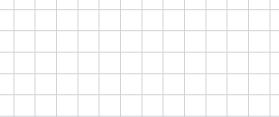
Let $X = \{a,b,c\}$ be the topological space with

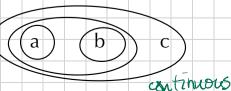
open sets $\{\emptyset, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$

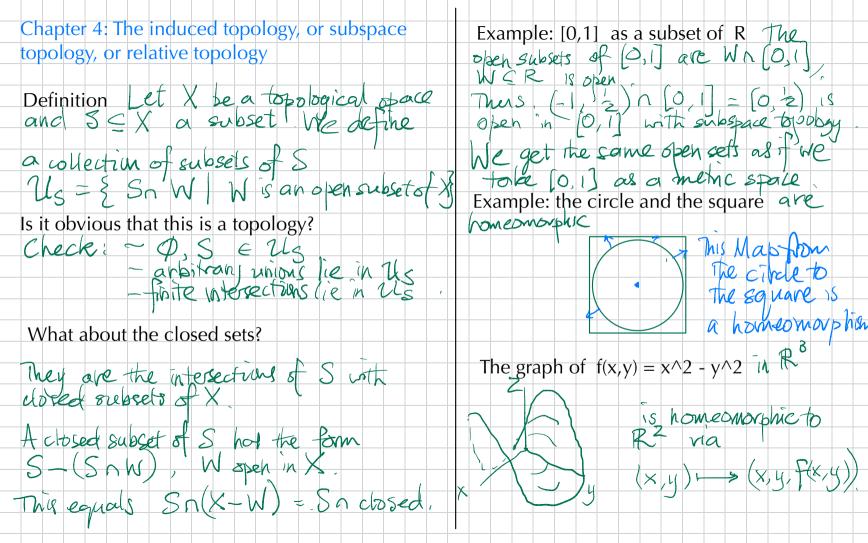


Let $f, g: X \rightarrow X$ be the mappings f(a)=a, f(b)=a, f(c)=b


g(a)=a, g(b)=a, g(c)=c

a. 2


- 1 Is f continuous? Yes / No
- 2 Is g continuous? Yes / No [15 hot] [2]
 3 How many closed sets does X have? 5 not seeh
- b. 3 c. 4
- d. 5 V open sets a closed sets one in e. None of the above bijection.



Open and closed mappings = maps = functions Definition. A map f: X -> Y is open <=> For all open sets U < X, f(U) is open	3. $f:(-10,10) \rightarrow \mathbb{R}$, $f(x) = x^2$, (S this open? Yes/No) Llosed? Yes/No)
It is closed <=> far all closed sts V = X f (V) is closed Example 1. f: (0,1) -> R, the inclusion mapping f is open but not closed. If U = (0,1) IS open then the x e (0,1) f e>0 B x x (0,1) so D is also pen in R using the some B (x). So fis open On the other hand V = (0,2) is closed in (5,1) because (0,1) - V = (2,1) is open in (0,1).	Definition. 'f: X-> Y is a homeomorphism <=> f is continuous and there is a continuous map g: Y-> X so that fg = 1 Y and gf = 1 Y i.e. f has an inverse among continuous waps <=> f = "i" (i) it is bijective, (ii) it is continuous, (iii) f^{-1} is continuous. Book's examples: f = 1 R (R, do) -> (R, d) is a homeomorphism
$f(v) = (0, \frac{1}{2}]$ is not closed in \mathbb{R} . 2. $f: [0, 1] \rightarrow \mathbb{R}$ (inclusion) is closed but not spen.	Other examples (0,1) is homeomorphic to R. Write X = Y to mean they are homeomorphic.

Work on questing I and 2 on Posets - on Worksheet 4 Worksheet 4 A partially ordered set P (or poset) is a set with a transitive, reflexive and skew-symmetric The indiscrete topology on X has relation $x \le y$, so that open sets (i) $x \le x$ for all x in P (ii) $x \le y$ and $y \le z$ implies $x \le z$ (iii) $x \le y$ and $y \le x$ implies x = yIf only conditions (i) and (ii) are satisfied, it is Totally Blinding aaaaa called a pre-ordered set. Obscure For example $\{a, b, c\}$ $a \leq b$ a < a b < b < c < c describes such a relation. I cherry, orange, secan The is the Hasse diagram. Instead À Given a poset P, let U be the collection of T subsets U of P satisfying x in P and $y \le x$ implies y in P Show that U is a topology on P. There are draw other ways to make P into a topological space.

