Sets with a Category Action Peter Webb

1. C-Sets

Let \mathcal{C} be a small category and Set the category of sets. We define a \mathcal{C} -set to be a functor $\Omega : \mathcal{C} \to \text{Set}$. Thus Ω is simply a diagram of sets, the diagram having the same shape as \mathcal{C} : for each object x of \mathcal{C} there is specified a set $\Omega(x)$ and for each morphism $\alpha : x \to y$ there is a mapping of sets $\Omega(\alpha) : \Omega(x) \to \Omega(y)$. If \mathcal{C} happens to be a group (a category with one object and morphism set G) then a \mathcal{C} -set is the same thing as a G-set, since the \mathcal{C} -set singles out a set and sends each morphism of \mathcal{C} to a permutation of the set. We see that \mathcal{C} -sets form a category, the morphisms being natural transformations between the functors. Thus we have a notion of isomorphism of \mathcal{C} -sets.

Given two C-sets Ω_1 and Ω_2 we define their disjoint union $\Omega_1 \sqcup \Omega_2$ to be the C-set defined at each object x of C by $(\Omega_1 \sqcup \Omega_2)(x) := \Omega_1(x) \sqcup \Omega_2(x)$ with the expected definition of $\Omega_1 \sqcup \Omega_2$ on morphisms. Let us call a C-set Ω a single orbit C-set or transitive if it cannot be expressed properly as a disjoint union. A C-set Ω may happen to be the disjoint union of two C-sets, or not; if it can be broken up as a disjoint union we can ask if either of the factors is a disjoint union, and by repeating this we end up with a disjoint union of C-sets each of which is transitive.

Proposition 1.1. Every finite C-set Ω has a unique decomposition

$$\Omega = \Omega_1 \sqcup \Omega_2 \sqcup \cdots \sqcup \Omega_n$$

where each Ω_i is transitive. In the diagram

$$\Omega(\mathcal{C}) \xrightarrow{p} \lim \Omega = \{1, \dots, n\}$$

we may take $\Omega_i(\mathcal{C}) = p^{-1}(i)$.

We present an example. Let \mathcal{C} be the category

$$\mathcal{C} = \underset{x}{\bullet} \xrightarrow{\alpha} \underset{y}{\bullet}$$

which has two objects x and y, a single morphism α from x to y, and the identity morphisms at x and y. We readily see that the transitive (non-empty) C-sets have the form

$$\Omega_n := \underline{n} \to \underline{1}, \quad n \ge 0$$

where $\underline{n} = \{1, \ldots, n\}$ is a set with n elements, the mapping between the two sets sending every element onto a single element. We see various things from this example, such as that a finite category may have infinitely non-isomorphic transitive sets, and also that transitive sets need not be generated by any single element.

We have available another operation on \mathcal{C} -sets, namely \times . Given two \mathcal{C} -sets Ω and Ψ we define $(\Omega \times \Psi)(x) = \Omega(x) \times \Psi(x)$, with the expected definition on morphisms of \mathcal{C} . In the above example we see that $\Omega_m \times \Omega_n \cong \Omega_{mn}$.

We are now ready to define the *Burnside ring* of the category C as

 $B(\mathcal{C}) :=$ Grothendieck group of finite \mathcal{C} -sets with respect to \sqcup .

Thus $B(\mathcal{C})$ is the free abelian group with the (isomorphism classes of) transitive \mathcal{C} -sets as a basis. The multiplication on $B(\mathcal{C})$ is given by \times on the basis elements. Note that this definition of the Burnside ring of a category appears to be quite different to the definitions given by Yoshida in [10] and May in [5].

As an example take \mathcal{C} to be the category which we have seen before. From our calculations we have

$$B(\mathcal{C}) = \mathbb{Z}\{\Omega_0, \Omega_1, \Omega_2, \ldots\}$$

= $\mathbb{Z}\mathbb{N}_{\geq 0}^{\times}$
 $\cong \mathbb{Z}\Omega_0 \oplus \mathbb{Z}\{\Omega_1 - \Omega_0, \Omega_2 - \Omega_0, \ldots\}$
 $\cong \mathbb{Z} \oplus \mathbb{Z}\mathbb{N}_{\geq 0}^{\times}$

as rings, where $\mathbb{ZN}_{>0}^{\times}$ (for example) denotes the monoid algebra over \mathbb{Z} of the multiplicative monoid of non-zero natural numbers. This is the complete decomposition of $B(\mathcal{C})$ as a direct sum of rings. The ring $\mathbb{ZN}_{>0}^{\times}$ is not finitely generated, and hence neither is $B(\mathcal{C})$.

We illustrate the kind of situation where these constructions may be applied. Quite regularly we consider diagrams of one thing or another, be it sets, or perhaps spaces. By a space we mean a simplicial set, in which case a diagram of spaces $\Omega : \mathcal{C} \to \text{Spaces}$ is the same thing as a simplicial \mathcal{C} -set. Given such Ω , in each dimension *i* the *i*-simplices Ω_i form a \mathcal{C} -set. We may form a Lefschetz invariant $\sum_{i\geq 0} (-1)^i \Omega_i$ and this is an element of the Burnside ring $B(\mathcal{C})$. It depends only on the \mathcal{C} -homotopy type of Ω . As an example of how this might arise, let G be a finite group and take \mathcal{C} to be the orbit category of G with stablizers in some family of subgroups. Thus the objects of \mathcal{C} are G-sets G/H with H in the specified family, and the morphisms are the equivariant maps. Given a G-space Δ we may obtain a \mathcal{C}^{op} -space $\hat{\Delta}$ by $\hat{\Delta}(G/H) = \Delta^H$, the fixed points, and hence we get a Lefschetz invariant $L(\hat{\Delta})$ in the Burnside ring of the opposite of the orbit category. This invariant carries more information than a similar invariant in the Burnside ring of G considered in [6], [7, p. 358] and [4, Def. 1.6], since the latter invariant is the evaluation of $L(\hat{\Delta})$ at G/1.

2. Bisets for categories

Given categories \mathcal{C} and \mathcal{D} we define a $(\mathcal{C}, \mathcal{D})$ -biset to be the same thing as a $\mathcal{C} \times \mathcal{D}^{\text{op}}$ -set. Such a biset Ω is a functor $\mathcal{C} \times \mathcal{D}^{\text{op}} \to$ Set, so given objects $x \in \mathcal{C}$ and $y \in \mathcal{D}$ and morphisms $\alpha : x \to x_1$ in \mathcal{C} and $\beta : y_1 \to y$ in \mathcal{D} , and an element $u \in \Omega(x, y)$ we get elements $\alpha u := \Omega(\alpha \times 1_y)(u) \in \Omega(x_1, y)$ and $u\beta := \Omega(1_x \times \beta)(u) \in \Omega(x, y_1)$. In this sense we have an action of \mathcal{C} from the left and \mathcal{D} from the right on Ω .

As an example, we define ${}_{\mathcal{C}}\mathcal{C}_{\mathcal{C}}$ to be the $(\mathcal{C}, \mathcal{C})$ -biset with ${}_{\mathcal{C}}\mathcal{C}_{\mathcal{C}}(x, y) = \operatorname{Hom}_{\mathcal{C}}(y, x)$, where we reverse the order of x and y because morphisms are composed on the left. In the case of a group this is the regular representation with the group acting by multiplication from the left and from the right.

Given a $(\mathcal{C}, \mathcal{D})$ -biset $_{\mathcal{C}}\Omega_{\mathcal{D}}$ and a $(\mathcal{D}, \mathcal{E})$ -biset $_{\mathcal{D}}\Psi_{\mathcal{E}}$ we construct a $(\mathcal{C}, \mathcal{E})$ -biset $\Omega \circ \Psi$ by the formula

$$\Omega\circ\Psi(x,z)=\bigsqcup_{y\in\mathcal{D}}\Omega(x,y)\times\Psi(y,z)/\sim$$

where \sim is the equivalence relation generated by $(u\beta, v) \sim (u, \beta v)$ whenever $u \in \Omega(x, y_1), v \in \Psi(y_2, z)$ and $\beta : y_2 \to y_1$ in \mathcal{D} .

Proving the following result is a very good test of one's understanding of this construction:

Proposition 2.1. The operation \circ is an associative product, with identity the biset ${}_{\mathcal{CC}}$.

We now define $A(\mathcal{C}, \mathcal{D})$ to be the Grothendieck group of finite $(\mathcal{C}, \mathcal{D})$ -bisets with respect to \sqcup , thus extending the notion of the *double Burnside ring* for groups. If R is a commutative ring with 1 we put $A_R(\mathcal{C}, \mathcal{D}) := R \otimes_{\mathbb{Z}} A(\mathcal{C}, \mathcal{D})$ Using this construction we now define an analog \mathbb{B}_{Cat} of the *Burnside category* of [1] (see also [2] and [8], for example). The category \mathbb{B}_{Cat} has as objects all (finite) categories, with homomorphisms given by $\operatorname{Hom}_{\mathbb{B}_{Cat}}(\mathcal{C}, \mathcal{D}) = A_R(\mathcal{D}, \mathcal{C})$. We define a *biset functor* over R to be an R-linear functor $\mathbb{B}_{Cat} \to R$ -mod. This notion evidently extends the usual notion of biset functors defined on groups, which are R-linear functors defined on the full subcategory \mathbb{B}_{Group} of \mathbb{B}_{Cat} whose objects are finite groups.

The Burnside ring functor $B_R(\mathcal{C}) := R \otimes_{\mathbb{Z}} B(\mathcal{C})$ is in fact an example of a biset functor defined on categories. Let **1** denote the category with one object and one morphism – in other words, the identity group. We see that if \mathcal{C} is any category, \mathcal{C} -sets may be identified as the same thing as $(\mathcal{C}, \mathbf{1})$ -bisets, so that $B_R(\mathcal{C}) = A_R(\mathcal{C}, \mathbf{1}) = \text{Hom}_{\mathbb{B}_{\text{Cat}}}(\mathbf{1}, \mathcal{C})$. Thus B_R is a representable biset functor over R, and hence it is projective. It is indecomposable since its endomorphism ring is $\text{End}(B_R) \cong A_R(\mathbf{1}, \mathbf{1}) \cong R$ by Yoneda's lemma (assuming R is indecomposable).

All this is similar to what happens with biset functors defined on groups, as described in [2], and the story continues. Supposing that the ring R we work over is a field or complete discrete valuation ring, for formal reasons the simple biset functors may be parametrized by pairs (\mathcal{C}, V) consisting of a category \mathcal{C} and a simple $\operatorname{End}_{\mathbb{B}_{\operatorname{Cat}}}(\mathcal{C})$ -module V, subject to a certain equivalence relation described in a slightly different context in [9, Cor. 4.2]. Each simple functor $S_{\mathcal{C},V}^{\operatorname{Cat}}$ has a projective cover $P_{\mathcal{C},V}^{\operatorname{Cat}}$: an indecomposable projective with $S_{\mathcal{C},V}^{\operatorname{Cat}}$ as its unique simple quotient. Because the category of groups is a full subcategory of the category of small categories the relationship between functors defined on $\mathbb{B}_{\operatorname{Cat}}$ and $\mathbb{B}_{\operatorname{Group}}$ is similar to that of representations of an algebra Λ and of $e\Lambda e$ where $e \in \Lambda$ is idempotent. This kind of relationship was described by Green in [3] is described in a context close to the present one in sections 3 and 4 of [9]. Some of this relationship goes as follows. **Proposition 2.2.** Let *S* be a simple biset functor defined on categories. Then its restriction to groups is either zero or a simple functor and establishes a bijection $S_{G,V}^{\text{Cat}} \leftrightarrow S_{G,V}^{\text{Group}}$ between isomorphism types of simple biset functors defined on categories which are non-zero on groups, and simple biset functors defined on groups *G*. Furthermore $P_{G,V}^{\text{Cat}} \downarrow_{\text{Group}}^{\text{Cat}} \cong P_{G,V}^{\text{Group}}$, and $P_{G,V}^{\text{Group}} \uparrow_{\text{Group}}^{\text{Cat}} \cong P_{G,V}^{\text{Cat}}$ where $\uparrow_{\text{Group}}^{\text{Cat}}$ denotes the left adjoint to the restriction $\downarrow_{\text{Group}}^{\text{Cat}}$.

Thus every simple biset functor defined on groups extends uniquely to a simple biset functor defined on categories, and the same holds for indecomposable projective biset functors. We see, when R is a field, that the Burnside ring functor B_R is in fact the indecomposable projective $P_{\mathbf{1},R}^{\text{Cat}}$ with unique simple quotient $S_{\mathbf{1},R}^{\text{Cat}}$.

We conclude by mentioning that the values of this simple functor may be identified in terms of a certain bilinear pairing between the Burnside ring of a category and of its opposite, generalizing a bilinear form introduced in [2]. The Burnside ring $B_R(\mathcal{C})$ has as basis the transitive $(\mathcal{C}, \mathbf{1})$ -bisets $_{\mathcal{C}}\Omega_{\mathbf{1}}$, and $B_R(\mathcal{C}^{\mathrm{op}})$ has as basis the transitive $(\mathbf{1}, \mathcal{C})$ -bisets $_{\mathbf{1}}\Psi_{\mathcal{C}}$. We define a bilinear map $\langle , \rangle :$ $B_R(\mathcal{C}^{\mathrm{op}}) \times B_R(\mathcal{C}) \to R$ by $\langle_{\mathbf{1}}\Psi_{\mathcal{C}}, _{\mathcal{C}}\Omega_{\mathbf{1}}\rangle = |_{\mathbf{1}}\Psi_{\mathcal{C}} \circ _{\mathcal{C}}\Omega_{\mathbf{1}}|$, the size of this set.

Proposition 2.3. If R is a field then the dimension of the simple biset functor $S_{1,R}$ is the rank of the above bilinear pairing.

The observations here are just the start of a development of theory on which the author is currently working.

References

- J.F. Adams, J.H.C. Gunawardena and H. Miller, The Segal conjecture for elementary abelian p-groups, Topology 24 (1985), 435–460.
- [2] S. Bouc, Foncteurs d'ensembles munis d'une double action, J. Algebra 183 (1996), 664–736.
- [3] J.A. Green, *Polynomial representations of* GL_n , Lecture Notes in Math. 830, Springer-Verlag 1980.
- W. Lück, The Burnside ring and equivariant stable cohomotopy for infinite groups, Pure Appl. Math. Q. 1 (2005), 479–541.
- [5] J.P. May, Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001), 1–16.
- [6] J. Thévenaz, Permutation representations arising from simplicial complexes, J. Combinatorial Theory Series A 46 (1987), 121–155.
- [7] P.J. Webb, Subgroup complexes, pp. 349-365 in: ed. P. Fong, The Arcata Conference on Representations of Finite Groups, AMS Proceedings of Symposia in Pure Mathematics 47 (1987).
- [8] P.J. Webb, Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces, J. Pure Appl. Algebra 88 (1993), 265–304.
- P.J. Webb, An introduction to the representations and cohomology of categories, pp. 149-173 in: M. Geck, D. Testerman and J. Thvenaz (eds.), Group Representation Theory, EPFL Press (Lausanne) 2007.
- [10] T. Yoshida, On the Burnside rings of finite groups and finite categories, Commutative algebra and combinatorics (Kyoto, 1985), 337–353, Adv. Stud. Pure Math. 11, North-Holland, Amsterdam, 1987.