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Subgroup Complexes

P. J. WEBB

1. Introduction. We survey the general properties of the simplicial complex
of p-subgroups of a finite group G. The partially ordered set of p-subgroups of
G together with the conjugation action on this poset carries the information
inherent in the p-local structure of G. By forming a simplicial complex out of
this poset and considering the group action on it we have a systematic way of
dealing with global features of the p-local structure.

The p-subgroups complex is really a geometry for G. Whatever one means
by a geometry, there is usually a simplicial complex involved, it is associated to
a prime p, and the stabilizers of simplices are treated as analogues of parabolic
subgroups. One can take the view that the most canonically defined nontrivial
simplicial complex on which G acts, associated to the prime p, is the p-subgroups
complex. In all situations where buildings are defined, the p-subgroups complex
coincides, in a certain sense, with the building. It is one of the themes of this
survey that the p-subgroups complex provides an analogue defined for every
finite group and every prime of a building.

Group actions on suitable spaces have long been used to elucidate the group
structure, especially with certain classes of infinite groups such as arithmetic
groups. The philosophy is to obtain the group structure in terms of the stabilizer
subgroups. The action on the p -subgroups complex is eminently suitable for this
application and we show how to use the structure of this complex to determine
the cohomology of a finite group. This situation with a group action is one
where the equivariant cohomology spectral sequence is also used. The approach
described here yields stronger results for finite groups and it can be fed back in
such a way that the structure of the spectral sequence is made transparent, to
the extent that this spectral sequence becomes redundant. It remains to be seen
whether a similar approach free of equivariant cohomology can be made to work
for infinite groups.
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We see that the subject of this article enjoys the following close relationships
with other areas of group theory:

geometries
<,

cohomology

subgroup /
complexes

p-Iocal structure

In §2 we describe the p-subgroups complex and also the complexes of ele­
mentary abelian p-subgroups, subgroups H = Op(Nc(H)), and normal chains
of p-subgroups, which are homotopy equivalent to it. In §3 we discuss the ho­
mological structure of the p-subgroups complex and the application to group
cohomology. §4 is about Euler characteristics, and in §§5 and 6 we consider a
general definition of a Steinberg module. According to this definition, every fi­
nite group has a Steinberg module at every prime. §7 is an appendix containing
lemmas about chain complexes that are sometimes useful. In the early part of
this survey we omit most proofs because the results can almost all be found
written up in one or other of the cited references. In §§6 and 7 this is not the
case, and we supply proofs.

2. The complexes
2.1. Construction. Given a poset P we form a simplicial complex .6. where

the set of n-simplices of .6. is

{xo < Xl < ... < Xn IXi E P}.

These are chains of elements of P of length n + 1, where we require strict in­
equalities in the chain. The faces of such a simplex are the shorter subchains. If
G acts on P as a group of poset automorphisms then G will act simplicially on
.6..
Example:

Poset Simplicial Complex

~. ~ -I
.' I

I

The way the chains in the poset overlap is the way the simplices are glued
together.

2.2. The posets. Fix a prime number p; we define

Sp(G)= {all nonidentity p-subgroups of G},

Ap(G) = {nonidentity elementary abelian p-subgroups of G},

8p(G) = {H s G IH = OpNc(H),H # I}.
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In this generality the poset 8p(G) seems to have been first considered by S. Bouc.
H H is a subgroup satisfying the condition H = OpNo(H) of the last definition,
Alperin calls No (H) a parabolicsubgroup. When G is a finite Chevalley group in
defining characteristic p, this agrees with the usual definition and the subgroups
in 8p (G) are precisely the unipotent radicals of the parabolic subgroups.

EXAMPLES. 1. G = 84 ,p = 2.

This is the whole of 52(8 4 ) , The three wings should be the same, although
one of them is drawn above the other two. The subgroups in A2(84 ) are shown as
open circles 0, and those in 82 (84 ) are squares D. Although these are evidently
different posets, they are all contractible; indeed A2(84 ) and 82 (84) are trees.

2. G = GL(3,2), p = 2. A2(G) and 82(G) are both isomorphic to the
barycentric subdivision of the incidence graph of the projective plane of order 2,
but with different subgroups of G as the vertices.

Az(G)
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We describe another simplicial complex, which was first considered by G. R.
Robinson in his reformulation of Alperin's conjecture. This is denoted Rp (G)
and has as its n-simplices the chains Po < PI < '" < Pn of nonidentity p­
subgroups of G such that Pi <JPn for all i. The vertices are thus the same as
the vertices in the simplicial complex associated to Sp(G), but there are fewer
higher-dimensional simplices. Call a chain of subgroups in which all subgroups
are normal in the largest a normal chain. We may also consider the complex of
normal chains of subgroups in Bp(G), which we will not bother to name. This
complex may also be included in the list in the following theorem.

2.3. THEOREM (QUILLEN [7], BODe [2], THEVENAZ, WEBB). Sp(G),
Ap(G), Bp(G), Rp(G) are all G-homotopy equivalent.

The effect of this theorem is that for many purposes it does not matter which
of the simplicial complexes we use, but before discussing this let's look at the
definitions.

G-Homotopy equivalence. Spaces Xl and X 2 with G-actions are said to be
G-homotopy equivalent if there exist G-equivariant maps f : Xl -- X 2 and
9 : X 2 -- Xl with fg :: 1 and gf :: 1 given by G-equivariant homotopies.
Passing to chain complexes, this would imply that the chain complexes of Xl
and X2 are chain homotopy equivalent in such a way that all of the maps used
to establish the chain homotopy equivalence (including the two maps of degree
+1) are G-homomorphisms. This evidently implies that the homology groups of
the spaces are isomorphic as G-modules. It also implies that XI/G and X 2/G
are homotopy equivalent. The following theorem is fundamental:

2.4. THEOREM (BREDON [3, §II]). Let Xl andX 2 beG-CW-complexes.
A G-equivariant map f : Xl -- X 2 is a G-homotopy equivalence11and only if
flx{f : xf! --Xris a homotopy equivalencefor all subgroupsH :::;G.

The equivalent condition here is what is in fact used to prove the G-homotopy
equivalence of the four posets. Putting the information together we obtain:

COROLLARY. In each dimension the homology groups of the four poseis
Sp(G), Ap(G), Bp(G), Rp(G) are isomorphic as G-modules. For any subgroup
H, the fixed point sets under the action of H are homotopy equivalent.

2.5. First properties of the complexes. We state them just for Sp(G), and by
the above they evidently hold for all the complexes.

1. Sp(GI x G2) :: Sp(GI ) * Sp(G2) (the topological join) (Quillen [7]).
2. For a finite Chevalley group in defining characteristic p, Bp(G) is the

building of G. This is because as a poset it consists of the unipotent radicals of
the (nontrivial) parabolic subgroups of G and the inclusion relationship between
parabolics is exactly reversed on taking unipotent radicals, so we are looking at
the opposite of the poset which normally defines the building. But a poset and
its opposite give the same simplicial complex. The force of this remark is that
Bp (G) is a generalization to all finite groups of the building of a Chevalley group.
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3. If Op(G) =f:1 then Sp(G) is contractible. This is well illustrated in the case
of 84 at p = 2. It is appropriate to mention

QUILLEN'S CONJECTURE. If Sp(G) is contractible then Op(G) =f:1.

Quillen showed in [7] that this is true for soluble groups and groups of p-rank
2. It has recently been shown by Thevenaz and Lyons using the classification of
finite simple groups that Quillen's conjecture is also true for these groups. This
means that if G is a finite simple group, then Sp(G) is not contractible.

3. The structure theorem and cohomology. Let Zp denote the p-adic
integers. If

D D dn+l D dn D. = ... n+l ---+ n - n-l .. ·

is a chain complex of ZpG-modules, we say it is acyclic split if it has zero ho­
mology and for every n the sequence 0 -+ ker dn -+ Dn -+ 1m dn -+ 0 is split.
If D. is augmented by an epimorphism Do -+ Zp, by saying D. is acyclic epli:

augmented we mean the same condition applied to the augmented complex (i.e.,
zero reduced homology, all the sequences split, and the augmentation splits).

3.1. STRUCTURE THEOREM (WEBB [10]). Let ~ be the simplicial com­
plex of one of Sp(G), Ap(G), 8p(G), or Rp(G). Let C.(~) = Cd(~) -+ Cd-d~)

-+ ... -+ Co(~) be the chain complex of ~ over Zp. Then C.(~) has an acyclic
spli: augmented subcomplez D. 80 that C.(~)/D. is a complexof projective mod­
ules.

This means Cr(~) = Dr EBP; for all r where P; is projective, and it also
follows from the long exact sequence in homology that C.(~) and C.(~) / D.
have the same reduced homology. I propose the following:

3.2. CONJECTURE. The reducedhomologyqroups of Sp(G), when completed
at p, are all projective ZpG-module8.

The main evidence for this is the above theorem, which gives the homology as
the homology of a complex of projective modules. It is an easy deduction from
this theorem that the conjecture holds if Sp(G) has only one nonzero reduced
homology group (as happens, in particular, in the case of a building). It is also
the case that for all finite groups G, iro(Sp(G)) is projective at the prime p,
because when this reduced homology is nonzero, G has a strongly p-embedded
subgroup H so that Zpi~:::: ZpEBiro(Sp(G))p (see [7]). The nontrivial summand
is always projective, and the situation is rather well controlled. Presumably if
the conjecture were true, the projectivity in higher dimensions might correspond
to other structural statements about G of a similar nature.

Again let ~ be the simplicial complex of one of the above four posets and
let ~r denote the set of simplices in dimension r. The structure of the chain
complex of ~ has the following consequence.
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.1, - (_1)(u 1Tg) coresG " oc'l'UT- G r g g,

denotes the orientation of the embed-

3.3. THEOREM (WEBB [10]). For all integers n and for all ZpG-modules
M there are split exact sequences

, ffi ' (4)(71') ffi '
0-- Hn(G, M)p -- W Hn(G u, M)p - W Hn(G T,M)p

uED.o/G TED.J/G

--...-- E9 ir(Gu,M)p -- 0
uED.d/G

and

, ffi ' (1/I"r) ffi '
0- Hn(G,M)p - W Hn(G'nM)p f-- W Hn(GT,M)p

uED.o/G TED.l/G

_ ...- E9 iIn(Gu,M)p - 0,
uED.d/ G

where if a is a face of rg then

A. - (_l)(uITg)o 10 resG"'l'UT- g- G r g '

and otherwise ¢JUTare zero. Here (a Irg)
ding of a in rg.

We will illustrate the theorem in the case G = GL(3,2), p = 2. Let ~ be
the building of G. Representatives of the simplex stabilizers are given in the
following picture of ~/G:

D8

o 0

Preciously in §2 we saw that 82 (G) gives the barycentric subdivision of this
complex A, but evidently the two are G-homotopy equivalent and the conclusions
of Theorem 3.1 are independent of G-homotopy equivalence. The first sequence
in Theorem 3.3 is

0-- iIn(G, Mh (- res,res), iI n(S4' Mh ffiiI n(S4,Mh g iI n(D8 , Mh -- 0,

and by the theorem this is split exact. For example, in the case of H1(G, Z) =
iI- 2(G, Z) ~ GIG' it is

1 -- 1 -- O2 X O2 -- O2 X O2 -- 1.

Here the restriction homomorphisms are the classical transfer. For the Schur
multiplier, H2(G, Z) = iI- 3(G, Z), the sequence is

1 -- O2 -- O2 X O2 -- O2 -- 1.

These are the right answers!
Computationally, we would obtain the cohomology of G if we knew all the

right-hand terms in these sequences. If we are only interested in isomorphism
types of individual groups we do not need to know exactly what the maps are,
because of the splitting. These maps become important when we are interested
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in cohomology ring structure, and then the left-hand morphism from iIn(G, M)p
is a ring homomorphism.

You may have noticed in Theorem 3.3 that the restriction sequences with the
tt» (G, M)p terms removed constitute the E1 page of the equivariant cohomology
spectral sequence for the action of G on ~ ([4, VII.B.l]). The exactness of the
sequences implies that the E'}.page only has nonzero terms on the fibre, and the
spectral sequence stops there.

PROOF OF 3.3. Ext~pG(C.(~),Mp) is the first sequence (for positive values

ofn), where C.(~) is the augmented chain complex of~, and the second sequence
is Ext~pG(C,(~)·, Mp ) , where * denotes the dual. This identification is almost
the same as [4, p. 173]. We apply the structure Theorem 3.3. The Ext groups
vanish on the projective modules, and what is left is Ext of a split acyclic complex.
This is again split acyclic.

4. Euler characteristics. We take ~ to be the simplicial complex of one of
Sp(G), Ap(G), 8p(G), or Rp(G).

4.1. THEOREM (WEBB [10]). ~/G is modp acyclic.

This means the chain complex of ~/G reduced modp has the homology of a
point. In fact, when G has p-rank 2 this result forces ~/G to be contractible.
The condition p-rank 2 means that the largest elementary abelian p-subgroup is
Cp xCp and in this case Ap(G) is a graph. Thus ~/G is homotopy equivalent to a
graph (no matter which simplicial complex ~ is) and it is also connected (because
of conjugacy of Sylow p-subgroups). One readily sees that a connected graph
which is mod p acyclic is a tree, because the homology of a graph is torsion free
of rank depending on the number of cycles in the graph. For example, A'}.(85) / 85

is the tree

o o o o

where the vertices are the two conjugacy classes of C'}.subgroups and the two
conjugacy classes of C'}.x C2 subgroups. This quotient complex is some kind of
global picture of the p-Iocal structure of the group, and it seems very strange
that in general (when G has p-rank 2) it should be a tree.

4.2. CONJECTURE. If ~ is the simplicial complex of Sp(G) then ~/G is
contractible.

If this were true it would be a generalization of what happens for buildings,
where ~/G is a single simplex.

The next result has been proved in many ways since the original proof by
K. S. Brown. There is now a more general result of this kind due to Brown and
Thevenaz [11] which subsumes a lot of earlier work. Special cases of [11] have
been obtained independently by Hawkes, Isaacs, and Ozaydin.

4.3. COROLLARY(K. S. BROWN). X(Sp(G))==l(mod IGlp).
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PROOF. From the structure theorem, Cr(6) = Dr EElP; for all r where
P; is a projective ZpG-module. Thus X(Sp(G)) = L:~=o(-ltrankCr(6) =
L:~=o (-1 t rank Dr + L:~=o (-1 t rank r; The first number is 1 because D. has
the homology of a point, and the second is congruent to 0 (mod IGlp) because
all the modules are projective.

5. The Steinberg module. Let a(G) = Ko(LattzpG, 0) be the Green ring
of ZpG-lattices. This is the free abelian group with the set of isomorphism
classes of indecomposable ZpG-lattices as a basis. Because the Krull-Schmidt
theorem holds, knowing a lattice as an element of a(G) is equivalent to knowing
its isomorphism type. As before, let 6 be the simplicial complex of one of
Sp(G), Ap(G), 8p(G), or Rp(G) and let C.(6) be its chain complex over Zp.
We will see in §6 that it does not matter which simplicial complex we take.

DEFINITION.The Steinberg module of G at the prime p is

d

Stp(G) = -z, + 2) -ltC r(6),

r=O

the sum taken in a(G).
A similar notation is used by Bouc [1] for the corresponding element of the

ring of Brauer characters. It may be misleading to call it a module, because by
this definition it is only a virtual module. It is intriguing that in all known cases,
Stp(G) is ± an actual module.

5.1. THEOREM. Stp(G) ie a virtual projectioe; that is, there exist projective
ZpG-modules P and Q so that Stp(G) = P - Q in a(G).

PROOF. By the structure theorem Cr(6) = Dr EElP; where D. is an acyclic
split augmented subcomplex and each P; is projective. All of the indecomposable
summands of the Dr cancel out on taking alternating sums, because of the
splitting. Hence Stp(G) = L:~=o( -It P; is a virtual projective.

5.2. Properties of Stp(G). 1. If G is a finite Chevalley group then Stp(G) =
(-1 yank( G) -1 St, where St is the usual Steinberg module and rank (G) is the rank
of the root system. This follows from the Solomon-Tits theorem, which tells us
that the top homology of 8p(G) is St and all other reduced homology is zero.
Since we know in advance that St is projective over ZpG, it follows that it splits
off from the chain complex, and in fact using the structure theorem the whole
chain complex is the splice of split short exact sequences of ZpG-lattices. This
was also observed by Kuhn and Mitchell [6]. The discrepancy with the minus
sign between Stp(G) and St arises because 8p(G) has dimension rank(G) - 1.

2. Stp(G1 x G2) = - Stp(Gd @ Stp(G2 ) . This follows from Sp(G1 x G2) :::=

Sp(GI) * Sp(G2).
3. Unlike the usual Steinberg character, Stp(G) is in general not simple. It

need not even be indecomposable.
4. If Op(G) t- 1 then Stp(G) = O. In particular, p-groups have trivial Stein­

berg module. If IGI is prime to p then Stp(G) = -Zp.
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5. s-,(G) is self-dual.
6. The simple modules whose projective covers appear in the support of

Stp(G) all have dimension at least p. In particular, PI never appears in the
support of Stp(G). This follows from the following proposition, which was also
used to compute the ensuing table.

5.3. PROPOSITION. Assume piIGI. For each simple ZpG-module S, the
multiplicity of the projectioe cover Ps in Stp (G) is

l: (-1)dimO"(multiplicity of PI for GO"in Sic")·
O"Et:./C

We may take ~ to be any of the four simplicial complexes described in §2.
In the parenthetic term above we compute how many times the projective cover
over ZpGO"of the trivial module for ZpZG". is a summand of Sic". This term is
zero if dimS < IGO"lp,since dim PI ~ IGO"lp.When ~ is the simplicial complex
of any of the four posets Sp(G), J1p(G), Bp(G), Rp(G) we always have IG0" Ip ~ p,
hence the assertion in 6 that Ps does not occur at all if dim S < p.

Steinberg modules at p = 2:

S3 P(2,1)
S4 0

S5 - P(3,2)
S6 - P(3,2,1)
S7 P(4,3)+ P(4,2,1)
A 7 2P20 + PI4
M u - 3P44 - 2PI6 - 2Pi6
M I 2 lOPI 44

M24 PI792

For the symmetric groups the notation PA denotes the projective cover of the
modular irreducible corresponding to the p-regular partition >..Otherwise, irre­
ducibles are referred to by their dimensions. I am indebted to 1. G. Griffiths,
S. E. Rees, M. A. Ronan, and S. Smith for the more difficult calculations.

6. Steinberg module inversion. This is a process like Mobius inversion,
which is familiar to workers in several areas. In the context of representations of
Chevalley groups it takes the form of a duality between the Steinberg module and
the trivial module. We take an approach which was first used in a less general
context by Bouc [1], and go on to deduce an application to group cohomology,
and also Robinson's reformulation of Alperin's conjecture. First the statement
of the inversion formula in the language of the previous sections (cf. Proposition
4 of [1], but note that Bouc works in the ring of Brauer characters).

6.1. THEOREM. In a(G),

z, = - l: Stp(Nc(P)jP) i~G(p) .

{1~P~CIPa p-Bubgroup}/C
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The vertical arrow means induction. In this formula we regard Stp(Nc(P)! P)
as a virtual Nc(P)-module by inflation. Comparing this with the definition of
Stp(G) we see that each of the trivial module and the Steinberg module can be
expressed as a linear combination of terms involving only the other. Notice that
the only p-subgroups P which make any contribution to the sum in 6.1 are those
with P = Op(Nc(P)) because otherwise the Steinberg module of Nc(P)!P is
zero, by property 4 in §5. At the end of this section we give an application to
cohomology, but first we explain how the formula may be derived.

We work with the precursor of the Steinberg module which lies in the Burnside
ring. We define the Burnside ring, b(G) = Ko(G-sets, 0), to be the Grothendieck
group of the category of finite G-sets with respect to relations given by disjoint
union decompositions. This is the free abelian group with the set of equivalence
classes of transitive G-sets as a basis, two transitive G sets H\G and K\G being
equivalent if and only if the stabilizer subgroups Hand K are conjugate in G.
The basis elements thus biject with the conjugacy classes of subgroups of G. If
~ is a simplicial complex of dimension d arising from a poset on which G acts,
we let ~r denote the G-set of simplices in dimension r, and let ~-l = 1 be the
trivial G-set. We set

d

A(~) = 2:::(-It ~r,
r=O

the Lefscheiz invariant of ~, as an element of b(G). We also define the reduced
Lejschetz invariant to be

d

A(~) = 2:::(-It ~r'
r=-l

There is a homomorphism r : b(G) ---+ a(G) sending each G-set to the corre­
sponding permutation module, and evidently if ~ is the simplicial complex of
Sp(G) then r(A(~)) = Stp(G). Burnside showed [5, §181, p. 238] that a G-set °
is completely determined as an element of b(G) by knowing the values of IOHI
for all subgroups H ::; G. In our situation this means that A(~) is completely
determined by the values of the (reduced) Euler characteristics

d

X(~H) = 2:::(-Ir1~~I·
r=-l

Since these numbers are unchanged under G-homotopy equivalence it followsthat
if ~l and ~2 are G-homotopy equivalent then A(~d = A(~2)' This approach
is taken from [12]. Thus we have:

6.2. PROPOSITION. A(Sp(G)) = A(Ap(G)) = A(Rp(G)). It makes no dif­
ference wht'chof these four simplicial complexeswe use to define Stp (G).

We now state the inversion formula in the context of the Burnside ring.
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6.3. THEOREM (THEVENAZ [12, 3.3]). Let G act on a poset P. Then

~ - c ~ - cA(P) = - L- A(jx, Dic z = - L- A(] ,xD ic z

xEP/C xEP/C

in the Burnside ring.

The notation [z, [means the interval {y E P I x < y}, and j ,x[ means
{y E Ply < x}. In the statement we are not distinguishing between a poset and
its associated simplicial complex, because it looks better. Unfortunately, we will
need to make this distinction in the proof, and we denote the simplicial complex
associated to the poset P by t.(P). If a is the simplex Xo < ... < Xn we let ao

denote the starting vertex xo.
PROOF.

A(P) = L (_1)dim17G17\ G
17E6.(P)/C

= L ( L (_1)dim17G17\ GX)igz
xEP/C {17E6.(P)I17o=x}/cz

L (Gx \G x - L (_1)dimrGr \Gx) igz
xEP/C rE6.(]x, D/cx

~- C= - L- A(]x, Di C z •

xEP/C

For the second equality, apply the first to A(POP)= A(P).
The next lemma is 6.1 of [7], except that here we have the extra decoration

that the homotopy equivalence is an Nc(P)-homotopy equivalence.

6.4. LEMMA. WheneverPis ap-subgroupofG, Nc(P) acts on the subposet
jP, [ of Sp(G).

(a) There is an Nc(P)-homotopy equivalencejP, [~Sp(Nc(P)/P), where we
regardthe second term as an Nc(P)-poset by inflation from Nc(P)/ P.

(b) A(]P, D= A(Sp(Nc(P)/P)) in b(Nc(P)).

PROOF. (a) There is an inclusion map

i: Sp(Nc(P)/ P) '-+jP, [

given by the bijection between p-subgroups of No (P) / P and p-subgroups of
Nc(P) containing P. By Bredon's Theorem 2.4 it suffices to show that for each
subgroup H :5Nc(P) the mapping

iH : Sp(Nc(p)/p)H '-+jP, [H

is a homotopy equivalence. We use Quillen's argument in 6.1 of [7]. There is a
reverse mapping
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defined as follows: ifQ is an H-stable p-subgroup in ]P, [H then rH(Q) = (Qn
NG(P))/P = NQ(P)/P, an H-stable nontrivial p-subgroup. Then rHi H = id
and iHrH(Q) < Q, so it follows from 1.3 of [7] that rH and iH are homotopy. -
equivalences.

(b) is immediate from (a).

6.5. COROLLARY. In b(G),

G\G=- L A(Sp(NG(P)/P))i~G(P)'
{l~P~GIPa p-subgroup}/G

In the above statement, G \ G is, of course, the trivial G-set.
PROOF. We deduce 6.5 from 6.4 and 6.3 by taking P to be the poset of all

p-subgroups of G, including {l}. Then P has a unique minimal element and is
contractible, so A(P) = G \ G.

PROOF OF 6.1. Apply the homomorphism r : b(G) --+ a(G) to the formula
in 6.5.

ALPERIN'S CONJECTURE. We now show how G. Robinson's reformulation
of Alperin's conjecture is an instance of the above identities. Let

l(G) = the number of absolutely irreducible p-modular characters of G.

fo(G) = the number of blocks of defect zero of G.

Alperin has conjectured the statement

(A) l(G) =
{1~P~GIPa p-subgroup}/G

fo (NG(P)/P) for all finite groups G.

Robinson has shown that this is equivalent to the statement

(R) fo(G) = l(G) - L (_1)dimO"l(GO")for all finite groups G,
O"E~/G

where ~ is the simplicial complex Rp(G). Actually, we will see in just a moment
that it does not matter if we take ~ to be Sp(G), Ap(G), Bp(G), or Rp(G). We
will deduce the equivalence of (A) and (R ) from Corollary 6.5 by regarding l as
a function on the Burnside ring. We define

l : b(G) --+ Z

on the basis elements of b(G) by

l(H \ G) = the number of absolutely irreducible p-modular characters of H

and extend by linearity to the whole of b(G). It is immediate that Robinson's
reformulation (R) can be stated in the form

fo(G) = -l(A(~)) for all finite groups G,

where ~ in the first instance is Rp(G), but might just as well be Sp(G), Ap(G),
or Bp (G) because these all have the same Aby 6.2. We note that as a function
on the Burnside ring, l behaves well with respect to induction and inflation when
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we are extending by a normal p-subgroup:
6.6. LEMMA. Let H be a subgroupof G and let P be a normal p-subgroup

ofG. IfxEb(H) andYEb(G/P) thenl(x)=l(ind~x) andl(y)=l(infg/py).

PROOF. For induction it is that ind~(K \H) = K \ G, and the statement for
inflation holds because if P ~ L ~ G then Land L/ P have the same number of
p-modular irreducibles.

Applying the function l to both sides of the equation in Corollary 6.5, and
ignoring inductions and inflations by 6.6, we obtain

6.7. COROLLARY.

l(G) = - l(A( Sp(Nc (P)/ P) )).
{l~P~CIPa p-subgroup}/C

PROOF OF THE EQUIVALENCEOF (A) FROM (R /). To deduce (A) from
(R/) we substitute (R/) into the formula of Corollary 6.7.

Now assuming (A) we prove (R/) by induction on IGI.SO assume that (A)
holds, and that (R/) holds for smaller values of IGI.Then Corollary 6.7 gives

l(G) = -l(A(Sp(G))) - L l(A(Sp(Nc(P)/P)))
{I «rsc IPa p-subgroup} /C

= -l(A(Sp(G))) + L fo(Nc(P)/ P) by induction
{l<P~CIPa p-subgroupj ZC

= L !o (Nc (P)/P) assuming (A).
{l~P~CIPa p-subgroup}/C

Since all of the terms on the two sides of the last equality are the same, except
for two of them, we deduce

fo(G) = -l(A(Sp(G)))

as required. This argument also starts the induction when p f IGI.
We conclude with an application of Theorem 6.1 to group cohomology.

6.8. THEOREM. For all n E Z, for all finitely generatedZG -modules M,

iIn(G, M)p = - L HomZpNc(p)(Stp(Nc(P)/P), iIn(p, M)p).
{P~CIPa p-subgroup}/C

This equation holds in the Grothendieck group K o(Ab, 0) of finitely generated
abelian groups with relations given by direct sum decompositions (in the same
way as the analogous theorems in [8] and [9]). Knowledge of all the terms on the
right-hand side determines the isomorphism type of the left-hand side. The suffix
p is always used to mean completion at p, but in the case of a finite abelian group
this is the same as taking the p-torsion subgroup. In the term in parentheses on
the right we regard iIn(p, M) as an Nc(P)-module by the conjugation action.
The whole Hom term then counts the multiplicities of the simple modules at the
top ofStp(G) as composition factors in iIn(P,M)p, because Stp(G) is projective,
and also for this reason the calculation here may be done with Brauer characters,
which suffice to distinguish composition factors. This formula reduces the Tate
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cohomology of G to the Tate cohomology of the p-subgroups of G (and only the
Op's of parabolic subgroups contribute) together with knowledge of the action
of the normalizers of the p-subgroups.

In the statement of 6.8 the functor HomzpNa(p) ( , iln(p, M)p) is applied to a
virtual module. In order to make sense of this we have to regard Hom( ,X) as a
homomorphism a(G) ......Ko(Ab, 0). Thus if U and V are modules then Hom(U­
V, X) is by definition Hom(U, X) - Hom(V, X). We follow this convention with
other functors throughout the proof of 6.8.

PROOF OF 6.8. For positive values of n we apply the functor Ext~ c( ,M p )
p

to both sides of the equation in Theorem 6.1. For n :::;0 the result follows from
the result for positive n by a dimension shifting argument (d. [8, §2]). Suppose
n > O. The term on the left of the equation is

Ext~pc(Zp, Mp) '=Hn(G, M)p

(see [8] for this isomorphism). The typical term on the right is

Exqpc(Stp(Nc(P)/P) i~a(p),Mp) '=Ext~pNa(P)(Stp(Nc(P)/P),Mp)

(*) '=Ext~pNa(p)(Zp,Mp I8lzp Stp(Nc(P)/P)*)

'=Hn(Nc(P), u, I8lzp Stp(Nc(P)/ P)*).

We apply the Lyndon-Hochschild-Serre spectral sequence for the extension 1 ......
p ......Nc(P) ......Nc(P)/P ......1. The E 2 page is

E;'s = HT(Nc(P)/ P, HS(P, u; I8lz
p

Stp(Nc(P)/ P)*)).

I claim that as Nc(P)-modules with the conjugation (or diagonal) action,

HS(P,M p I8lzp Stp(Nc(P)/P)*) '=HS(P,M p) I8lzp Stp(Nc(P)/P)*.

This is because if F is one of the modules in a projective resolution of Zp
over ZpNc(P) then the conjugation action arises from the diagonal action on
Homzpp(F, Mp I8lzp Stp(Nc(P)/ P)*), which is isomorphic over ZpNc(P) to
Homzpp(F, Mp) I8lzp Stp(Nc(P)/ P)* with the diagonal action because
Stp(Nc(P)/P) is free as a Zp-module and has the trivial P-action. This isomor­
phism commutes with taking homology in the definition of H* (P, Mp) because
Stp(Nc(P)/P) is flat over Zp, We deduce that HS(P,M p I8lzp Stp(Nc(P)/P)*)
is a (virtual) projective ZpNc(P)/P-module. Hence E;'s = 0 unless r = 0 and
then

E~'S = HO(Nc(P)/ P, HS(P, ss;I8lzp Stp(Nc(P)/ P)*))

= HomzpNa(p)(Zp, HS(P, Mp) I8lzp Stp(Nc(P)/ P)*)

'=HomZpNa(p) (Stp(Nc(P)/P), HS(P, Mp)).

The spectral sequence stops at the E2 page, where it is concentrated on the fiber.
Hence E~,n '=Hn(Nc(p), Mp I8lz

p
Stp(Nc(P)/ P)*). Putting this together with

equation (*) yields the statement of the theorem.

7. Appendix: homotopy equivalent complexes. We present some el­
ementary arguments which show that splitting of a complex and the Lefschetz
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invariant are independent of G-chain homotopy equivalence. The use of this kind
of result is that it helps us to transfer between the complexes Sp(G), Ap(G),
8p(G), and Rp(G) (or some other such set of complexes that we may happen to
have in mind). The independence of the Lefschetz invariant was also shown just
before Proposition 6.2, but here we give an alternative algebraic proof. First
we clarify the notion of splitting. It is convenient to define it in a general situ­
ation where the complex may have nonzero homology. This extends the usual
definition for short exact sequences. We work with a chain complex

(D., d) = .. ·D n+1~ Dn~ Dn- 1 · · ·

of R-modules, where R is some ring. In what follows all homomorphisms are
supposed to commute with the action of R.

DEFINITION.The chain complex (D., d) is split if there is a map a: D. --+ D.
of degree +1 with do:d = d.

7.1. LEMMA. Let (D., d) be a chain complex of R-modules. The following
are equivalent:

(i) (D., d) is split.

(ii) For every n, in the factorization of dn as Dn~ 1m d., ~ Dn- 1 where
in is inclusion, both dn : Dn --+ 1m dn is a split epimorphism and in is a split
monomorphism.

(iii) For every n we can write Dn = 1m dn+1 EBker dn/ 1m dn+1 EB1m dn so
that the mapping

Dn = 1m dn+1 EBker dn/ 1m dn+1 EB1m dn

~ 1m d.; EBker dn-d 1m dn EB1m dn- 1 = Dn- 1

is an isomorphism on the summands 1m dn and is zero on other summands.
Thus D. is the splice of split short exact sequences direct sum its he mology.

PROOF. (iii)=?(i). We define a to be the map which is the inverse of dn on
the summands 1m dn and zero elsewhere.

(ii)=?(iii). Both ker d« and 1m dn+1 are summands of Dn. Since 1m dn+1 ~

ker dn , this inclusion also splits by the modular law, giving the required decom­
position.

(i)=?(ii). Suppose there exists a map a of degree +1 with dad = d. We
claim that ker(d) = ker(ad) and Im(da) = Im(d) (writing maps on the left).
This is because ker(d) ~ ker(ad) ~ ker(dad) = ker(d), and d(D.) = dad(D.) ~

da(D.) ~ d(D.). Now ad and do are idempotent mappings from D. to itself,
since a(dad) = ad and (dad)a = da. Therefore the inclusions ker(ad) ~ D. and
da(D.) ~ D. are split, and hence so are the inclusions kerd ~ D. and 1m d ~ D.
The fact that ker d ~ D. splits means also that D. --+ 1m d splits, which is what
we need.

For any finite-dimensional complex (D., d) of R-modules we define
n

L(D.) = 2)-1)iDi E Ko(modR,O)
i=O
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where n = dim D ..
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7.2. PROPOSITION. Let I : C. ---> D. be a chain homotopy equivalence 01
chain complexes of Ri-modulee. Then

(i) C. is split if and only if D. is split.
(ii) £(C.) = £(D.).

PROOF. (i) Suppose that C. is split by a map a of degree +1, so cae = c.
Let g : D. ---> C. be the chain homotopy inverse, and let t : D. ---> D. be the
R-homomorphism of degree +1 which gives 1D. ~ I». The domains and targets
of these mappings are as follows:

en--Cn an Cn- 1
+--

o«i! In

dn
----+

Dn t n Dn- 1
+--

Using the equations

coc = c,

we calculate

1 - I g = t d + di, dl = [c, gd = cq,

dl ag d = I coco = leg = I gd = (1 - (t d + dt)) d = d - dt d.

Thus (3= lag + t splits D., since d(3d = d.
(ii) (Proof supplied by P. Eccles). We use similar notation to (i), so that

g : D. ---> C. is the homotopy inverse, 1- gl = sc + cs, and 1- Ig = t d +dt. We
show that

Co EBD 1 EBC2 EBD3 EB... =Do EBC1 EBD 2 EBC3 EB....

Let U denote the left-hand side above, and V the right-hand side. We define
maps () : U ---> V and ¢ : V ---> U by defining them on each summand of U and
V. We define

()(x) = -en (x) + In(x) + sn+dx) E Cn- 1 EBDn EBCn+1, X E Cn,

()(y) = dn(y) - gn(Y) - tn+1(Y) E Dn-1 EBCn EBDn+1, Y E Dn.

We define </Jbe the same formulae. Then

¢()(xo,Y1,X2,Y3, ... ) = (-xo, -Y1 + 7]o(xo),-X2 + 7]~ (yd + S"o(xo),

- Y3+ 7]2(X2)+ S"~ (yd, -X4 + 7]~(Y3) + S"2(X2),"')'

where

and 7]~, S"~ are defined in the same way with the roles of C. and D. reversed.
This uses the chain homotopy equivalence, the fact that e2 = 0, and the fact
that I and g are chain maps. This means that </J()is an isomorphism. For
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¢O(D1 EBC2 EB... ) ~ D1 EBC2 EB... SO that we have a map of short exact
sequences

o ---+ D 1 EBC2 EB. .. ---+ Co EBD 1 EBC2 EB. .. ---> Co ---> 0

14>0I 14>0 1-1
o ---+ D 1 EBC2 EB. .. ---+ Co EBD 1 EBC2 EB. .. ---> Co ---> O.

Hence ¢O will be an isomorphism provided ¢Ol is, and an inductive argument
gives the result.

Similarly O¢ is an isomorphism, and so 0 and ¢ are isomorphisms.
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