula
va(G, M) = max{[f,S)/dim;S]: S is a simple kG-module,
k=Z/pZandp||G|} @4)
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where in taking the maximum, p is allowed to range over all prime divisors of |G|,
and the special brackets indicate the least integer greater than the number they
enclose. This formula is due to Swan in [9, Proposition 6.1] for the case M = Z, but
it is quite easy to extend his arguments to deal with arbitrary lattices M. See also [6]
for a further discussion of this formula.

In [7] Higman calls a function 8: Z—Z a PORC function if there is an integer m
such that for each r with 1 <r<m, 8(mn + r) is a polynomial in n. We will call g an
almost PORC function if 8 is PORC except at finitely many integers. It is well
known (see [1]) that with the previous notation, dimkExtic(k®zM §) is an almost
PORC function of j. Hence f4S) is an almost PORC function of d, since it is
obtained as an alternating sum of almost PORC functions. It is not hard to see from
(4) that v4(G,M) is also an almost PORC function of d. In the definition of
vi(G, M), rankz(P,& 25 Z) is really just the projective rank of P4, so using Swan’s
structure theorem for projectives [5, 4.8] we have

rankz(P,) =|G|  rank (P ® 76 Z) = |G| - (vl G, M) + v4_ (G, M)

and rankz(P,) is an almost PORC function of d. This shows that the complexity
czg(M) always exists when M is a ZG-lattice.

Suppose that rank z(P,) is almost PORC with respect to the integer m, so that for
1 =r=m there are polynomials 4, with A,(n) =rankz(P..,) except at finitely many
values. We will need to use the fact that the degrees of these polynomials are all the
same, This is because rankz(P;, ) <|G| - rankz(P,) always holds, so that degh, <
deg h,_, for 2<r=m and deg h, =degh,,. Hence the degrees are all equal.

Proof of Corollary C. For each kernel X; in the minimal ZG-resolution (2) of M
there is a prime p;||G| and an elementary abelian p;-subgroup E; of G for which
rank K; < B rank(core(Klg)) where B is the constant in the main theorem. Since G
has only finitely many subgroups there is a prime p and an elementary abelian p-
subgroup E which appears infinitely often in the sequence of E,. Writing K;lz =
L,®A; where L;=core(K;lg) and A;=proj(K;lg) we may obtain a minimal
projective ZE-resolution of core(Mlg)

= Q) = Q) — Qo — core(Mlg) - 0 )]
Y7y
L, L

with the property that

=0 PAPDA I~ QDA DA~ Q@ A@proj(Mlp)—Mlg—~0
Ny o4 N
K, Ko
is the restriction of the original resolution (2) to E. Now rank P;,;<|G|- rank K;and
rank L;<rank Q; so since rank K;<B- rank L, holds for infinitely many /, we have
rank P;,,<B-|G|-rank Q; for infinitely many /. But the polynomials giving
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rank P;, all have the same degree, as do the polynomials giving rank Q;, so we may
deduce the existence of a constant A such that rank P;< A - rank Q; for all sufficiently
large i. Hence czg(M)<cze(M). It is easy to see that cz(M)=<czs(M), since
rank Q;<rank P; for all i. Thus ¢z5(M) = cz(M).

We now justify the remark after the statement of Corollary C that cz5(M) equals
the complexity of Kk ®zM in the sense of Alperin [1], where k=2Z/pZ and p is the
prime in Corollary C. This complexity is defined as follows: we choose a minimal
kG-projective resolution

"’Uz"’Ul_’Uo"’k®2M"’O

Then cyg(k&®zM) is the smallest nonnegative integer ¢ for which there exists a
positive constant A with dim(Uy) =<1 -d°~! for all sufficiently large d.

Proposition 3.1. Let M be a ZG-lattice and let p be the prime in the statement of
Corollary C for which cz6(M) = czc(M) for some elementary abelian p-subgroup E
of G. Then c;6(M) = cirg(k@XzM).

Proof. Any ZE-lattice /N will have a nonzero ZE-projective summand if and only if
k®zN has a nonzero kE-projective summand (by [5, 6.3 and 6.4]). Thus, by
tensoring the minimal ZE-resolution (5) with & we obtain a minimal kE-resolution
of k®zM Therefore cze(M) = CkE(k®ZM)' But since CkE(k®ZM) = CkG(k®ZM) =
cz6(M), we have cz6(M) = ckg(k @z M).

Proof of Corollary B. Corollary B is really the statement of Corollary C (together
with Proposition 3.1) in the case of complexity at most 1. To see this, cbserve first
that czg(M) =0 if and only if M has a finite projective resolution, if and only if M is
projective. As was observed in [2], periodicity of k@M as a kG-module, where
k=Z/pZ, is equivalent to cxg(k&®zM)=<1. Thus the proof of Corollary B will be
complete once we have established:

Lemma 3.2. A nonprojective ZG-lattice M is periodic if and only if c;g(M)=1.

Proof. If M is periodic we may construct a projective resolution of M in which all
the modules have bounded rank, simply by linking together copies of the exact
sequence (1), and so cz(M)=<1.
Conversely if cz6(M) =1 there exists a projective resolution
=Py > P =Py M-0
Y4087
K Ko

for which rankz(P,) is bounded as a function of d, and we might as well suppose
this is a minimal resolution of M. Then rank;(K,;) is bounded also, so by the
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Jordan—Zassenhaus theorem there exist integers i</ with K; =K, and if K; =M we
are done. In any case we claim that provided />0, K;_| and K;_; are locally
isomorphic. For, dualizing the resolution and applying Schanuel’s lemma to

O“’K,‘. 1 _’P,-" —’K,"' -0,
O_’K;, 1 —’Pj" —’K; "’0,

we have K" \@P=K" |@P;}. By minimality of the resolution and local cancel-
lation [5, 4.4] we deduce that K*.| and K*_ | are locally isomorphic, and hence X, _,
and K _; are also. Proceeding inductively, M is locally isomorphic to K;_;_; and we
may embed K;_;_; in M so that the quotient has exponent prime to |G| [5, 4.2].
Forming the pushout

Kioioci—™ Pj_i

M Q

we obtain a short exact sequence 0—~M—Q—K;_;_,—0 in which Q is projective,
since P;_;_| is embedded in it with a quotient of exponent prime to |G|. Inserting
this sequence into the original resolution gives an exact sequence which demon-

strates the periodicity of M.

References

[1} J. Alperin, Periodicity in groups, Illinois J. Math. 21 (1977) 776-783.

[2} J. Alperin and L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure
Appl. Algebra 22 (1981) 1-9.

[3] J.F. Carlson, The dimensions of modules and their restrictions over modular group algebras, J.
Pure Appl. Algebra 22 (1981) 43-56.

[4] L.G. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7
(1976) 278-302.

[5] K.W. Gruenberg, Relation modules of finite groups, Amer. Math. Soc. Regional Conf. Ser. 25
(1975).

[6] K.W. Gruenberg, The partial Euler characteristics of the direct powers of a finite group, Arch.
Math. 35 (1980) 267-274.

[7]1 G. Higman, Enumerating p-groups Il. Problems whose solution is PORC, Proc. London Math.
Soc. 10 (1960) 566—582.

[8) D. Quillen, The spectrum of an equivariant cohomology ring I, Il Ann. of Math. 94 (1971) 549-602.

[9) R.G. Swan, Minimal resolutions for finite groups, Topology 4 (1965) 193-208.

{10] O. Talelli, On cohomological periodicity of ZG-lattices, Math. Z. 169 (1979) 119-126.



