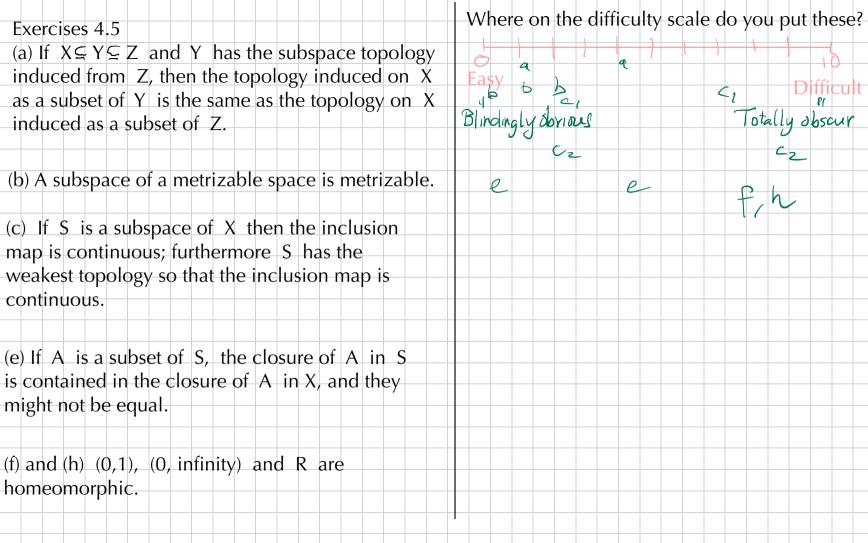
	How to show spaces are not homeomorphic;
Pre-class Warm-up!!!	Remove a finite number of points and see
Divide the following letters into homeomorphism	> + because it is possible to
classes:	
a b c d e f g h l n p q r	remove a point from > so at toget 3 pieces, and with this s not sossib
How many of these letters are in the same class as	e # a We can remove 2 points
a? With thickness IS = ?	from a and get A pieces, This is not possible with e
h? 6 (cfh Lhr) (no thickness)	
Answers: No Tackness: a god pg	
2 3	as sets with the induced
3 4 5 5	Their embeddings in R3 are distinct.



Chapter 5: Quotient topology (and groups acting on spaces) Definition 5.1. Let f: X -> Y be a surjective mapping from a topological space X to a set Y. The quotient topology on Y (with respect to f) is the family $\{\chi_{\Gamma} = \{ U \mid f \land \{-1\}(U) \text{ is open in } X \}$ Geta 1000094 M& bins sty que Theends WC put a open set in X f-1/set show topology on The ME SUB END Proposition. (a) If Y has the quotient topology then f is continuous. (b) The quotient topology is the smallest topology on Y so that f is continuous.

15 son to verfy that f is continuous.

This holds from the definition of open sets in any topology on I for which ruet le sen so this topologymus? contain the quotient sology. True or false? Let S be a subset of a topological space X.

(i) The induced topology on S is the – largest topology on S so that the inclusion map g: S -> X is continuous.

(ii) The induced topology on S is the smallest topology on S so that the inclusion map g: S -> X is continuous.

Examples for the quotient topology	
Example: projective space.	
Questions:	
1. Have you ever encountered a theorem in	
projective geometry before? Yes / No	
2. How many ways have you seen before of	
constructing a projective space, such as the	
real projective plane RP^2 ?	
a. 0	
b. 1	
\overline{c} . 2	
d. 3	
e. >3	