RESTRICTING ZG-LATTICES TO ELEMENTARY ABELIAN SUBGROUPS

P. J. Webb

In recent years a number of results in modular representation
theory have been inspired by the Quillen-Venkov proof in [QV] that the
Krull dimension of the mod p cohomology ring of a finite group G equals
the max'imum rank of an elementary abelian p-subgroup of G. These results
are due to Chouinard [Ch], Alperin and Evens [AE] and Carlson [Ca]. The
strongest of these results is Carlson's, and since it is also one of the
easiest to state, we will do so here. We use the notation that k is a field
of characteristic p > 0, with pl||G|, and if M is a kG-module we write
M = core(M) @ proj (M) where proj(M) is projective and core(M) has no
non-zero projective summands.

Theorem 0 (J. Carlson [Ca]l) Let G be a finite group. There exists a
constant C with the property that if M is any finitely generated kG-module
with no non-zero projective summands, there exists an elementary abelian
p-subgroup E of G such that

dimkM 4 C.dimkcore(MJ,E)

It is not difficult to formulate versions of the above results
for the integral group ring %G, and our aim in this article is to show that
all of these integral versions are true. There are two points to note in
translating the modular statements to the integers. Firstly, one must
restrict attention to ZG-lattices and use the Z-rank of a lattice instead
of its dimension. The second and more important point is that in removing
the dependence on some particular prime one must state one's theorem in
terms of the collection of all elementary abelian p-subgroups for all
prime divisors p of |G

. Thus our main theorem is the following:
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Theorem 1 Let G be a finite group. There exists a constant B with the
property that if M is any Z%ZG-lattice with no non-zero projective
summands, there exists an elementary abelian p-subgroup E of G for some
prime p such that

rank%(M) < B.rankz(core(M{,E))

We are now using the notation M = core(M) @ proj(M) when M is a lattice,
and although the choice of the sublattice core(M) may not be unique in
this case, its rank is uniquely determined by M.

There is an integral version of the theorem of Alperin and
Evens [AE] which is implied by Theorem 1. To state this we must first
define the complexity of a ZG-lattice M. Following the definition given

by Alperin [A] in the case of a kG-module, let
e PZ‘;JP:L‘;{YPO—» M -0 (1)

1 0

be a minimal ZG-projective resolution of M. This means that each
projective module Pd has minimal rank subject to having Kg-1 as an image,
or equivalently that the K4 have no non-zero projective summands (see
[sw] ). Then we say that the complexity of M is ¢ provided that c is the
least non-negative integer such that there exists A > 0 with
rankz(pd) < /\.dc-l for all sufficiently large d. We will write Cyg M) for
¢ to distinguish it from the complexity Crg(k ®y M) of the kG-module
Kk Qz M as defined by Alperin [A]. The method Swan used to prove
Proposition 6.1 in [Sw] allows one to deduce the ranks of the Pd from
modular information, and it is possible to show by this method that the

complexity Cyg (M) exists, given that ckg(k ® M) always exists.

Corollary 2 Let M be a ZG-lattice. Then there exists a prime p||G| and an
elementary abelian p-subgroup E of G such that c
ckG(k ® M) where k = Z/pZ%Z .

zg(M = cgzgM =

In section 2 we will show how this Corollary may be deduced from
Theorem 1, but it can also be proved in a different manner by building on
Swan's ideas in [Sw]. It is interesting that both this alternative proof
and the proof we shall give of Theorem 1 seem to need the use of the
non-singularity of the Cartan matrix at one stage.
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Just as in the modular case described in [AE], lattices of
complexity 0 and 1 are respectively projective and periodic. In the case
of complexity 0, Corollary 2 becomes the following integral version of
Chouinard's theorem [Ch]:

Corollary 3 The ZG-lattice M is projective if and only if it is projective
on restriction to all elementary abelian p-subgroups of G, for all p||G|.

For complexity 1 we recover the following result which is essentially due
to Olympia Talelli (T]:

Corollary 4 The following are equivalent for the ZG-lattice M:

(i) M is periodic

(ii) M is periodic on restriction to every elementary abelian p-subgroup
of G, for each prime p||Gi|

(iii) For every prime p||G|, M/pM is periodic as a (Z/pZ)E-module for every
elementary abelian p-subgroup E of G.

Before passing to the proofs of these results we should remark
that in particular cases they can be deduced without difficulty from the
corresponding modular results Jjust by applying standard 1lifting
techniques. This is so if we restrict G always to be a p-group, or
alternatively if we wish to prove analogous results for z(p)c where Z(p)
is the ring of p-adic integers and G may be any finite group. Thus we can
prove a p-adic version of our main theorem by means of the observation
that a Z(p)G-lattice M has a projective summand if and only if M/pM has a
projective summand. So if M has no projective summands then

rank(M) = dim(M/pM) < C.dim core( (M/pM)yy)

= C.rank(core(M;E)) (2)
for some elementary abelian p-subgroup E of G, where C is the constant in
Carlson's theorem. The real problem in proving Theorem 1 is that of
linking these p-adic statements together to give a global one. Note,
however, that in all cases Corollary 3 may be deduced directly from
Chouinard's original theorem [Ch], since a ZG-lattice M is projective if
and only if M/pM is a projective (%Z/pZ%Z)G-module for all prime divisors p
of |G| (see 3.13 and 8.6 of [G]). Also, one may prove results such as the
following:
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all lattices in a block of %(p)G with cyclic defect group are

periodic.

This is just the combination of the corresponding statement over %/pZ%
with Proposition 2.2 of [T].

2. Proofs of Theorem 1 and Corollary 2

M i -latti M =
If is a ZG-lattice we let () E(p) 8y, M and put

ap(M) = rankz(p) (core M(p)), o(M) = max{crp(M) : pl|G|}. The following
result will allow us to deduce Theorem 1 from the local information:

Proposition 5 There exists a constant Bl such that whenever M is a

ZG-lattice with no projective summands then rankﬂ (M) < Bl.c( M) .

Proof We produce some inequalities on the values of the character ¥ of M.
Firstly, if x is any non-identity element of G and p is a prime dividing
the order of x then ¥ = X, + X, where X, and X, are the characters of

core(M(p)) and proj (M ) respectively. Because xz(x) = 0 (Theorem 4 of

[Sw2] is a convenient(rpéference) Ixx)y| = |X1(X)| < le(l)l = a'p(M), and so
[X(x)1 < o(M) holds for all non-identity x in G. Here we are regarding the
values of the characters as lying in some subfield K of the complex
numbers which is a splitting field for G, and the absolute value is the

usual one for complex numbers.

If Nyse-1g are the characters of the indecomposable
projective Z(p)G-modules we may write X, = Ajn; + ..+ A
)‘i € Z%Z.For any non-identity element x € G,

Dol < Iyl + X 01 < oM + o (M) < 2.0(M).

shs for some

Hence

-1 S
a(M) .liglmi(x)l <2

for non-identity x, since o(M) # 0 if, as we may suppose, M # 0. If we let
1 = Xpr wee X be representatives of the p-regular conjugacy classes of G
we may interpret this inequality as saying that the vector
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o (M) ‘l(/\l, -« sAg) .H lies a bounded distance from the line (1,0, .. ,0)K in
an r-dimensional K-vector space, where H = (qi(xj)), The s X r matrix H
has rank s (c.f. p.599 of [CR]), and this means that o(M) -l()\l, e 1Ag)
lies a bounded distance from the inverse image of (1,0, ... ,0)K under H,

i.e. from the line (,ul, e 1fi)K where ANg + e+ fighg is the character
of the regular representation,

If proj(M,,) were to contain a copy of the regular
representation for every prime divisor p of |G] then M would have a
non-trivial projective summand (c.f. 6.3 and 6.4 of [G]). Since M has no
non-trivial projective summand there is a prime p}|G| with A. < 5 for
some j. This extra condition means that a(M)—l(/\l, ,/\S) actually lies
in a bounded region of K° for this p, and moreover the bound is independent
of the module M. It is now easy to deduce that s

rank(M) = X, (1) + Xp(1) = o, (M) + igl,\iqi(l)

S
< o(M) + max{rg, .. IAS}-_Zl')i(l)
is

< Bl.cr(M)
for some constant Bl which depends only on G.

Proof of Theorem 1 Choose a prime p so that o(M) = o'p(M). By Proposition

5 and inequality (2) there exists an elementary abelian p-subgroup E of G
for which
rank, (M) < By.o(M) < Bl.C.rankz(p) core(M(p) vg)
= B,.C.rankycore(Mjg),
the latter equality holding since E is a p-group (c.f. 6.3 and 6.4 of [G]).

Now take B = Bl.C.

Proof of Corollary 2 Minimality of the resolution (1) is equivalent to the

requirement that each kernel Ky has no non-zero projective summand.
Fur thermore, whenever H is a subgroup of G, core(Kd+H) is the d-th kernel
in a minimal ZH-projective resolution of M;H and thus CEG(M) 2 Cyy(M)
always.

On the other hand, if ¢ = max{cZE(Nu.E)} where the maximum is
taken over all elementary abelian p-subgroups E, for all p||G|, then for all
sufficiently large 4,

-1
rank(K4) < B.rank core(xd¢Ed) < B.,\Eddc

for some elementary abelian subgroup Ej and constant Ag - Since G has
d
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only finitely many subgroups we may choose a A 2 }\E for all d, and then
rank(Kg) ¢ BAAS"L, Therefore
rank(P4q) = rank(Kgq) + rank(Kg_;) < 2.B.AG°71

and ch(M) < ¢, as required for the first equality. For the subgroup E we
may take any elementary abelian p-subgroup which realizes the maximum
value ¢ = Cyp(Mig).

Since E is a p-group, k 8, (core(Kgig)) has no non-zero
projective summands (6.5 of [G]) and so Crp(k ® M) = cype(M). Since

CkE(k ® M < ckG(k ® M < C%G(M), we have C%E(M) = ckG(k ® M = ch(M).
3. An Example

It is not hard to produce indecomposable non-projective
lattices M for particular groups G for which the quantity rank(M) - o(M)
can become arbitrarily large. We will illustrate this phenomenon with
some lattices which arise in a natural way. Note that by Proposition 5 as
rank(M) - o(M) becomes large so rank(M) must also become large in
proportion, and to find such lattices we must deal with a group of
infinite lattice type.

To fix our example let G = A5 X Ag be the product of two copies

of the alternating group on five letters and let
e Pz‘.;lj Pl‘I:OJ Pp > Z ~ 0

be a minimal projective resolution of % over Z%ZG. Minimality of the
resolution means that the K4 have no projective summands, and by Chapter 8
of [G] these modules are indecomposable since the prime graph of G is
connected. Now for each prime p, core((l(d) (p)) is the d-th kernel in a
minimal z(p)G-resolution of Z(p). Since cyg(k) = 2 when k = Z/p%Z for
p=3 and 5 and CuglZ) = 4 it follows that
ra“kz(Kd) - rank core((i(d)(p)) becomes arbitrarily large as d -» oo for
p =3 or 5. Modulo 2, Ay has a non-principal block and hence G has a
non-principal block also. It is clear that the only projectives which
appear in a minimal Z(z)G-resolution of E(z) belong to the principal
block, and so for each d the non-principal summands of (Pd) (2) must also
appear as summands of either (Kd)(z) or (Kd—l)(Z)‘ By Swan's structure
theorem for projectives (4.8 of [G]), (Pd) (2) = %(2)(;n for some n, so that

since Cug(B) = 4 the number of non-principal summands of (Pd)(Z)
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increases without bound as d -+ oo. This means we can find a subsequence of

the modules Kd so that rank(Kq) - rank core(Ky) (2) becomes arbitrarily
large, and putting that together with the information about the primes 3
and 5 we have that rank(K;) - o(Kq) becomes arbitrarily large.
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