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1. C-sets

Let C be a small category and Set the category of sets. We define a C-set to be
a functor Ω : C → Set. Thus Ω is simply a diagram of sets, the diagram having
the same shape as C: for each object x of C there is specified a set Ω(x) and for
each morphism α : x → y there is a mapping of sets Ω(α) : Ω(x) → Ω(y). If C
happens to be a group (a category with one object and morphism set G) then a
C-set is the same thing as a G-set, since the C-set singles out a set and sends each
morphism of C to a permutation of the set. We see that C-sets form a category,
the morphisms being natural transformations between the functors. Thus we have
a notion of isomorphism of C-sets.

Given two C-sets Ω1 and Ω2 we define their disjoint union Ω1 t Ω2 to be the
C-set defined at each object x of C by (Ω1 t Ω2)(x) := Ω1(x) t Ω2(x) with the
expected definition of Ω1 t Ω2 on morphisms. Let us call a C-set Ω a single orbit
C-set or transitive if it cannot be expressed properly as a disjoint union. A C-set
Ω may happen to be the disjoint union of two C-sets, or not; if it can be broken
up as a disjoint union we can ask if either of the factors is a disjoint union, and by
repeating this we end up with a disjoint union of C-sets each of which is transitive.

Proposition 1.1. Every finite C-set Ω has a unique decomposition

Ω = Ω1 t Ω2 t · · · t Ωn

where each Ωi is transitive. In the diagram

Ω(C) p−→ lim−→Ω = {1, . . . , n}

we may take Ωi(C) = p−1(i).

We present an example. Let C be the category

C = •
x

α−→ •
y

which has two objects x and y, a single morphism α from x to y, and the identity
morphisms at x and y. We readily see that the transitive (non-empty) C-sets have
the form

Ωn := n→ 1, n ≥ 0
where n = {1, . . . , n} is a set with n elements, the mapping between the two
sets sending every element onto a single element. We see various things from
this example, such as that a finite category may have infinitely non-isomorphic
transitive sets, and also that transitive sets need not be generated by any single
element.

We have available another operation on C-sets, namely ×. Given two C-sets
Ω and Ψ we define (Ω × Ψ)(x) = Ω(x) × Ψ(x), with the expected definition on
morphisms of C. In the above example we see that Ωm × Ωn ∼= Ωmn.
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We are now ready to define the Burnside ring of the category C as

B(C) := Grothendieck group of finite C-sets with respect to t.

Thus B(C) is the free abelian group with the (isomorphism classes of) transitive
C-sets as a basis. The multiplication on B(C) is given by × on the basis elements.
Note that this definition of the Burnside ring of a category appears to be quite
different to the definitions given by Yoshida in [10] and May in [5].

As an example take C to be the category which we have seen before. From our
calculations we have

B(C) = Z{Ω0,Ω1,Ω2, . . .}
= ZN×≥0

∼= ZΩ0 ⊕ Z{Ω1 − Ω0,Ω2 − Ω0, . . .}
∼= Z⊕ ZN×>0

as rings, where ZN×>0 (for example) denotes the monoid algebra over Z of the
multiplicative monoid of non-zero natural numbers. This is the complete decom-
position of B(C) as a direct sum of rings. The ring ZN×>0 is not finitely generated,
and hence neither is B(C).

We illustrate the kind of situation where these constructions may be applied.
Quite regularly we consider diagrams of one thing or another, be it sets, or perhaps
spaces. By a space we mean a simplicial set, in which case a diagram of spaces
Ω : C → Spaces is the same thing as a simplicial C-set. Given such Ω, in each
dimension i the i-simplices Ωi form a C-set. We may form a Lefschetz invariant∑
i≥0(−1)iΩi and this is an element of the Burnside ring B(C). It depends only on

the C-homotopy type of Ω. As an example of how this might arise, let G be a finite
group and take C to be the orbit category of G with stablizers in some family of
subgroups. Thus the objects of C are G-sets G/H with H in the specified family,
and the morphisms are the equivariant maps. Given a G-space ∆ we may obtain
a Cop-space ∆̂ by ∆̂(G/H) = ∆H , the fixed points, and hence we get a Lefschetz
invariant L(∆̂) in the Burnside ring of the opposite of the orbit category. This
invariant carries more information than a similar invariant in the Burnside ring of
G considered in [6], [7, p. 358] and [4, Def. 1.6], since the latter invariant is the
evaluation of L(∆̂) at G/1.

2. Bisets for categories

Given categories C and D we define a (C,D)-biset to be the same thing as
a C × Dop-set. Such a biset Ω is a functor C × Dop → Set, so given objects
x ∈ C and y ∈ D and morphisms α : x → x1 in C and β : y1 → y in D,
and an element u ∈ Ω(x, y) we get elements αu := Ω(α × 1y)(u) ∈ Ω(x1, y) and
uβ := Ω(1x × β)(u) ∈ Ω(x, y1). In this sense we have an action of C from the left
and D from the right on Ω.

As an example, we define CCC to be the (C, C)-biset with CCC(x, y) = HomC(y, x),
where we reverse the order of x and y because morphisms are composed on the
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left. In the case of a group this is the regular representation with the group acting
by multiplication from the left and from the right.

Given a (C,D)-biset CΩD and a (D, E)-biset DΨE we construct a (C, E)-biset
Ω ◦Ψ by the formula

Ω ◦Ψ(x, z) =
⊔
y∈D

Ω(x, y)×Ψ(y, z)/ ∼

where ∼ is the equivalence relation generated by (uβ, v) ∼ (u, βv) whenever u ∈
Ω(x, y1), v ∈ Ψ(y2, z) and β : y2 → y1 in D.

Proving the following result is a very good test of one’s understanding of this
construction:

Proposition 2.1. The operation ◦ is an associative product, with identity the
biset CCC.

We now define A(C,D) to be the Grothendieck group of finite (C,D)-bisets with
respect to t, thus extending the notion of the double Burnside ring for groups.
If R is a commutative ring with 1 we put AR(C,D) := R ⊗Z A(C,D) Using this
construction we now define an analog BCat of the Burnside category of [1] (see also
[2] and [8], for example). The category BCat has as objects all (finite) categories,
with homomorphisms given by HomBCat(C,D) = AR(D, C). We define a biset
functor over R to be an R-linear functor BCat → R-mod. This notion evidently
extends the usual notion of biset functors defined on groups, which are R-linear
functors defined on the full subcategory BGroup of BCat whose objects are finite
groups.

The Burnside ring functor BR(C) := R ⊗Z B(C) is in fact an example of a
biset functor defined on categories. Let 1 denote the category with one object
and one morphism – in other words, the identity group. We see that if C is
any category, C-sets may be identified as the same thing as (C,1)-bisets, so that
BR(C) = AR(C,1) = HomBCat(1, C). Thus BR is a representable biset functor over
R, and hence it is projective. It is indecomposable since its endomorphism ring is
End(BR) ∼= AR(1,1) ∼= R by Yoneda’s lemma (assuming R is indecomposable).

All this is similar to what happens with biset functors defined on groups, as
described in [2], and the story continues. Supposing that the ring R we work over
is a field or complete discrete valuation ring, for formal reasons the simple biset
functors may be parametrized by pairs (C, V ) consisting of a category C and a
simple EndBCat(C)-module V , subject to a certain equivalence relation described
in a slightly different context in [9, Cor. 4.2]. Each simple functor SCat

C,V has a
projective cover PCat

C,V : an indecomposable projective with SCat
C,V as its unique simple

quotient. Because the category of groups is a full subcategory of the category of
small categories the relationship between functors defined on BCat and BGroup

is similar to that of representations of an algebra Λ and of eΛe where e ∈ Λ is
idempotent. This kind of relationship was described by Green in [3] is described
in a context close to the present one in sections 3 and 4 of [9]. Some of this
relationship goes as follows.
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Proposition 2.2. Let S be a simple biset functor defined on categories. Then its
restriction to groups is either zero or a simple functor and establishes a bijection
SCat
G,V ↔ SGroup

G,V between isomorphism types of simple biset functors defined on cat-
egories which are non-zero on groups, and simple biset functors defined on groups
G. Furthermore PCat

G,V ↓Cat
Group

∼= PGroup
G,V , and PGroup

G,V ↑Cat
Group

∼= PCat
G,V where ↑Cat

Group

denotes the left adjoint to the restriction ↓Cat
Group.

Thus every simple biset functor defined on groups extends uniquely to a simple
biset functor defined on categories, and the same holds for indecomposable projec-
tive biset functors. We see, when R is a field, that the Burnside ring functor BR
is in fact the indecomposable projective PCat

1,R with unique simple quotient SCat
1,R .

We conclude by mentioning that the values of this simple functor may be iden-
tified in terms of a certain bilinear pairing between the Burnside ring of a cat-
egory and of its opposite, generalizing a bilinear form introduced in [2]. The
Burnside ring BR(C) has as basis the transitive (C,1)-bisets CΩ1, and BR(Cop)
has as basis the transitive (1, C)-bisets 1ΨC . We define a bilinear map 〈 , 〉 :
BR(Cop)×BR(C)→ R by 〈1ΨC , CΩ1〉 = |1ΨC ◦ CΩ1|, the size of this set.

Proposition 2.3. If R is a field then the dimension of the simple biset functor
S1,R is the rank of the above bilinear pairing.

The observations here are just the start of a development of theory on which
the author is currently working.
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