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1. Main Theorem

This work appears in

P.J. Webb, Resolutions, relation modules and Schur multipliers for categories, preprint

from my web site.

Assume:

C is a connected category.

H2(C) is finitely generated.

THEOREM. The maximal stem extensions of C by constant functors are the stem

extensions by the constant functor H2(C) with group H2(C). When H1(C) is free abelian,

they are all isomorphic.

THEOREM. Every group extension 1 → K → E → G → 1 with K ≤ Z(E) ∩ E′ is

an image by extension pushout of such an extension with K = H2(G). When G/G′ is free

abelian, these maximal extensions are all isomorphic.

Linckelmann has defined the Schur multiplier of a fusion system. It is the Schur

multiplier of the linking system.
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2. Basics about representations of categories

See:

P.J. Webb, An introduction to the representations and cohomology of categories, pp. 149-

173 in: M. Geck, D. Testerman and J. Thévenaz (eds.), Group Representation Theory,

EPFL Press (Lausanne) 2007.

Dictionary:

group G category C

representation = homomorphism representation = functor

group algebra RG category algebra RC

Examples: group algebra, incidence algebra, path algebra

representation = module representation = module

internal ⊗ internal ⊗

trivial representation R constant functor R

fixed points MG = HomRG(R, M) inverse limit lim
←−C

M = HomRC(R, M)

cofixed points MG = R⊗RG M direct limit lim
−→C

M = R ⊗RC M

classifying space BG nerve |C|

Hn(G, M) = Extn
RG(R, M) Hn(C, M) = Extn

RC(R, M)

Hn(G, Z) = Hn(BG) Hn(C, Z) = Hn(|C|)

H2 corresponds to equivalence classes of extensions.

split extension M ⋊ G Grothendieck construction M ⋊ C

H1 corresponds to conjugacy classes of splittings of M ⋊ C.

augmentation ideal IG left and right augmentation ideals •IC and IC•

G/G′ ∼= IG/(IG)2 H1(C) ∼=
IC•∩•IC
IC•·•IC

role of Schur multiplier H2(G) ?

central group extension extension by a (sub) (locally) constant functor

essential extension ?

presentation, relation module ?,?

G-sets C-sets

bisets for groups bisets for categories

Applications: p-local finite groups, computing higher limits (Bousfield-Kan spectral se-

quence); related topological constructions; reformulation of Alperin’s conjecture; Bredon

coefficient systems; Xu’s example; the theory includes representations of quivers and of

posets.
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3. Stem extensions of categories

Extension of category:

An extension of categories is a pair of functors

K
i
−→E

p
−→C

between categories K, E and C for which

(1) K, E and C all have the same objects, i and p are the identity on objects, i is injective

on morphisms, and p is surjective on morphisms;

(2) whenever f and g are morphisms in E then p(f) = p(g) if and only if there exists a

morphism m ∈ K for which f = i(m)g. In that case, the morphism m is required to

be unique.

It follows that K is a disjoint union of groups, and that we have a functor K : E →

Groups with K(x) = EndK(x). When these groups are abelian we get a representation of

E , and in fact a representation of C.

It is convenient to use the notation (K|E) to denote the above extension, although

this notation does not retain complete information about it.

Morphism and isomorphism of extensions of C: a commutative diagram which is the

identity on C.

Extensions by contant functors generalize central group extensions, as do extensions

by locally constant and sublocally constant functors.

Stem extension: an extension (K|E) such that the induced map H1(E)→ H1(C) is an

isomorphism.

PROPOSITION. In any map of extensions

K1 → E1 → C

↓ ↓ ‖

K → E → C

where K1 and K are locally constant and the lower extension is a stem extension, the

homomorphism K1 → K is surjective.

Proof. Use the 5-term sequence in homology.
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Maximal stem extension: There is a transitive relation ≥ on the set of stem extensions

of C by locally constant functors by writing (K1|E1) ≥ (K|E) if there is a morphism

(K1|E1)→ (K|E). Provided H2(C) is a finitely generated abelian group, if (K1|E1) ≥ (K|E)

and (K|E) ≥ (K1|E1) then (K|E) ∼= (K1|E1) since the two composites of the two morphisms

when restriced to K and K1 are both surjections, and hence isomorphisms. Thus ≥ induces

a partial order on the set of isomorphism classes of stem extensions. We say that a stem

extension (K|E) of C by a locally constant functor is maximal if its isomorphism class is

maximal in this partial order. Equivalently, a stem extension by a locally constant functor

is maximal if and only if whenever it is the target of a morphism from a stem extension,

that morphism is an isomorphism.

4. Example: the suspension of K(C2, 1)

Let C be the category with three objects labelled x, y and z and three non-identity

morphisms: g : x→ x, a : x→ y and b : x→ z and so that g2 = 1x, the other compositions

being determined uniquely. The nerve of C is the suspension of the Eilenberg-MacLane

space K(C2, 1), since the endomorphism monoid of x has as its nerve K(C2, 1), adjoining

just one of the morphisms a or b produces a cone on this space, and adjoining both a and

b gives the double cone, or suspension. Thus the homology Hn(C) of C is Z if n = 0, 0 if

n is odd and Z/2Z if n is even.

We take the presentation of C by the free category F with objects x, y and z and

generator morphisms G : x→ x, A : x→ y and B : x→ z. The left augmentation ideal of

F is
•IF = ZF(1x −G) + ZF(1y −A) + ZF(1z −B)

and the kernel N of the algebra homomorphism ZF → ZC is the 2-sided ideal generated

by 1x −G2, B(1x −G) and A(1x −G). We find that

N · •IF = ZF(1x −G2)(1x −G) + ZA(1x −G)2 + ZB(1x −G)2

noting that many products of terms vanish in this computation. Making use of the identity

1x − G2 = −(1x − G)2 + 2(1x − G) we find that, modulo N · •IF , N is spanned by

1x − G2, A(1x − G) and B(1x − G). The images of these elements in N/(N · •IF) are

independent (on considering the effects of left multiplication by 1x, 1y and 1z) and we

have A(1 − G2) ≡ 2A(1 − G) and B(1 − G2) ≡ 2B(1 − G). Thus the relation module

M associated to this presentation has M(x) = M(y) = M(z) = Z and M(G) acts as the

identity on M(x), M(A) includes M(x) into M(y) as Z → 2Z and also M(B) includes

M(x) into M(z) as Z→ 2Z.

We see from this that the projective extension of C described in Theorem ? has as its

middle term the category F†† which has objects x, y and z and with each of the morphism

sets End(x), End(y), End(z), Hom(x, y) and Hom(x, z) a copy of Z. The composition of
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any two composable morphisms is the sum of the integers. The surjection F†† → C sends

each of these sets of morphisms to a single morphism, except for EndF (x) → EndC(x)

which is a surjective group homomorphism Z → Z/2Z. This surjection of categories is

seen to be part of an extension

M → F†† → C.

Since H1(C) = 0 and H2(C) = Z/2Z there is a unique (up to isomorphism) maximal

stem extension of C by a locally constant functor, and its left term is the constant functor

Z/2Z. We describe it first and then explain how it may be calculated. The extension

category E has objects x, y and z and now End(y) and End(z) are copies of the cyclic group

C2 while End(x) is a Klein four-group C2×C2. We may identity Hom(x, y) as a copy of C2

in which End(x) acts via composition as projection onto the first factor p1 : C2×C2 → C2

and then multiplication within C2, and End(y) acts as multiplication within C2. On the

other hand Hom(x, z) is a copy of C2 in which End(x) acts via composition as projection

onto the second factor p2 : C2 × C2 → C2 and then multiplication within C2, and End(z)

acts as multiplication within C2. There is an extension

Z/2Z→ E → C

in which the surjection EndE(x)→ EndC(x) is the homomorphism C2×C2 → C2 which has

the diagonally embedded copy of C2 as its kernel, and this is the maximal stem extension.

We may compute this extension by first working over the field of two elements F2 and

constructing a projective resolution of the constant functor F2 by projective F2C-modules.

We write modules diagrammatically, so that the constant functor F2 has the form

F2 =
Sx

Sy Sz

where we denote the three simple F2C-modules, each of dimension 1 on the subscript

object and 0 on the other two, by Sx, Sy and Sz. we have a decomposition of the regular

representation into indecomposable projective modules

F2C = Px ⊕ Py ⊕ Pz =
Sx

Sx Sy Sz

⊕ Sy ⊕ Sz

and the start of a resolution

Sx ⊕ Sy ⊕ Sz → Px → Px →
Sx

Sy Sz

→ 0.

Using this we may compute H2(C, F2) by the exact sequence

Hom(Px, F2)→ Hom(Sx ⊕ Sy ⊕ Sz, F2)→ H2(C, F2)→ 0

and we see that H2(C, F2) has order 2 with a non-zero element in cohomology represented

by the morphism Sx ⊕ Sy ⊕ Sz →
Sx

Sy Sz

→ 0 which is non-zero on the Sy summand and

zero on the other two summands. Translating this to the relation module which we have

already constructed, the stem extension we require is the explicit pushout of the projective

extension M → F†† → C along the morphism M → F2 given as surjection Z→ F2 at the

object y and zero at the other objects. Following the definition of the explicit pushout

now gives the desired stem extension.
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5. Translating between extension of categories and of the left augmentation

ideal

The left and right augmentation ideals: the constant functor Z as a ZC-module is
⊕

x∈ObC Z. There is a map of left ZC-modules ZC → Z specified by α 7→ 1codα. Its kernel

is •IC, the span in ZC of elements α− 1codα.

THEOREM. Let E and C be categories with the same objects, let p : E → C be

a surjection of categories which is the identity on objects and let N = Ker(RE → ZC).

Consider the acyclic complex of ZC-modules

· · · →
N t

N t+1
→

N t−1 · •IE

N t · •IE
→

N t−1

N t
→ · · ·

→
N

N2
→

•IE

N · •IE
→ ZC → R→ 0.

If E is a free category this complex is an ZC-projective resolution of R.

THEOREM. Let F and C be categories with the same objects, let p : F → C be

a surjection of categories which is the identity on objects, and let N = Ker(ZF → ZC).

Suppose that F is a free category. Then

H2n(C, R) ∼=
Nn ∩ IF• ·Nn−1 · •IF

IF• ·Nn + Nn · •IF

and

H2n+1(C, R) ∼=
IF• ·Nn ∩Nn · •IF

Nn+1 + IF• ·Nn · •IF
.

The formula for first homology simplifies to give

H1(C, R) ∼=
IC• ∩ •IC

IC• · •IC
.

This generalizes the formula for groups G/G′ ∼= IG/(IG)2.

THEOREM. There is an equivalence of categories between extensions of C with

abelian kernel and extensions of •IC, under which K → E → C corresponds to

0→ K →
•IE

N · •IE
→ •IC → 0.

We have K ∼= N
N·•IE

.
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The relation module

The relation module in this situation is N/(N · •IF). It appears in a short exact

sequence 0→ N/(N · •IF)→ •IF/(N · •IF)→ •IC → 0.

THEOREM. When C is a group, the relation module coming from a monoid pre-

sentation of C is isomorphic to the relation module coming from the corresponding group

presentation of C. It is also the kernel in a category extension of C which is projective in

a certain category of extensions.

Application: geometric group theory.

Keywords to explain:

relation module coming from a monoid presentation. In fact there is a relation module

coming from every free presentation of a category.

6. Five-term sequences

THEOREM. (5-term sequences in the (co)homology of a category extension.) Let

K → E → C be an extension of categories, let B be a right ZC-module and let A a left

ZC-module. There are exact sequences

H2(E , B)→ H2(C, B)→

B ⊗ZC H1(K)→ H1(E , B)→ H1(C, B)→ 0

and
H2(E , A)← H2(C, A)←

HomZC(H1(K), A)← H1(E , A)← H1(C, A)← 0.

COROLLARY. Let K → E → C be an extension of categories and suppose that the

induced homomorphism H1(E) → H1(C) is an isomorphism. Then lim
−→

H1(K) = Z ⊗ZC

H1(K) is a homomorphic image of H2(C).

Techniques:

The equivalence of extension categories of C and of the left augmentation ideal •C.

Show that given a stem extension there is indeed a stem extension with kernel group H2(C)

mapping to the given stem extension.

7


