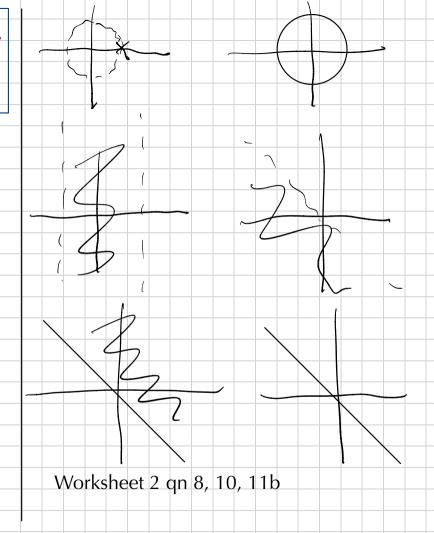
Pre-class Warm-up!!!

Worksheet | 2 Question 10: Which of the following subsets of R^2 (with the usual topology) are open?

a.
$$\{(x,y) \mid x^2 + y^2 \le 1\}$$
 $\cup \{(1,0)\}$ \vee
b. $\{(x,y) \mid x^2 + y^2 \le 1\}$

c.
$$\{(x,y) \mid |x| < 1\}$$



A slightly different example. Every set & n & n = N n > 1 Let $X = \{0, 1/n \mid n \text{ is a positive integer} \}$ as a subset of R with the same distance function as R. What are the open subsets of X? a. All subsets of X. b. All finite subsets of X, together with X. shows a ball in X whose only point c. All subsets of X, with the proviso that if 0 is in the set then for some N, every 1/n is in the set for The balls containing all $n \ge N$. Em d. All subsets of X, with the proviso that if 0 is in the set then the set is infinite. Every spen set is a union of such Such open sets are described by several e. None of the above.

We rent (x, 4 c >0 3 8 >0 50 That Theorem 1.9 A function f: M 1 -> M 2 between two metric spaces is continuous if and only if for all open sets U in M_2 the set $f^{-1}(U)$ is d(x,y)<8 implies d2 (fx), f(y)<€ open in M 1. Suppose we are given x and E>0 Can we recall the definitions of continuous and Because Be(f(x)) is open in Me, open? Proof "=>" Supose f is continuous. Let U) < M2 se on spenset. We show that f (Be f(x)) is open in M, and x (les $B_{S}(x) \leq f'(B_{\varepsilon}(f(x)))$ Thus $f^{-1}(U)$ is open in M_1 . Let $x \in f^{-1}(U)$.

Because U is open and $f(x) \in U$, $f(x) \in U$, $f(x) \in U$.

So that $f(x) \in U$. Because $f'(x) \in U$.

Continuous, $f(x) \in U$. Because $f'(x) \in U$. $f(x) \in U$. $f(x) \in U$. f(Bs(x)) & Be(F(x)). Thus is the same as di(xy)<=> di(x)ft))<E 1.e. F(y) & Be (f(x)) &U. Thus B(x) &F(U) Not in the book Definition: Two metrics on A are equivalent Thu P-1(U) is open. (they define the same open sets

Application. We revisit: (f f (sas) is non-empty it Worksheet 2 gn. 7 Let R have the usual centains an open interval, so metric, let (A,d) have the discrete metric. All there points are mapped to a Show a. All functions f: A -> R are continuous, so f is not injective. [] b. There is no injective continuous f: R -> A. Solution a. Fis continuous (=> F(U) is open Y open If A hal the discrete methor then every Subset of A is open 80 f (et F: R -) A be continuous A each soint { a} is an exh set, s open in R

Chapter 2: Topological spaces	Examples.
	1. Metrizable topological spaces F(X a)
Definition 2.1. Let X be a set and Ua collection	is a metre space then the spen
of subsets of X. We say X (or (X. U.))	suseto of x farm a topology
of subsets of X. We say X (or (X, U)) Sa expological space if	
	Example. The discrete topology
(i) \emptyset χ $\in \mathcal{U}$	has U=all subsets of X, and arises from the discrete metric
(ii) Arbitrary unions of sets in U belong to U	from the discrete metric
(ii) AIBITVAVY UNIONS OF JESS IN US ENGINEED	2. The indiscrete topology.
(iii) Finite intersections of sets U belong to U	
	This has U= { O, X }
U is called the topology on X.	
	3. Topologies on 2 points.
	Let X = 2a, b {
	6 (a, b) Wind
	11 (ab) a (b) 11.
	Ma b
	(a), (b)
	U disc

4. The finite complement topology. We take U = subsets A of X.

so that X - A is finite

together with ϕ Checke X Q & U / arbitrary unions. finite Valerections. The Zariski topology on Spec Z = { prime ideals of Z} = 2 203, PZ where & SAMMe The open sets are the complements some given integer.

