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Let X ={a,b,c} be the topological space with <\/B i e X ) —F@() < \/E
open sets {g, {b}, {a,b}, {b,c}, {a,b,c} }
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Let f, g: X -> X be the mappings
f(a)=a, f(b)=a, f(c)=b
ga)=a, g(b)=a, g(c)=c

11s f continuous?  Yes/No §b>
2 1s g continuous? Yes/No 1 bcj)
3 How many closed sets does X have? [ Cfﬂ“ |
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Open and closed mappings =~ maf?_(
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Deflmtlon A map X->Y isopen <=>
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It is closed <=> &J/t clesed =t
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Definition. ' f: X ->Y is a homeomorphism
<=> £ 15 Mhhuous and  theve S A
conhhowg Wit Y X 0 TeaX
g =l¢ on ﬁfﬂ

e . ]E o an iene. m"oﬁ cmhhuwfvmfs»,
<=> f =t

(i) itis bijective,

(i) it is continuous,

(i

ii) fA{-1} is continuous. & % [
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Posets - on Worksheet 4

A partially ordered set P (or poset) is a set with

a transitive, reflexive and skew-symmetric

relation x <Y, so that

(i) x<x forall xinP

(i) x<yandy<zimpliesx<z

(i) x <y and y < x implies x = y

If only conditions (i) and (ii) are satisfied, it is
called a pre-ordered set.

For example 10“ b, C’S a<lb ¢<b
n<a beb c<C deserbes sudh o

lochin - Lohelry 0t teran
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subsets U of P satisfying xin Pand y<x
implies y in P K
Show that U is a topology on P. There are diraW
other ways to make P into a topological
space.

A Given a poset P, let U be the collection of(L)

K=< <c—N
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Chapter 4: The induced topology, or subspace
topology, or relative topology
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s it obvious that this is a topology?

Check: — @, S € s
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What about the closed sets?
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Tt emgelt SnlK=W) = S chsed.

Example: [0,1] as a subset of R
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Example tlae CIrCIe and the square Q%
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Thezgraph of f(x,y) =xA2-yA2 I R
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