
Worksheet 2 qn 8, 10, 11b

Pre-class Warm-up!!!
Worksheet ' 2 Question 10:
Which of the following subsets of  R^2  (with the 
usual topology) are open?
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A slightly different example.

Let  X = {0, 1/n | n is a positive integer} as a subset 
of  R  with the same distance function as  R.
What are the open subsets of  X ?

a. All subsets of  X.

b. All finite subsets of  X , together with  X.

c. All subsets of X, with the proviso that if  0  is in 
the set then for some  N , every 1/n is in the set for 
all  n ≥ N.

d. All subsets of X, with the proviso that if  0  is in 
the set then the set is infinite.

e. None of the above.
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Theorem 1.9 A function  f : M_1 -> M_2  between 
two metric spaces is continuous if and only if for 
all open sets  U  in  M_2  the set  f^{-1}(U)  is 
open in  M_1.

Definition: Two metrics on A are equivalent

Can we recall the definitions of continuous and 
open?
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Worksheet 2 qn. 7  Let  R  have the usual 
metric, let  (A,d)  have the discrete metric. 
Show 
a. All functions  f : A -> R are continuous,
b. There is no injective continuous  f : R -> A.
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Chapter 2: Topological spaces

Definition 2.1. Let  X  be a set and

Examples. 
1. Metrizable topological spaces

2. The indiscrete topology.

3. Topologies on 2 points.
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4. The finite complement topology.

We tube H = subset fit
together with
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