Pre-clags Warm-up!!!

Divide the tollowing letters into homeomorphism
classes:

abcdefghlnpqr

How many of these letters are in the same class as
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Exercises 4.5

(@ If XeY<SZ and Y has the subspace topology
induced from Z, then the topology induced on X
as a subset of Y is the same as the topology on X
induced as a subset of Z.

(b) A subspace of a metrizable space is metrizable.

(c) If S is asubspace of X then the inclusion
map is continuous; furthermore S has the
weakest topology so that the inclusion map is
continuous.

(e) If A is asubsetof S, the closure of A in S
is contained in the closure of A in X, and they
might not be equal.

(f) and (h) (0,1), (O, infinity) and R are
homeomorphic.

Where on the difficulty scale do you put these?
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Chapter 5: Quotient topology (and groups acting
on spaces)

Definition 5.1. Let f: X ->Y be a surjective
mapping from a topological space X to a set Y.
The quotient topology on Y (with respect to f)
is the family

u¥ ={ U | fA{-1}U) is open in X}
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Proposition. (a) If Y has the quotient topology
then f is continuous.

(b) The quotient topology is the smallest
topology on Y so that f is continuous.
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True or false? Let S be a subset of a

topological space X.

(i) The induced topology on S is the T/@?
largest topology on S so that the >

inclusion map g: S -> X is continuous.

(ii) The induced topology on S is the 0
smallest topology on S so that the =

inclusion map g: S -> X is continuous.
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Examples for the quotient topology

Example: projective space.

Questions:

1. Have you ever encountered a theorem in
projective geometry before? Yes/ No

2. How many ways have you seen before of
constructing a projective space, such as the
real projective plane RPA2 ¢
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